RELATIONS & FUNCTIONS

KEY CONCEPTS& IMPORTANT FORMULAE

Objectives :1. To make the students familiar with higher mathematics 2. To understand and apply the knowledge of relation and function.

KEY CONCEPTS

(i).Domain, Co domain &Range of a relation

(ii). Types of relations

(iii).One-one, onto & inverse of a function

- (iv).Composition of function
- (v).Binary Operations

IMPORTANT DEFINATIONS

- 1. <u>**RELATION:**</u> A Relation R from a set X to set Y is a subset of X × Y. A Relation R from a set X to set X is called a relation on X.
- 2. <u>FUNCTION</u>: A relation $f: A \rightarrow B$ is called a function if f relates every element of A to unique element in B.

<u>Remark</u>: Difference between a relation & a function

Every function is a relation but converse need not to be true. For example: Let $A = \{1, 2, 3, 4, 5\}$, $B = \{a, b, c, d\}$. Let R be the relation From A to B defined as : $R = \{(1,a), (1,c), (3,d), (5,d)\}$. Let $f: A \rightarrow B$ be the relation defined as $f = \{(1,a), (2,c), (3,d), (5,d), (4,a)\}$, here R is a relation but not a function. And f is a function.

3. **<u>BINARY OPERATION</u>**: If $A \neq \emptyset$ be any set then a function $*: A \times A \rightarrow A$ is called a binary operation on A.

TYPES OF RELATION:

1. <u>Reflexive:</u> If $A \neq \emptyset$, then a relation $R: A \rightarrow A$ is called reflexive if f relates every element of A to itself.

2. <u>Symmetric</u>: If $A \neq \emptyset$, then a relation $R: A \rightarrow A$ is called symmetric if (a,b) ϵ R implies (b,a) ϵ R \forall a, b ϵ A

3. <u>**Transitive</u>** : If $A \neq \emptyset$, then a relation $\mathbf{R}: \mathbf{A} \rightarrow \mathbf{A}$ is called transitive if (a,b) ϵR and (b,c) ϵR implies (a,c) $\epsilon R \forall a, b, c \epsilon A$.</u>

Equivalence Relation: A relation R on A is called equivalence relation if R

is reflexive, symmetric and transitive.

TYPES OF FUNCTIONS:

One-one function (injective): If A, B ≠ Ø, then a function f: A → B is called one-one function if f maps (relates) distinct elements of A to distinct elements of B.
 If f(x)=f(y) implies x=y.

Onto function(surjective): If A, B ≠ Ø, then a function f: A → B is called onto function if for every element y∈B, there exists x∈A Such that f(x) =y.

3. <u>Bijective function</u>: If a function is one-one and onto, then it is a bijective function. Note: If $f: A \to B$ is a bijective function then f is also called invertible function. If $f: A \to B$ is a bijective function then $g: B \to A$ is called inverse of f if $g(y) = x \forall y \in B$

COMPOSITION OF FUNCTION:

If $f: A \to B\&g: B \to C$ be two functions then $gof: A \to C$ is a function defined by $gof(x) = g(f(x)) \forall x \in A$. Note : If $f: A \to B\&g: C \to D$ be two functions then $gof: A \to D$ is defined by $gof(x) = g(f(x)) \forall x \in A$ provided Range f is a subset of Domain g.

Note: If $f: A \to B \& g: B \to A$ be two functions such that gof(x) = x = fog(x)Then f is invertible & f¹ = g

<u>Binary Operation</u>: If $A \neq \emptyset$ be any set then a function $*: A \times A \rightarrow A$ is called a binary operation on A.

Properties of Binary operations:

- **1.** A Binary operation $*: A \times A \rightarrow A$ is called commutative if $a * b = b * a \forall a, b \in A$
- 2. A Binary operation $* : A \times A \rightarrow A$ is called associative if $(a * b) * c = a * (b * c) \forall a, b \in A$.
- **3.** If $*: A \times A \rightarrow A$ is a binary operation then $e \in A$ is called identity element if

$$a * e = e * a = a \forall a \in A.$$

4. If*: $A \times A \rightarrow A$ is a binary operation then b \in A is called inverse of a \in A if

$$a * b = b * a = e$$

IMPORTANT BOARD QUESTIONS

SECTION A

1. If f(x) = x + 7 and g(x) = x - 7, $x \in R$ find (fog) (7).

Sol.1.Here (fog) (x)=f(g(x))

=f(x-7)

=(x-7)+7=x

2 .Let * be a binary operation defined by $a^* b = 2a + b - 3$.Find 3*4.

