CHAPTER-5

CONTINUITY AND DIFFERENTIABILITY

Key concepts and formulae

OBJECTIVES: TO PROVIDE THE KNOWLEDGE OF CONTINUITY A ND DIFFERENTIATION OF REAL VALUED FUNCTIONS.

CONTENTS: 1 . Meaning of Continuity
2. Continuity of real valued functions
3. Continuity at a point
4. continuity on the entire domain of the function
5. Points of discontinuity
6. To find the value(s) of constants when function is continuous at a point
7. Definition of derivative of a function (general and at a point) and Geometrical Meaning of

Derivative.
8. Relationship between continuity and differentiation
9. Differentiation of polynomials
10. Product rule, Quotient rule and Chain rule of Differentiation
11. Differentiation of implicit and explicit functions
12. Differentiation of rational functions
13. . Differentiation of functions in parametric forms
14. Differentiation of Trigonometric functions
15. Differentiation of Inverse Trigonometric functions
16. . Differentiation of exponential and logarithmic functions
17. Logarithmic differentiation and higher derivatives
18. Rolle's and Mean Value Theorem

Methodology: Motivation through the examples from the environment, Demonstration, development of the concepts with the help of simple examples by involvement of the students, proceeding from simple to complex problems, Demonstration through Geometrical diagrams.

Important formulae of continuity and differentiability

1. $f(x)$ is continuous at $x=a$ if

$$
\lim _{x \rightarrow a-} f(x)=\lim _{x \rightarrow a+} f(x)=f(a)
$$

2. $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ i.e $\frac{d}{d x}(\mathrm{x})=1$.
3. $\frac{d}{d x}(\sin \mathrm{x})=\cos \mathrm{x}$.
4. $\frac{d}{d x}(\cos \mathrm{x})=-\sin \mathrm{x}$.
5. $\frac{d}{d x}(\tan \mathrm{x})=\sec ^{2} \mathrm{x}$.
6. $\frac{d}{d x}(\cot \mathrm{x})=-\operatorname{cosec}^{2} \mathrm{x}$.
$7 \cdot \frac{d}{d x}(\sec \mathrm{x})=\sec \mathrm{xtan} \mathrm{x}$.
7. $\frac{d}{d x}(\operatorname{cosec} \mathrm{x})=-\operatorname{cosec} \mathrm{x} \cot \mathrm{x}$.
8. $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
9. $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$
10. $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$.
11. $\frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}}$.
12. $\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}}$
13. $\frac{d}{d x}\left(\operatorname{cosec}^{-1} x\right)=-\frac{1}{x \sqrt{x^{2}-1}}$
14. $\frac{d}{d x}\left(e^{x}\right)=e^{x}$.
$16(\mathrm{a}) \cdot \frac{d}{d x}(\log |\mathrm{x}|)=\frac{1}{x}$.
(b)

$$
\frac{d}{d x}\left(\log _{a} x\right)=, \frac{1}{x \log a} a>0, a \neq 1, x
$$

17. $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$.

18. Product Rule For Derivative:

$\frac{d}{d x}[f(x) \cdot g(x)]=g(x) \frac{d}{d x} f(x)+\mathrm{f}(\mathrm{x}) \frac{d}{d x} g(x)$

19. Quotient Rule For Derivative:

$\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{\mathrm{g}(\mathrm{x}) \frac{d}{d x} f(x)-\mathrm{f}(\mathrm{x}) \frac{d}{d x} g(x)}{[g(x)]^{2}}$

20. Chain Rule For Composite Functions:

$\frac{d}{d x}[f \circ g(x)]=\frac{d}{d x}\left[f(g(x)]=\frac{d}{d x} f(g(x)) \times \frac{d}{d x} g(x)\right.$

21. Rolle's Theorem:

Let f be a real valued function on the closed interval $[a, b]$ s.t.

- It is continuous on [a,b]
- It is differentiable on (a, b)
- $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})$, then there exists at least a real number $\mathrm{c} \varepsilon(\mathrm{a}, \mathrm{b})$ such that $f^{\prime}(\mathrm{c})=0$.
- The geometrical meaning of Rolle's Theorem is that,if the conditions of Rolle's Theorem are satisfied, there exists at least one point $(\mathrm{c}, \mathrm{f}(\mathrm{c})$) on the curve where the tangent is parallel to x -axis.

22. Mean Value Theorem/Lagrange's Mean Kalue Theorem:

Let f be a real valued function defined on a closed interval $[\mathrm{a}, \mathrm{b}]$ s.t.

