QB365-Question Bank Software

RELATIONS \& FUNCTIONS

KEY CONCEPTS\& IMPORTANT FORMULAE

Objectives :1. To make the students familiar with higher mathematics
2. To understand and apply the knowledge of relation and function.

KEY CONCEPTS
(i).Domain, Co domain \&Range of a relation
(ii). Types of relations
(iii).One-one, onto \& inverse of a function
(iv).Composition of function
(v).Binary Operations

IMPORTANT DEFINATIONS

1. RELATION: A Relation R from a set X to set Y is a subset of $X \times Y$.

A Relation R from a set X to set X is called a relation on X .
2. FUNCTION: A relationf: $A \rightarrow B$ is called a function if f relates every element of A to unique element in B.

Remark: Difference between a relation \& a function
Every function is a relation but converse need not to be true.
For example: Let $A=\{1,2,3,4,5\}, B=\{a, b, c, d\}$. Let R be the relation
From A to B defined as :
$\mathrm{R}=\{(1, \mathrm{a}),(1, \mathrm{c}),(3, \mathrm{~d}),(5, \mathrm{~d})\}$. Let $\boldsymbol{f}: \boldsymbol{A} \rightarrow \boldsymbol{B}$ be the relation defined as
$\mathrm{f}=\{(1, \mathrm{a}),(2, \mathrm{c}),(3, d),(5, \mathrm{~d}),(4, a)\}$, here R is a relation but not a function.
And f is a function.
3. BINARY OPERATION: If $A \neq \varnothing$ be any set then a function $*: A \times A \rightarrow A$ is called a binary operation on A.

TYPES OF RELATION:

1. Reflexive: If $A \neq \emptyset$, then a relation $R: A \rightarrow \boldsymbol{A}$ is called reflexive if f relates every element of A to itself.
2. Symmetric: If $A \neq \emptyset$, then a relation $\boldsymbol{R}: \boldsymbol{A} \rightarrow \boldsymbol{A}$ is called symmetric if (a,b) $\in \mathrm{R}$ implies (b, a) $\in \mathrm{R} \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$
3. Transitive :If $A \neq \emptyset$, then a relation $\boldsymbol{R}: \boldsymbol{A} \rightarrow \boldsymbol{A}$ is called transitive if $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and $(\mathrm{b}, \mathrm{c}) \in \mathrm{R}$ implies (a, c) $\in \mathrm{R} \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$.

Equivalence Relation: A relation R on A is called equivalence relation if R

QB365-Question Bank Software

is reflexive, symmetric and transitive.

TYPES OF FUNCTIONS:

1. One-one function (injective): If $A, B \neq \emptyset$, then a function $\boldsymbol{f}: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is called one-one function if f maps (relates) distinct elements of A
to distinct elements of B.
If $f(x)=f(y)$ implies $x=y$.
2. Onto function(suriective): If $A, B \neq \emptyset$, then a function $\boldsymbol{f}: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is called onto function if for every element $y \in B$, there exists $x \in A$
Such that $\mathrm{f}(\mathrm{x})=\mathrm{y}$.
3. Bijective function: If a function is one-one and onto, then it is a bijective function. Note:If $\boldsymbol{f}: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is a bijective function then f is also called invertible function.
If $\boldsymbol{f}: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is a bijective function then $\boldsymbol{g}: \boldsymbol{B} \rightarrow \boldsymbol{A}$ is called inverse of f if $\mathrm{g}(\mathrm{y})=\mathrm{x} \forall \mathrm{y} \in \mathrm{B}$

COMPOSITION OF FUNCTION:

If $f: A \rightarrow B \& g: B \rightarrow C$ be two functions then $g o f: A \rightarrow C$ is a function defined by $g o f(x)=g(f(x)) \forall x \in A$.
Note : If $f: A \rightarrow B \& g: C \rightarrow D$ be two functions then $g o f: A \nrightarrow D$ is defined by $g o f(x)=$ $\boldsymbol{g}(f(x) \forall x \in A$ provided Range f is a subset of Domain g.