Sol. Given $a^* b = 2a + b - 3$

&3*4 = 6 + 4 - 3 = 7

QUESTION BANK 36F 3.If $A=\{1,2,3,4,5\}$, write the relation aRb such that $a+b=8,a,b\in A$.

Sol.Here $R = \{(3,5), (5,3), (4,4)\}$

4. Prove that the f: $R \rightarrow R$ defined as f(x) = 2x is one-one.

Sol. Let $x, y \in R$ be such that f(x)=f(y),

$$2x=2y$$

x = y. Therefore f is one-one.

QB365-Question Bank Software SECTION B

1. Show that the relation R in the set Z of integers given by

 $R=\{(a,b): 2 \text{ divides } a-b \}$

Solution:

Reflexivity: Since a - a = 0 is divisible by 2 for every a ϵZ

Therefore (a, a) ϵ R

Hence it is reflexive

Symmetric: Let $(a, b) \in \mathbb{R}$, a-b is divisible by 2

Then b-a is also divisible by 2

i.e, $(b, a) \in R$

Hence R is symmetric

Transitive :Let $(a, b) \in R$ and $(b, c) \in R$

UESTION BANK Therefore, a - b = 2m and b - c = 2n, where m, n ϵZ

Adding them a- b + b - c = 2 (m + n)

We get a - c = 2 (m + n), where $m + n \in Z$

Thus (a, c) ϵ R

Hence R is also transitive.

Thus R is an equivalence relation in Z

2. Show that the relation R in the set R of real numbers, defined as **R** = {(a, b) : $a \le b^2$ } is neither reflexive nor symmetric nor transitive.

Sol. Clearly, for $a = \frac{1}{2}$, aRa is false because, $\frac{1}{2} \le \frac{1}{4}$ is not true

Hence R is not reflexive.

Clearly (1,3) ϵ R {because 1 < 9} but $(3,1) \notin \mathbb{R}$ {because $9 \le 1$ } is not true.

Hence R is not symmetric.

Further, (5,4)) $\epsilon R \& (4,2)$) ϵR

but $(5,2) \notin \mathbb{R}$ {because $5 \le 4$ } is not true. Therefore R is not transitive.

2

QUESTION BANK

5. If the function f(x) = ---, for that its one-one.

Also find the inverse of the function $f:[-1,1] \rightarrow \Box$ Range of the f.

Sol.f:
$$[-1, 1] \rightarrow R$$
 is given as $f(x) = \frac{x}{x+2}$

Let f(x) = f(y).

$$\Rightarrow \frac{x}{x+2} = \frac{y}{y+2}$$
$$\Rightarrow xy + 2x = xy + 2y$$
$$\Rightarrow 2x = 2y$$
$$\Rightarrow x = y$$

: f is a one-one function.

It is clear that $f: [-1, 1] \rightarrow \text{Range } f \text{ is onto.}$

: $f: [-1, 1] \rightarrow \text{Range } f \text{ is one-one and onto and therefore, the inverse of the function:}$

 $f: [-1, 1] \rightarrow \text{Range} f \text{ exists.}$

Let g: Range $f \rightarrow [-1, 1]$ be the inverse of f.

Let *y* be an arbitrary element of range *f*.

Since $f: [-1, 1] \rightarrow \text{Range } f \text{ is onto, we have:}$

$$y = f(x) \text{ for same } x \in [-1, 1]$$

$$\Rightarrow y = \frac{x}{x+2}$$

$$\Rightarrow xy + 2y = x$$

$$\Rightarrow x(1-y) = 2y$$

$$\Rightarrow x = \frac{2y}{1-y}, y \neq 1$$

Now, let us define g: Range $f \rightarrow [-1, 1]$ as

$$g(y) = \frac{2y}{1-y}, y \neq 1.$$

Now, $(gof)(x) = g(f(x)) = g\left(\frac{x}{x+2}\right) = \frac{2\left(\frac{x}{x+2}\right)}{1-\frac{x}{x+2}} = \frac{2x}{x+2-x} = \frac{2x}{2} = x$
 $2y$

$$(fog)(y) = f(g(y)) = f\left(\frac{2y}{1-y}\right) = \frac{\overline{1-y}}{\frac{2y}{1-y}+2} = \frac{2y}{2y+2-2y} = \frac{2y}{2} = y$$

 $\cdot \cdot f^{-1} = g$

$$\Rightarrow f^{-1}(y) = \frac{2y}{1-y}, y \neq 1$$

4. Show that the relation R on set $A = \{1, 2, 3, 4, 5\}$ given by $R = R = \{(a, b): |a-b| \text{ is even}\}$ is an equivalence relation.