- It is continuous on [a,b]
- It is differentiable on (a, b)
- then there exists at least a real number $\mathrm{c} \varepsilon(\mathrm{a}, \mathrm{b})$ such that
- $f^{\prime}(\mathrm{c})=\frac{\mathrm{f}(\mathrm{b})-\mathrm{f}(\mathrm{a})}{b-a}$.
- The geometrical meaning of Mean Value Theorem is that,if all the conditions of Mean Value Theorem are satisfied, then there exists at least one point ($\mathrm{c}, \mathrm{f}(\mathrm{c})$) on the curve where the tangent is parallel to the chord joining ($\mathrm{a}, \mathrm{f}(\mathrm{a})) \&(\mathrm{~b}, \mathrm{f}(\mathrm{b}))$.

IMPORTANT BOARD QUESTIONS

One Mark Questions

1. Is $\sin x$ continuous at $x=\pi / 2$ or not?
2. Differentiate $y=\sin \left(x^{2}+5\right)$ w. r. t. x.
3. Differentiate $\sin \left(\tan ^{-1} e^{x}\right)$ w. r. t. x.
4. Differentiate $e^{\log \mathrm{x}} \mathrm{w}$. r. t. x.
5. If $\mathrm{f}(1)=4$ and $f^{\prime}(1)=2$, find the value of the derivative of $\log \left(\mathrm{f}\left(e^{x}\right)\right)$ at $\mathrm{x}=0$
6. Find the derivative of $\sin ^{-1} x$ w.r.t $\cos ^{-1} x$
7. Verify the Rolle's theorem for the function $f(x)=x^{2}-2 \mathrm{x}+1$ in the interval $[-1,2]$

Solutions

1 Ans. Yes, being a trigonometric function $\sin \mathrm{x}$ is continuous in its domain.
2. Ans. $\frac{d y}{d x}=2 \mathrm{x} \cos \left(\mathrm{x}^{2}+5\right)$
3. Ans. $\mathrm{e}^{\mathrm{x}} \cos \left(\tan ^{-1} e^{x}\right) / 1+\mathrm{e}^{2 \mathrm{x}}$
4. Ans. 1
5. $\frac{1}{2}$
6. let $\mathrm{u}=\sin ^{-1} x$ and $\mathrm{v}=\cos ^{-1} x$

Then find $\mathrm{du} / \mathrm{dv}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=-1$
7. Being polynomial function, It is continuous and differentiable in given interval $\mathrm{f}(-1)=4, \mathrm{f}(2)=1$
butf(-1) $\neq \mathrm{f}(2)$,Hence Roll's theorem is not satisfied

Four Marks Questions

1.If $\mathrm{y}=3 e^{2 x}+2 e^{3 x}$, then show that $\mathrm{y}^{\prime /}-5 \mathrm{y}^{\prime}+6 \mathrm{y}=0$.

Solution. $y^{\prime}=6 e^{2 x}+6 e^{3 x}$,
$\mathrm{y}^{\prime /}=12 e^{2 x}+18 e^{3 x}$,
putting values of y^{\prime} and $y^{\prime /}$ in L.H.S of $y^{/ /}-5 y^{\prime}+6 y=0$. And verify
2.If $y=\sin (\log x)$, then prove that $x^{2} y^{\prime \prime}+x y^{\prime}+y=0$.
. Solution
. $\frac{d y}{d x} \quad=\frac{\cos (\log \mathrm{x})}{x}$.
Again differentiating w.r.t x
$\mathrm{y}^{\prime \prime}=\frac{-\cos (\log x)-\sin (\log x)}{x 2}$.
$x^{2} y^{\prime \prime}=\frac{-\cos (\log x)-\sin (\log x)}{=-x y^{\prime}-y}$

Q3. . If $y=e^{a x} . \cos b x$, then prove that $\frac{d^{2} y}{d x^{2}}-2 a \frac{d y}{d x}+\left(a^{2}+b^{2}\right) y=0$
Solution.
$y=\boldsymbol{e}^{\boldsymbol{a} \boldsymbol{x}} \cdot \boldsymbol{\operatorname { c o s }} \boldsymbol{b x}$
$\frac{d y}{d x}=\mathrm{a} e^{a x} \cdot \cos b x-\mathrm{b} \mathrm{e}^{a x} \cdot \sin b x \ldots \ldots \ldots$. (1)
$\frac{d y}{d x}=\mathrm{ay}-\mathrm{b} e^{a x} \cdot \sin b x$
$\frac{d^{2} y}{d x^{2}}=\mathrm{a} \frac{d y}{d x}-\mathrm{b}\left(\mathrm{a} e^{a x} \cdot \sin b x+\mathrm{b} e^{a x} \cdot \cos b x\right)$
$\frac{d^{2} y}{d x^{2}}=\mathrm{a} \frac{d y}{d x}-\left(\mathrm{ay}-\frac{d y}{d x}\right)-b^{2} \mathrm{y}$
(using 1)
$\frac{d^{2} y}{d x^{2}}-2 \mathrm{a} \frac{d y}{d x}+\left(a^{2}+b^{2}\right) \mathrm{y}=0$.
Hence Proved.
Q4. If $x=a \sin 2 t(1+\cos 2 t)$ and $y=b \cos 2 t(1-\cos 2 t)$, then find $\frac{d y}{d x}$ at $t=\frac{\pi}{4}$
Solution. $x=a \sin 2 t(1+\cos 2 t)$