Note:If $f: A \rightarrow B \& g: B \rightarrow A$ be two functions such that $g o f(x)=x=\operatorname{fog}(x)$
Then f is invertible $\& f^{-1}=\mathbf{g}$

Binary Operation: If $A \neq \emptyset$ be any set then a function $*: A \times A \rightarrow A$ is called a binary operation on A.

Properties of Binary operations:

1. A Binary operation $*: A \times A \rightarrow A$ is called commutative if $a * b=b * a \forall \mathbf{a}, \mathrm{~b} \in \mathrm{~A}$
2. A Binary operation $*: A \times A \rightarrow \boldsymbol{A}$ is called associative $\operatorname{if}(\boldsymbol{a} * \boldsymbol{b}) * \boldsymbol{c}=\boldsymbol{a} *(\boldsymbol{b} * \boldsymbol{C}) \forall \mathbf{a}, \mathbf{b} \in \mathbf{A}$.
3. If $*: A \times A \rightarrow \boldsymbol{A}$ is a binary operation then $\mathrm{e} \in \boldsymbol{A}$ is called identity element if

$$
a * e=e * a=a \forall \mathbf{a} \in \mathbf{A} .
$$

4. If $*: A \times A \rightarrow A$ is a binary operation then $b \in A$ is called inverse of $a \in A$ if

$$
a * b=b * a=e
$$

QB365-Question Bank Software

IMPORTANT BOARD QUESTIONS

SECTION A

1. If $f(x)=x+7$ and $g(x)=x-7, x \in R$ find (fog) (7).

Sol.1.Here (fog) $(x)=f(g(x))$
$=\mathrm{f}(\mathrm{x}-7)$
$=(x-7)+7=x$

2 .Let * be a binary operation defined by $a^{*} b=2 a+b-3$. Find $3 * 4$.
Sol. Given $\mathrm{a}^{*} \mathrm{~b}=2 \mathrm{a}+\mathrm{b}-3$
$\& 3 * 4=6+4-3=7$
3.If $A=\{1,2,3,4,5\}$, write the relation $a R b$ such that $a+b=8, a, b \in A$.

Sol.Here $\mathrm{R}=\{(3,5),(5,3),(4,4)\}$
4. Prove that the $f: R \rightarrow R$ defined as $f(x)=2 x$ is one-one.

Sol. Let $\mathrm{x}, \mathrm{y} \in R$ be such that $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$,
$2 \mathrm{x}=2 \mathrm{y}$
$x=y$. Therefore f is one-one.

QB365-Question Bank Software

SECTION B

1. Show that the relation R in the set Z of integers given by

$$
\mathbf{R}=\{(\mathbf{a}, \mathbf{b}): 2 \text { divides a-b }\}
$$

Solution:

Reflexivity: Since a-a $=0$ is divisible by 2 for every a ϵZ
Therefore (a, a) $\in \mathrm{R}$
Hence it is reflexive
Symmetric: Let $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$, $\mathrm{a}-\mathrm{b}$ is divisible by 2
Then b-a is also divisible by 2
i.e, $(b, a) \in R$

Hence R is symmetric
Transitive :Let $(a, b) \in R$ and $(b, c) \in R$
Therefore, $\mathrm{a}-\mathrm{b}=2 \mathrm{~m}$ and $\mathrm{b}-\mathrm{c}=2 \mathrm{n}$, where $\mathrm{m}, \mathrm{n} \epsilon^{\prime} \mathrm{Z}$
Adding them $\mathrm{a}-\mathrm{b}+\mathrm{b}-\mathrm{c}=2(\mathrm{~m}+\mathrm{n})$
We get $\mathrm{a}-\mathrm{c}=2(\mathrm{~m}+\mathrm{n})$, where $\mathrm{m}+\mathrm{n} \in \mathrm{Z}$
Thus (a, c) $\in \mathrm{R}$
Hence R is also transitive.
Thus R is an equivalence relation in Z
2. Show that the relation R in the set R of real numbers, defined as $\mathbf{R}=\left\{(\boldsymbol{a}, \boldsymbol{b}): a \leq b^{2}\right\}$ is neither reflexive nor symmetric nor transitive.

