
12th Standard Physics Moving Charges and Magnetism

1. The space in the surroundings of a magnet or a current-carrying conductor in which its magnetic influence can be experienced is called magnetic field. Its SI unit is Tesla (T).

When key K is closed, then deflection occurs in the compass needle and vice-versa,

3. Biot-Savart's Law According to this law, the magnetic field due to small; current-carrying element dl at any nearby point P is given by

$$d\mathbf{B} = \frac{\mu_0}{4\pi} \cdot \frac{Id\mathbf{l} \,\hat{\mathbf{r}}}{|\mathbf{r}|^2} \quad \text{or} \quad dB = \frac{\mu_0}{4\pi} \cdot \frac{Idl \sin\theta}{r^2}$$

and direction is given by Ampere's swimming rule or right hand thumb rule.

where, $\frac{\mu_0}{4\pi} = 10^{-7} \text{ T-m/A}$

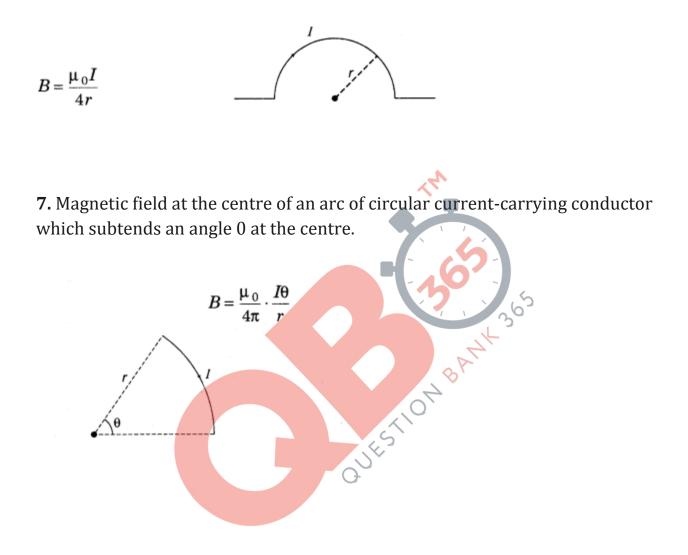
and μ_0 = permeability of free space and r = distance of point P from current-carrying element.

I dl X Current-car conductor

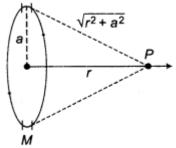
4. The relationship between μ_0 , ϵ_0 and c is

$$\frac{1}{\mu_0 \varepsilon_0} = c^2$$

where, c is velocity of light, ϵ_0 is permittivity of free space and $\mu 0$ is magnetic permeability.

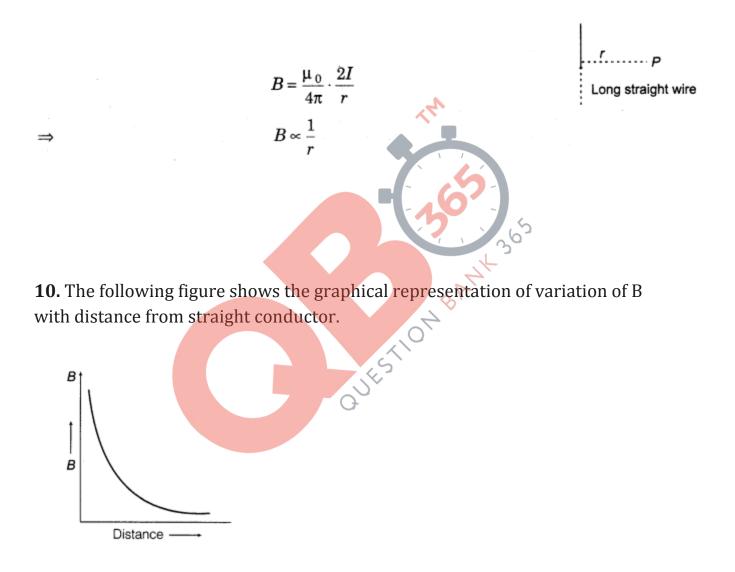

5. Magnetic field at the centre of a circular current-carrying conductor/coil.

$$B = \frac{\mu_0 I}{2r}$$

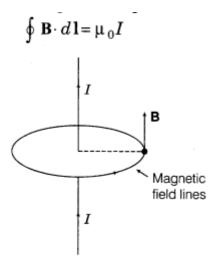

where, *r* is the radius of a circular loop.

For N turns of coil,
$$B = \frac{\mu_0 N I}{2r}$$

6. Magnetic field at the centre of semi-circular current-carrying conductor.



8. Magnetic field at any point lies on the axis of circular current-carrying conductor



 $B = \frac{\mu_0 I a^2}{2 (r^2 + a^2)^{3/2}}$

9. Magnetic field due to straight current-carrying conductor at any point P at a distance r from the wire is given by

11. Ampere's Circuital Law The line integral of the magnetic field B around any closed loop is equal to μ_0 times the total current I threading through the loop, i.e.

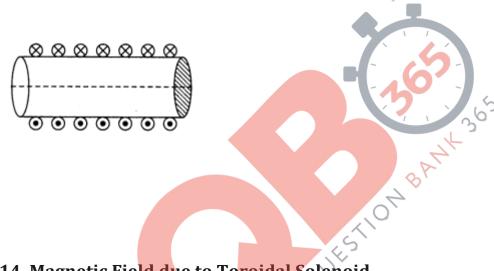
Magnitude of magnetic field of a straight wire using Ampere's law

 $B = \frac{\mu_0 I}{2\pi r}$

⇒

QUESTION BANK 12. Maxwell introduced the concept of displacement current.

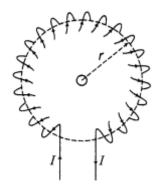
Displacement current, $I_D = \varepsilon_0 \frac{d\phi_E}{dt}$


Displacement current flows in the space due to a variation in electric field.

$$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 \left(I_C + I_D \right)$$

13. Magnetic Field due to a Straight Solenoid

(i) At any point inside the solenoid, $B = \mu_0 nI$ where, n = number of turns per unit length.


(ii) At the ends of the solenoid, B = $1/2 \mu_0 nI$

14. Magnetic Field due to Toroidal Solenoid

(i) Inside the toroidal solenoid,

B = μ_0 nI, here, n =N/2 π r, N= total number of turns (ii) In the open space, interior or exterior of toroidal solenoid, B= 0