$$
\begin{gathered}
y=b \cos 2 t(1-\cos 2 t) \\
\frac{d x}{d t}=2 a \cos 2 t(1+\cos 2 t)+a \sin 2 t(-2 \sin 2 t)
\end{gathered}
$$

$=2 a \cos 2 t+2 a(\cos 2 t)^{2}+a \sin 2 t(-2 \sin 2 t)^{2}$

$$
\begin{gathered}
=2 a \cos 2 t+2 a \cos 4 t \\
\frac{d y}{d t}=-2 b \sin 2 t(1-\cos 2 t)+b \cos 2 t(2 \sin 2 t) \\
=-2 b \sin 2 t+2 b \sin 2 t \cos 2 t+2 b \cos 2 t \sin 2 t \\
=-2 b \sin 2 t+2 b \sin 4 t \\
\frac{d y}{d x}=\frac{-2 b \sin 2 t+2 b \sin 4 t}{2 a \cos 2 t+2 a \cos 4 t}
\end{gathered}
$$

$$
\text { At } t=\frac{\pi}{4}, \frac{d y}{d x}=\frac{b}{a}
$$

Q5. Let $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{r}1 \text {, if } x \leq 3 \\ a x+b, \text { if } 3<x \\ 7, \text { if } x \geq 5\end{array}\right.$ function.
Solution. At $\mathrm{x}=3$
L.H.L $=1$, R.H.L $=3 \mathrm{a}+\mathrm{b}$ and $\mathrm{f}(3)=1$

Since the function is continuous at $\mathrm{x}=3$
$3 a+b=1$
At $\mathrm{x}=5$
L.H.L $=5 \mathrm{a}+\mathrm{b}$, R.H.L $=7$ and $\mathrm{f}(5)=7$

Since the function is continuous at $x=5$
$5 \mathrm{a}+\mathrm{b}=7 \ldots$.(ii)
From (i) and (ii), we obtain
$\mathrm{a}=3$ and $\mathrm{b}=-8$

Q6. Find $d y / d x$ if $\quad y=(\operatorname{Cos} x)^{x}+(\operatorname{Sin} x)^{1 / x}$.
Solution.
inx $)^{1 / x}$
fin \quad let $u=(\operatorname{Cos} x)^{x}, v=(\operatorname{Sin} x)^{1 / x}$

$$
\mathrm{y}=\mathrm{u}+\mathrm{v}
$$

$d y / d x=d u / d v+d v / d x$

$$
\mathrm{u}=(\operatorname{Cos} \mathrm{x})^{\mathrm{x}}
$$

$\log \mathrm{u}=\mathrm{x} \log \cdot \cos \mathrm{x}$
finding $d u / d x=(\operatorname{Cos} x)^{x}[-x \tan x+\log (\cos x)$
Similarly from $v=\left(S\right.$ ding dv/dx $=(\operatorname{Sin} x)^{1 / x}[x \cot x+\log (\operatorname{Sin} x)]$

HOTS

1. Find $\frac{d y}{d x}$, if $y^{x}+x^{y}+x^{x}=a^{b}$.

Solution.
Let $\mathrm{v}=x^{y}$
$\log v=y \log x x^{x}+x^{y}+y^{x}=a^{b}$
Let $\mathrm{u}=x^{x}$
$\log u=x \log x$
$\frac{1}{u} \frac{d u}{d x}=\mathrm{x} \cdot \frac{1}{x}+\log x$
$\frac{d u}{d x}=x^{x}(1+\log x)$
$\frac{1}{v} \frac{d v}{d x}=\left(\frac{y}{x}+\log x \frac{d y}{d x}\right)$
$\frac{d v}{d x}=x^{y}\left(\frac{y}{x}+\log x \frac{d y}{d x}\right)$
Let $\mathrm{w}=y^{x}$
$\log w=x \log y$
$\frac{1}{w} \cdot \frac{d w}{d x}=\left(\frac{x}{y} \frac{d y}{d x}+\log y\right)$
$\frac{d w}{d x}=y^{x}\left(\frac{x}{y} \frac{d y}{d x}+\log y\right)$
(1) Can be written as
$\mathrm{u}+\mathrm{v}+\mathrm{w}=a^{b}$