Sol. Clearly, for $\mathrm{a}=1 / 2$, aRa is false because, $\frac{1}{2} \leq \frac{1}{4}$ is not true
Hence R is not reflexive.
Clearly $(1,3) \in \mathrm{R}$ \{because $1<9\}$
but $(3,1) \notin R \quad$ because $9 \leq 1\}$ is not true.
Hence R is not symmetric.
Further,(5,4)) $\epsilon \mathrm{R} \&(4,2)) \in \mathrm{R}$
but $(5,2) \notin R \quad\{$ because $5 \leq 4\}$ is not true. Therefore R is not transitive.

QB365-Question Bank Software

Also find the inverse of the function $\mathrm{f}:[-1,1] \rightarrow \square$ Range of the f .

Sol. $f:[-1,1] \rightarrow \mathrm{R}$ is given as $\mathrm{f}(\mathrm{x})=\frac{x}{x+2}$
Let $f(x)=f(y)$.
$\Rightarrow \frac{x}{x+2}=\frac{y}{y+2}$
$\Rightarrow x y+2 x=x y+2 y$
$\Rightarrow 2 x=2 y$
$\Rightarrow x=y$
$\therefore f$ is a one-one function.
It is clear that $f:[-1,1] \rightarrow$ Range f is onto.
$\therefore f:[-1,1] \rightarrow$ Range f is one-one and onto and therefore, the inverse of the function:
$f:[-1,1] \rightarrow$ Range f exists.
Let g : Range $f \rightarrow[-1,1]$ be the inverse of f.
Let y be an arbitrary element of range f.
Since $f:[-1,1] \rightarrow$ Range f is onto, we have:
$y=f(x)$ for same $x \in[-1,1]$
$\Rightarrow y=\frac{x}{x+2}$
$\Rightarrow x y+2 y=x$
$\Rightarrow x(1-y)=2 y$
$\Rightarrow x=\frac{2 y}{1-y}, y \neq 1$
Now, let us define g : Range $f \rightarrow[-1,1]$ as
$g(y)=\frac{2 y}{1-y}, y \neq 1$.
Now, $(g \circ f)(x)=g(f(x))=g\left(\frac{x}{x+2}\right)=\frac{2\left(\frac{x}{x+2}\right)}{1-\frac{x}{x+2}}=\frac{2 x}{x+2-x}=\frac{2 x}{2}=x$
$(f \circ g)(y)=f(g(y))=f\left(\frac{2 y}{1-y}\right)=\frac{\frac{2 y}{1-y}}{\frac{2 y}{1-y}+2}=\frac{2 y}{2 y+2-2 y}=\frac{2 y}{2}=y$

QB365-Question Bank Software

$\therefore f^{-1}=g$
$\Rightarrow f^{-1}(y)=\frac{2 y}{1-y}, y \neq 1$
4. Show that the relation \mathbf{R} on set $\mathbf{A}={ }_{\{1,2,3,4,5\}}$ given $\mathbf{b y} \mathbf{R}=\mathbf{R}=\{(\mathbf{a}, \mathbf{b}):|\mathbf{a}-\mathbf{b}|$ is even $\}$ is an equivalence relation.

Sol. $\mathrm{R}=\{(1,1)(1,3)(1,5)(2,2)(2,4)(3,1)(3,3)(3,5)(4,2)(4,4)(5,1)(5,3)\}$

Reflexive-

$(\mathrm{a}, \mathrm{a}) \in \mathrm{R}$ as $|a-a|=0$ is even number for every a belonging to A

Symmetric-

Let $(\mathrm{a}, \mathrm{b}) \in \mathrm{R} \Rightarrow|a-b|$ is even $\Rightarrow|b-a|$ is even $\Rightarrow(b, a) \in \mathrm{R}$

Transitive Relation-

If $(\mathrm{a}, \mathrm{b}) \in \mathrm{R} \Rightarrow|a-b|$ is even $\Rightarrow \mathrm{a}-\mathrm{b}= \pm 2 \mathrm{n}$