Sol. $R = \{(1,1)(1,3)(1,5)(2,2)(2,4)(3,1)(3,3)(3,5)(4,2)(4,4)(5,1)(5,3))\}$

Reflexive-

(a,a) \in R as |a - a| = 0 is even number for every a belonging to A

Symmetric—

Let $(a,b) \in \mathbb{R} \Rightarrow |a - b|$ is even $\Rightarrow |b - a|$ is even $\Rightarrow (b, a) \in \mathbb{R}$

Transitive Relation

If $(a,b) \in \mathbb{R} \Rightarrow |a - b|$ is even $\Rightarrow a-b = \pm 2n$

If (b,c)
$$R \Rightarrow | b - c |$$
 is even $\Rightarrow b - c = \pm 2m$

$$a-c = a-b + (b-c) = \pm 2(m+n)$$

$$|a - c|$$
 is even number \Rightarrow (a,c) \in R

Hence R is an equivalence relation

5. Consider $f: \mathbb{R}_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y) = \sqrt{y-4}$, where R+ is the set of all non-negative real numbers. Sol. $f(x) = x^2 + 4$

QUESTIONBANK

 $\therefore \mathbf{y} = \mathbf{x}^2 + 4$ $\therefore \mathbf{x} = \sqrt{\mathbf{y} - 4}$

Let us define a function g: $[4, \infty) \rightarrow R_{\pm}$ such that,

$$\therefore g(y) = \sqrt{y - 4},$$

Now gof(x) = g[f(x)]

$$= g(x^2 + 4)$$

 $= \mathbf{X}$

Similarly we can show fog(y) = y

Hence f is invertible with $f^1 = g$

 $\dot{f}^{-1}(\mathbf{y}) = \sqrt{\mathbf{y} - 4}$

SECTION C

1.Let f: N \rightarrow N defined as $f(x)=9x^2+6x-5$ show that f: N \rightarrow S where S is the range of f is Invertible. Find the inverse of f and hence find $f^{-1}(43)$ and $f^{-1}(163)$ Sol.: $f(x) = 9x^2+6x-5$

$$\therefore y = 9x^{2} + 6x - 5$$

$$\Rightarrow x = \frac{-1 + \sqrt{y + 6}}{3}$$
Let us define a function $g: S \rightarrow N$ such that,

$$\therefore g(y) = \frac{-1 + \sqrt{y + 6}}{3},$$
Now $gof(x) = g[f(x)]$

$$= g(9x^{2} + 6x - 5 + 6)$$

$$\frac{-1 + \sqrt{9x^{2} + 6x - 5 + 6}}{3}$$

$$= \frac{-1 + 3x + 1}{3}$$

$$= x$$

Similarly we can show fog(y) = y

Hence f is invertible with $f^1 = g$

$$f^{-1}(\mathbf{x}) = \frac{-1 + \sqrt{x + 6}}{3}$$

Now $f^{-1}(43) = \frac{-1 + \sqrt{43 + 6}}{3} = 2$

And
$$f^{-1}(163) = \frac{-1 + \sqrt{163 + 6}}{3} = 4$$

2. Let A = Q×Q. Let * be a binary operation on A defined by (a,b)*(c,d)= (ac , ad+b). Show that * is commutative & Associative.

Find: (i) the identity element of A (ii) the invertible element of A.

Sol. A = QxQ And (a,b) * (c,d) = (ac,b+ad) \forall (a,b),(c,d) \in S

 $(a,b)^*(c,d) = (ac,b+ad)$

(I) commutative:

(a,b)*(c,d) = (ac,b+ad)

 $(c,d)^{*}(a,b)=(ca,d+cb)$

E.g. (1,2)*(3,4)=(3,6)

(3,4)*(1,2)=(3,10)

* is not commutative.

Associative:

 $\{[(a,b)^*(c,d)]^*(e,f)\}=(ac,b+ad)^*(e,f)$

=(ace,b+ad+acf)

$${(a,b)*[(c,d)*(e,f)]}=(a,b)*(ce,d+cf)$$

=(ace,b+ad+acf)

* is associative.

(ii) if (e,e') is identity

 $(a,b)^*(e,e')=(a,b)=(e,e')^*(a,b)$

(ae,b+ae')=(a,b)=(ea,e'+eb)

(ae,b+ae')=(a,b)

ae=a &b+ae'=b

e=1&e'=0, if a is not equal to 0.