$$
\begin{array}{r}
\frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}=0 \\
x^{x}(1+\log x)+x^{y}\left(\frac{y}{x}+\log x \frac{d y}{d x}\right)+y^{x}\left(\frac{x}{y} \frac{d y}{d x}+\log y\right)=0 \\
\frac{d y}{d x}\left(x^{y} \log x+y^{x} \cdot \frac{x}{y}\right)=x^{x}+x^{x} \log x x^{y} \frac{y}{x}+y^{x} \log y \frac{d y}{d x} \\
\frac{d y}{d x}=\frac{x^{x}+x^{x} \log x+y x^{y-1}+y^{x} \cdot \log y}{x^{y} \cdot \log x+x y^{x-1}}
\end{array}
$$

Q2. Show that function $f(x)$ defined by

$$
f(x)= \begin{cases}\frac{\sin x}{x}+\cos x, & x>0 \\ 2, & x=0, \\ \frac{4(1-\sqrt{1-x})}{x}, & x<0\end{cases}
$$

Solution.
Solving LHL $=2$.
Solving RHL $=2$
Also $f(0)=2$
$\mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(0)$
$f(x)$ is continuous at $x=2$.

Q3. If $\mathbf{y}=\tan ^{-1}\left(\frac{5 a x}{a^{2}-6 x^{2}}\right\}$ then show that $\frac{d y}{d x}=\frac{3 a}{a^{2}+9 x^{2}}+\frac{2 a}{a^{2}+4 x^{2}}$
Solution.

Q4 If $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}=\mathrm{a}(\mathrm{x}-\mathrm{y})$, prove that $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$.
Sol : Put $x=\sin \alpha, y=\sin \beta$
$\cos \alpha+\cos \beta=a(\sin \alpha-\sin \beta)$
$\cot \left(\frac{\alpha-\beta}{2}\right)=\mathrm{a} \Rightarrow \sin ^{-1} \mathrm{x}-\sin ^{-1} \mathrm{y}=2 \cot ^{-1} \mathrm{a}$
$\Rightarrow \frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}}$

Q5.Find $\frac{d y}{d x}$ when $y=x^{\log x}+(\log x)^{x}$
Solution.
Take $\mathrm{y}=\mathrm{u}+\mathrm{v}$ where $u(x)=x^{\log x}$ and $v(x)=(\log x)^{*}$ so that $\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$u(x)=x^{\log x} \Rightarrow \log u=\log x \log x \Rightarrow \frac{d u}{d x}=x^{\log x}\left(\frac{2}{-\log x}(x)\right)$
$v(x)=(\log x)^{x} \Rightarrow \log v=x \log (\log x) \quad=>\frac{d v}{d x}=(\log)^{x}\left[\left.\frac{1}{\log x}+\log (\log x) \quad \right\rvert\,\right.$
$\frac{d y}{d x}=x^{\log x}\left(\frac{2}{x} \log x\right)+(\log)^{x}\left[\frac{1}{\log x}+\log (\log x)\right]$

Q6. Differentiate $\tan ^{-1}\left\lceil\frac{\sqrt{\sqrt{1+x^{2}}}-\sqrt{1-x^{2}}}{\left.\sqrt{\sqrt{1+x^{2}}}+\sqrt{1-x^{2}}\right\rfloor}\right\rfloor$ with respect to x

$$
\begin{aligned}
& \text { Solution. Lety }=\tan ^{-1}\left\lceil\frac{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}{\left\{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}\right.}\right\rfloor=\tan ^{-1}\left\lceil\left[\frac{\sqrt{1+\cos \theta}-\sqrt{1-\cos \theta}}{\sqrt{1+\cos \theta}+\sqrt{1-\cos \theta}}\right\rfloor\left(\text { by substitution } \mathrm{x}^{2}=\cos ^{\theta}\right)=\right. \\
& \left.\tan ^{-1}\left|\frac{\left.\sqrt{2 \cos ^{2} \frac{\theta}{2}}-\sqrt{2 \sin ^{2} \frac{\theta}{2}} \right\rvert\,}{\left.\sqrt{2 \cos ^{2} \frac{\theta}{2}}+\sqrt{2 \sin ^{2} \frac{\theta}{2}}\right\rfloor}=\tan ^{-1}\right| \frac{1-\tan \frac{\theta}{2}}{\substack{1+\tan \frac{\theta}{2}}} \right\rvert\,=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}-\frac{\theta}{2}\right)\right) j=\frac{\pi}{4}-\frac{\theta}{2}=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x^{2} \\
& \frac{d y}{d x}=\frac{x}{\sqrt{1-x^{4}}}
\end{aligned}
$$