If $(\mathrm{b}, \mathrm{c}) \in \mathrm{R} \Rightarrow|b-c|$ is even $\Rightarrow \mathrm{b}-\mathrm{c}= \pm 2 \mathrm{~m}$
$a-c=a-b+(b-c)={ }_{ \pm} 2(m+n)$
$|a-c|$ is even number $\Rightarrow(a, c) \in R$

Hence R is an equivalence relation
5. Consider ${ }_{f}: R_{+} \rightarrow[4, \infty)$ given by $_{f(x)=x^{2}+4 \text {. Show that } f \text { is invertible with the inverse }}$ \mathbf{f}^{-1} of f given by $f^{-1}(y)=\sqrt{y-4}$, where $R+$ is the set of all non-negative real numbers.

Sol.f(x) $=x^{2}+4$
$\therefore y=x^{2}+4$
$x=\sqrt{y-4}$

Let us define a function $\mathrm{g}:[4, \infty) \rightarrow \mathrm{R}$ such that,
$\therefore g(y)=\sqrt{y-4}$,

Now $\operatorname{gof}(x)=g[f(x)]$

$$
=g\left(x^{2}+4\right)
$$

QB365-Question Bank Software

$=\mathrm{X}$
Similarly we can show fog $(\mathrm{y})=\mathrm{y}$
Hence f is invertible with $f^{-1}=g$

$$
f^{-1}(y)=\sqrt{y-4}
$$

SECTION C

1.Let $f: \mathbf{N} \rightarrow \mathbf{N}$ defined as $f(x)=9 x^{2}+6 x-5$ show that $f: N \rightarrow S$ where S is the range of f is Invertible. Find the inverse of \mathbf{f} and hence find ${ }_{f}{ }^{-1}(43)$ and $f^{-1}(163)$
Sol.: $f(x)=9 x^{2}+6 x-5$

$$
\begin{aligned}
& \therefore y=9 x^{2}+6 x-5 \\
& \Rightarrow x=\frac{-1+\sqrt{y+6}}{3}
\end{aligned}
$$

Let us define a function $\mathrm{g}: \mathrm{S}_{\rightarrow \mathrm{N}}$ such that,

Now $\quad \operatorname{gof}(x)=g[f(x)]$

$$
=g\left(9 x^{2}+6 x-5\right)
$$

$$
-1+\sqrt{9 x^{2}+6 x-5+6}
$$

$$
==\frac{-1+3 x+1}{3}
$$

Similarly we can show $\operatorname{fog}(\mathrm{y})=\mathrm{y}$
Hence f is invertible with $\mathrm{f}^{-1}=\mathrm{g}$

$$
\mathrm{f}^{-1}(\mathrm{x})=\frac{-1+\sqrt{\mathrm{x}+6}}{3}
$$

Now $f^{-1}(43)=\frac{-1+\sqrt{43+6}}{3}=2$

And $_{f^{-1}}(163)=\frac{-1+\sqrt{163+6}}{3}=4$

QB365-Question Bank Software

2. Let $A=\mathbf{Q} \times \mathbf{Q}$. Let * be a binary operation on A defined by $(\mathbf{a}, \mathbf{b}) *(\mathbf{c}, \mathrm{~d})=(\mathbf{a c}, a d+b)$. Show that * is commutative \& Associative.

Find: (i) the identity element of A (ii) the invertible element of A.

Sol. $\mathrm{A}=\mathrm{QxQ}$
And $(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{ac}, \mathrm{b}+\mathrm{ad}) \forall(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \cdot \mathrm{S}$

$$
(\mathrm{a}, \mathrm{~b})^{*}(\mathrm{c}, \mathrm{~d})=(\mathrm{ac}, \mathrm{~b}+\mathrm{ad})
$$

(I) commutative:

$(\mathrm{a}, \mathrm{b})^{*}(\mathrm{c}, \mathrm{d})=(\mathrm{ac}, \mathrm{b}+\mathrm{ad})$
$(\mathrm{c}, \mathrm{d}) *(\mathrm{a}, \mathrm{b})=(\mathrm{ca}, \mathrm{d}+\mathrm{cb})$
E.g. $(1,2)^{*}(3,4)=(3,6)$
$(3,4) *(1,2)=(3,10)$

* is not commutative.