Now, (a,b)=(ea,e'+eb)

a=ea, b=e'+eb

e=0, e'=b

Identity doesn't exist.

QUESTION BANK

<u>HOTS</u>

Q1 Let A = { $x \in R : -1 \le x \le 1$ } = B.Show that f:A \rightarrow B given by f(x) = x|x| is bijection.

Sol: We have $f(x) = \begin{cases} -x^2, \ x < 0 \\ x^2, \ x \ge 0 \end{cases}$

a) f is one one 1)Let x, y ϵ [0,1] be such that

f(x) = f(y) $x^2 = y^2$

$$(x-y)(x+y) = 0$$

x = y or x = -y (rejected)

QUESTION BANK

2)Letx, y \in ($-\infty$, 0)be such that

f(x) = f(y)

(x-y)(x+y)=0

$$x = y \text{ or } x = -y \text{ (rejected)}$$
.

Therefore f is one one.

b) f is onto :

For every $y \in [0,1]$, there exists $x \in [0,1]$ s.t f(x) = y ie $x^2 = y$.

Also for every $y \in (-\infty, 0)$, there exists $x \in (-\infty, 0)$ s.t f(x) = y ie $x^2 = -y$.

Therefore f is onto .Hence f is a bijective function.

Q 2 If $f(x) = \sqrt{x}$, $x \ge 0$ and $g(x) = x^2 - 1$ are two real functions, then find fog and gof.

Sol: Here $f(x) = \sqrt{x}$, $x \ge 0$ and $g(x) = x^2 - 1$.

Domain $f = [0, \infty)$ and Range $f = [0, \infty)$

Domain g = R and Range $g = [-1, \infty)$

Computation of gof :

Therefore gof exists and gof :[0, ∞) \rightarrow R

$$gof(x) = g(f(x)) = g(\sqrt{x}) = (\sqrt{x})^2 - 1$$

Computation of gof : We observe that Range $g = [-1, \infty)$ is not subset of Domain f. Therefore Domain fog = { $x \in R$ and $g(x) \in [0, \infty)$ }

= {
$$x \in \mathbb{R}$$
 and $x^2 - 1 \in [0, \infty)$ }

 $= \{ x \epsilon R \text{ and } x^2 - 1 \ge 0 \}$

$$= \{ x \in R \text{ and } x \leq -1 , x \geq 1 \}$$

Domain fog =(-∞,1) U[1,∞) and fog(x) = f(g(x)) = f(x^2 - 1) = \sqrt{x^2 - 1}.

Q3 Let g(x) = 1 + x - [x] and $f(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$, then for all x, find fog (x).

Sol :
$$fog(x) = f(g(x)) = f(g(x)) = f(1+x-[x]) = f(1+\{x\}) = 1$$

Because $\{x\} = x - [x]$.

Also
$$0 \le x - [x] < 1$$
 ie $0 \le \{x\} < 1$

$$1 \le 1 + \{x\} < 2$$

Fog (x) = f (1+{x}) =1 [{x} denotes partial part or decimal part]

Q4 Two functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are defined as $f(x) = \begin{cases} 0 & , & if x is rational \\ 1 & , & if x is irrational \end{cases}$

and $g(x) = \begin{cases} -1 & if \ x \ is \ rational \\ 0 & if \ x \ is \ irrational \end{cases}$. Find $g(e) + fog(\pi)$.

Sol : Here gof (e) + fog (π) = g(f(e)) + f(g(e))

$$= g(1) + f(0)$$

= -1 + 0
= -1

 $A * B = A \cup B$ for all A, $B \in P(X)$. Prove that * is commutative and associative. Find the identity element . Also show that $\phi \epsilon P(X)$ is the only invertible element.

Sol: We know that $A \cup B = A \cup C$ and $(A \cup B) \cup C = A \cup (B \cup C)$

Therefore for any A,B,C ϵ P(X), we have

$$A \cup B = A \cup C$$
 and $(A \cup B) \cup C = A \cup (B \cup C)$

ie
$$A*B = B*A$$
 and $(A*B)*C = A*(B*C)$.

Thus * is both commutative and associative.

Now $A \cup \emptyset = A = \emptyset \cup A$ for all $A \in P(X)$

ie A* $\emptyset = \emptyset * A$ for all A ϵ P(X)

So \emptyset is the videntity element.

Let A ϵ P(X) be the invertible element .Then there exists S ϵ P(X) s.t

QUESTION BANK 365 $A * S = \emptyset = S * A$ ie $A \cup S = \emptyset = S \cup A$

 $S = \emptyset = A$.

Hence \emptyset is the only invrrtible element.