Q7.If $\mathrm{y}=\left[\log \left(x+\sqrt{\left.x^{2}+1\right)}\right]^{2}\right.$, Show that $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=\frac{1}{2}$
Solution.
$y=\left[\log \left(x+\sqrt{\left.x^{2}+1\right)}\right]^{2}\right.$
$\frac{d y}{d x}=2\left[\log \left(x+\sqrt{\left.x^{2}+1\right)}\right] \frac{1}{x+\sqrt{x^{2}+1}}\left(1+\frac{1}{2 \sqrt{x^{2}+1}} 2 x\right)\right.$
$\underline{d y}=2\left[1 \log \left(x+\sqrt{\left.x^{2}+1\right)}\right.\right.$
$\left(x^{2}+1\right) \frac{d y}{d x}=4\left[\log \left(x+\sqrt{\left.x^{2}+1\right)}\right]^{2} \quad\right.$ after squaring $\left(x^{2}+1\right)\left(\frac{d y}{d x}\right)^{2}=4 y$
diff. both sides $\quad\left(x^{2}+1\right) 2 \frac{d y}{d x} \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2} 2 x=4 \frac{d y}{d x} \quad=>\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=2$

MORE QUESTIONS FOR PRACTICE

1.Prove that $\frac{d^{2} y}{d x^{2}}+\mathrm{y}=0$, if $\mathrm{y}=5 \cos \mathrm{x}-3 \sin \mathrm{X}$
2. Find k for which the function $f(x)=\left\{\begin{array}{ll}\frac{\sin 5 x}{3 x} & x \neq 0 \\ k^{2} & x=0\end{array}\right.$ is continuous at $x=0$
3.Find k, if $f(x)=\frac{x^{2}-16}{x-4}, x_{\neq 4}$ and $f(x)=k$ if $x=4$, is continuous at $x=4$.
4. Discuss the continuity of the function $\mathrm{f}(x)=x^{3}+x^{2}-1$
5. If $y=3 \cos (\log x)+4 \sin (\log x)$, show that $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$.
6.If $\mathrm{x} \sqrt{1+y}+\mathrm{y} \sqrt{1+x}=0$, show that $\frac{d y}{d x}=-\left((1+x)^{-2}\right.$
7.If $y=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \infty}}}$, prove that $\frac{d y}{d x}=\frac{1}{2 y-1}$
8. If $\mathrm{x}=\sqrt{a^{\sin ^{-1}(t)}}, y=\sqrt{a^{\cos ^{-1}(t)}}$, show that $\frac{d y}{d x}=-\frac{Y}{X}$
9. If $\mathrm{y}=\sqrt{x}^{\sqrt{x}^{\sqrt{x}^{\sqrt{x} \ldots \ldots . t o \infty}}}$,prove that $\mathrm{x} \frac{d y}{d x}=\frac{y^{2}}{2-y \log x}$.
10.If $\mathrm{y}=e^{a x} \operatorname{cosbx}$, then prove that $\frac{d^{2} y}{d x^{2}}-2 \mathrm{a} \frac{d y}{d x}\left(a^{2}+b^{2}\right) \mathrm{y}=0$
11. If $x=\operatorname{asin} 2 t(1+\cos 2 t)$ and $y=b \cos 2 t(1-\cos 2 t)$ then find $\frac{d y}{d x}$ at $t=\frac{\pi}{4} \cdot 1$
12. Find the value of ' k ' so that the function f is continuous at $x=\frac{\pi}{2}$

$$
\mathrm{f}(\mathrm{x})=\begin{aligned}
& \frac{k \operatorname{cofs} x}{\pi\{2 x} ; x \neq \frac{\pi}{2} \\
& 3 ; x=\frac{\pi}{2}
\end{aligned}
$$

13. If $\left.\mathrm{y}=\left(x+\frac{1}{x}\right)^{x}+x^{(1+1 / x}\right)$, then find $\mathrm{dy} / \mathrm{d} \mathrm{x}$