Associative:

$\left\{\left[(\mathrm{a}, \mathrm{b})^{*}(\mathrm{c}, \mathrm{d})\right]^{*}(\mathrm{e}, \mathrm{f})\right\}=(\mathrm{ac}, \mathrm{b}+\mathrm{ad})^{*}(\mathrm{e}, \mathrm{f})$
$=(a c e, b+a d+a c f)$
$\left\{(\mathrm{a}, \mathrm{b})^{*}[(\mathrm{c}, \mathrm{d}) *(\mathrm{e}, \mathrm{f})]\right\}=(\mathrm{a}, \mathrm{b})^{*}(\mathrm{ce}, \mathrm{d}+\mathrm{cf})$
$=(\mathrm{ace}, \mathrm{b}+\mathrm{ad}+\mathrm{acf})$

* is associative.
(ii) if (e, e^{\prime}) is identity
$(\mathrm{a}, \mathrm{b})^{*}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)=(\mathrm{a}, \mathrm{b})=\left(\mathrm{e}, \mathrm{e}^{\prime}\right)^{*}(\mathrm{a}, \mathrm{b})$
$\left(a e, b+a e^{\prime}\right)=(a, b)=\left(e a, e^{\prime}+e b\right)$
$\left(a e, b+a e^{\prime}\right)=(a, b)$
$\mathrm{ae}=\mathrm{a} \& \mathrm{~b}+\mathrm{ae}{ }^{\prime}=\mathrm{b}$
$\mathrm{e}=1 \& \mathrm{e}^{\prime}=0$, if a is not equal to 0 .
Now, (a,b)=(ea, e' + eb)
$a=e a, b=e^{\prime}+e b$
$\mathrm{e}=0, \mathrm{e}^{\prime}=\mathrm{b}$
Identity doesn't exist.

QB365-Question Bank Software

HOTS

Q1 Let $A=\{x \in R:-1 \leq x \leq 1\}=B$. Show that $f: A \rightarrow B$ given by $f(x)=x|x|$ is bijection.

Sol: We have $f(x)=\left\{\begin{aligned}-x^{2}, & x<0 \\ x^{2}, & x \geq 0\end{aligned}\right.$
a) f is one one
1)Let $x, y \epsilon[0,1]$ be such that

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y}) \\
& x^{2}=y^{2} \\
& \quad(x-y)(x+y)=0
\end{aligned}
$$

$$
x=y \text { or } x=-y(\text { rejected })
$$

2)Letx,y $(-\infty, 0)$ be such that

$$
f(x)=f(y)
$$

$$
-x^{2}=-y^{2}
$$

$(x-y)(x+y)=0$
$x=y$ or $x=-y$ (rejected).
Therefore f is one one
b) f is onto :

For every $\mathrm{y} \in[0,1]$, there exists $\mathrm{x} \epsilon[0,1]$ s.t $\mathrm{f}(\mathrm{x})=\mathrm{y} \quad$ ie $x^{2}=\mathrm{y}$.
Also for every y $\epsilon(-\infty, 0)$, there exists $\mathrm{x} \epsilon(-\infty, 0)$ s.t $\mathrm{f}(\mathrm{x})=\mathrm{y}$ ie $x^{2}=-\mathrm{y}$.
Therefore f is onto . Hence f is a bijective function.

Q 2 If $f(x)=\sqrt{x}, x \geq 0$ and $g(x)=x^{2}-1$ are two real functions, then find fog and gof.

Sol: Here $\mathrm{f}(\mathrm{x})=\sqrt{x}, x \geq 0$ and $\mathrm{g}(\mathrm{x})=x^{2}-1$.

$$
\begin{aligned}
& \text { Domain } f=[0, \infty) \text { and Range } f=[0, \infty) \\
& \text { Domain } g=R \quad \text { and Range } g=[-1, \infty)
\end{aligned}
$$

Computation of gof :

QB365-Question Bank Software

Therefore gof exists and gof : $[0, \infty) \rightarrow R$
$\operatorname{gof}(x)=g(f(x))=g(\sqrt{x})=(\sqrt{x})^{2}-1$

Computation of gof : We observe that Range $g=[-1, \infty)$ is not subset of Domain f.
Therefore Domain fog $=\{x \in \operatorname{R}$ and $\mathrm{g}(\mathrm{x}) \epsilon[0, \infty)\}$

$$
=\left\{\mathrm{x} \epsilon \mathrm{R} \text { and } x^{2}-1 \epsilon[0, \infty)\right\}
$$

$=\left\{\mathrm{x} \in \mathrm{R}\right.$ and $\left.x^{2}-1 \geq 0\right\}$

$$
=\{x \in R \text { and } x \leq-1, x \geq 1\}
$$

Domain fog $=(-\infty, 1) \cup[1, \infty)$ and $f o g(x)=f(g(x))=f\left(x^{2}-1\right)=\sqrt{x^{2}-1}$.
Q3 Let $g(x)=1+x-[x]$ and $f(x)=\left\{\begin{array}{ll}-1, & x<0 \\ 0, & x=0 \\ 1, & x>0\end{array}\right.$, then for all x, find $f 0 g(x)$.
Sol : $\mathrm{fog}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}(1+\mathrm{x}-[\mathrm{x}])=\mathrm{f}(1+\{\mathrm{x}\})=1$
Because $\{\mathrm{x}\}=x-[x]$
Also $0 \leq x-[x]<1$ ie $0 \leq\{x\}<1$
$1 \leq 1+\{\mathrm{x}\}<2$
$\operatorname{Fog}(x)=f(1+\{x\})=1 \quad[\quad\{x\}$ denotes partial part or decimal part $]$

Q4 Two functions $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined as $f(x)=$ $\{0$, if x is rational
$\{1$, if x is irrational
and $g(x)=\left\{\begin{array}{l}-1 \text { if } x \text { is rational } \\ 0 \text { if } x \text { is irrational }\end{array}\right.$. Find gof $(e)+f o g(\pi)$.

Sol : Here gof $(\mathrm{e})+\operatorname{fog}(\pi)=g(f(e))+f(g(e)$

$$
\begin{aligned}
& =\mathrm{g}(1)+\mathrm{f}(0) \\
& =-1+0 \\
& =-1
\end{aligned}
$$

QB365-Question Bank Software

$A * B=A \cup B$ for all $A, B \in \mathbf{P}(\mathbf{X})$. Prove that $*$ is commutative and associative.
Find the identity element .Also show that $\emptyset \epsilon \mathrm{P}(\mathrm{X})$ is the only invertible element.

Sol : We know that $\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cup \mathrm{C}$ and $(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$
Therefore for any $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{P}(\mathrm{X})$, we have

$$
A \cup B=A \cup C \text { and }(A \cup B) \cup C=A \cup(B \cup C)
$$

ie $\mathrm{A} * \mathrm{~B}=\mathrm{B} * \mathrm{~A}$ and $(\mathrm{A} * \mathrm{~B}) * \mathrm{C}=\mathrm{A} *(\mathrm{~B} * \mathrm{C})$.
Thus * is both commutative and associative .
Now $\mathrm{A} \cup \emptyset=\mathrm{A}=\emptyset \cup A$ for all $\mathrm{A} \in \mathrm{P}(\mathrm{X})$
ie $\mathrm{A} * \varnothing=\varnothing * A$ for all $\mathrm{A} \epsilon \mathrm{P}(\mathrm{X})$
So \varnothing is the videntity element.
Let $\mathrm{A} \in \mathrm{P}(\mathrm{X})$ be the invertible element. Then there exists $\mathrm{S} \in \mathrm{P}(\mathrm{X})$ s.t
$\mathrm{A} * S=\varnothing=S * A$ ie $\mathrm{A} \cup S=\emptyset=S \cup A$
$\mathrm{S}=\varnothing=A$.
Hence \varnothing is the only invrrtible element.

