Differential equation

Key Concepts

differential coefficient of dependent variable w.r.t independent variable i.e $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \ldots$. etc is called differential Definition: An equation involving the independent variable x (say), dependent variable y (say) and the equation.

Order of a differential equation is the order of the highest order derivative occurring in the differential equation.

Degree of a differential equation is the degree of highest order derivative occurring in the differential equation when the differential coefficients are made free from radicals, fractions and it is written as a polynomial in differential coefficients.
e.g $\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\sin \left(\frac{d y}{d x}\right)=0$ here order is 2 but this differential equation can't be written in the form of polynomial in differential coefficient Hence its degree not defined.

Linear and Nonlinear Differential Equations: A differential equation in which the dependent variable and its derivatives occur only in the first degree and are not multiplied together, is called a linear differential equation otherwise it is non-linear.
"Formation of differential Equation" To form a DE froma given equation in x and y containing arbitrary constants (parameters) -
"Initial value problem(IVP) is one in which some initial conditions are given to solve a DE"

1. Differentiate the given equation as many times as the number of arbitrary constants involved in it.
2. Eliminate the arbitrary constant from the equations of y, y ', y " etc.

Solution of Differential Equations-

1. Variable separable form
2. Homogenous Equations
3. Linear Differential Equations

VARIABLE SEPARABLE FORM If in the equation, it is possible to get all terms containing x and dx to one side and all the terms containing y and dy to the other, the variables are said to be separable,

Procedure to solve:

Consider the equation $\frac{d y}{d x}=\mathrm{X}$. Y , where X is a function of x only and Y is function of y only.
(i) Put the equation in the form $\frac{1}{Y}, \mathrm{dy}=\mathrm{X} . \mathrm{dx}$.
(ii) Integrating both the sides we get
$\mathrm{J}_{Y}=\mathrm{J} X d x+C$ where C is an arbitrary constant.
thus the required solution is obtained.

Homogeneous Differential Equations

A differential equation which can be expressed in the form $\frac{d y}{d x}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ or $\frac{d x}{d y}=\mathrm{g}(\mathrm{x}, \mathrm{y})$ where, $\mathrm{f}(\mathrm{x}, \mathrm{y})$ and $\mathrm{g}(\mathrm{x}, \mathrm{y})$ are homogenous functions of degree zero is called a homogeneous differential equation

Steps for Solving a Homogeneous Differential Equation

1. Rewrite the differential in homogeneous form
2. Make the substitution $y=v x$ or $x=v y$ where v is a variable.
3. Substitute to rewrite the differential equation in terms of v and x or v and y only
4. Follow the steps for solving separable differential equations.
5. Re-substitute $\mathrm{v}=\mathrm{y} / \mathrm{x}$ or $\mathrm{v}=\mathrm{x} / \mathrm{y}$ in the final solution.

Linear Differential Equation: A first-order linear differential equation can be written in the form $\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}+\boldsymbol{P} \boldsymbol{y}=$ \boldsymbol{Q})where P and Q are constants or function of x onlyor $\frac{d x}{d y}+\mathbf{P x}=\mathbf{Q}$ where P and Q are constants or function of y only.

IMPORTANT BOARD QUESTIONS

1. Solve the following differential equation:

$$
\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}+x y \frac{d y}{d x}=0
$$

Solution. $\sqrt{1+x^{2}+y^{2}\left(1+x^{2}\right)}=-x y \frac{d y}{d x}$
$\int \frac{y d y}{\sqrt{1+y^{2}}}=-\int \frac{\sqrt{1+x^{2}}}{x^{2}} \cdot x d x$
Let $1+y^{2}=u^{2} \& 1+x^{2}=v^{2}$

$$
\int \frac{u d u}{u}=-\int \frac{v^{2}}{v^{2}-1} d v=-\int \frac{\left(v^{2}-1\right)+1}{v^{2}-1} d v=-\int\left(1+\frac{1}{v^{2}-1}\right) d v
$$

$u=-v-\frac{1}{2} \log \left|\frac{v-1}{v+1}\right|+c$.

$$
\sqrt{1+y^{2}}=-\sqrt{1+x^{2}}-\frac{1}{2} \log \left|\frac{\sqrt{1+x^{2}}-1}{\sqrt{1+x^{2}}+1}\right|+c .
$$

1mark
2. Find the general solution of the differential equation

$$
\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=\sqrt{x^{2}+4}
$$

Solution: $\frac{d y}{d x}+\left(\frac{2 x}{x^{2}+1}\right) y=\frac{\sqrt{x^{2}+4}}{x^{2}+1}, \quad\left(\right.$ compare it with $\left.\frac{d y}{d x}+P y=Q\right)$
1mark

$$
I F=e^{J p d x}=e^{J{\overline{x^{2}}+1}_{a x}^{a x}}=e^{\log \left|x^{\llcorner }+1\right|=x^{2}+1}
$$

Reqd sol is $y\left(x^{2}+1\right)=\int \frac{\sqrt{x^{2}+4}}{x^{2}+1} \cdot\left(x^{2}+1\right) d x$
$\Rightarrow \mathrm{y}\left(\mathrm{x}^{2}+1\right)=\int \sqrt{x^{2}+4} \mathrm{dx}$
$\mathrm{y}\left(\mathrm{x}^{2}+1\right)=\frac{x}{2} \sqrt{x^{2}+4}+2 \log \left|x+\sqrt{x^{2}+4}\right|+c$.
3. Find the particular solution of differential equation: $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$. Given that $y=1$ when $x=1$

Solution:

$\left(x^{2}-y^{2}\right) d x+2 x y d y=0$
$\Rightarrow \frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}$

It is a homogeneous differential equation.
Let $y=v x$
$\therefore \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting (2) and (3) in (1), we get:
$v+x \frac{d v}{d x}=\frac{v^{2} x^{2}-x^{2}}{2 x(v x)}$
$v+x \frac{d v}{d x}=\frac{x^{2}\left(v^{2}-1\right)}{2 v x^{2}}=\frac{v^{2}-1}{2 v}$
$2 v^{2}+2 v x \frac{d v}{d x}=v^{2}-1$
$2 v x \frac{d v}{d x}=-v^{2}-1$
$\left(\frac{2 v}{v^{2}+1}\right) d v=-\frac{d x}{x}$
iniegraing gotn siaes, we get:
$\int \frac{2 v}{v^{2}+1} d v=-\int\left(\frac{1}{x}\right) d x$
$\log \left|v^{2}+1\right|=-\log |x|+\log \mathrm{C}$
$\log \left|v^{2}+1\right|=\log \left|\frac{C}{x}\right|$
$v^{2}+1=\frac{\mathrm{C}}{x}$
$x\left(v^{2}+1\right)=\mathrm{C}$
$x\left[\left(\frac{y}{x}\right)^{2}+1\right]=\mathrm{C}$
$y^{2}+x^{2}=\mathrm{C} x$

It is given that when $x=1, y=1$
$(1)^{2}+(1)^{2}=\mathrm{C}(1)$
$\Rightarrow \mathrm{C}=2$
Thus, the required equation is $y^{2}+x^{2}=2 x$.
4. Solve the differential equation :

Solution: This is a linear differential equation
$\frac{d y}{d x}+\frac{y}{x \log x}=\frac{2}{x^{2}}$
$I \cdot F=e^{\int \frac{1}{x \log x} d x}=\log x$

$\mathrm{y}(\log \mathrm{x})=\int \frac{2}{x^{2}} \log x d x+\mathrm{C}$
$y(\log x)=2 \log x \int \frac{1}{x^{2}} d x-\int\left[\frac{d}{d x}(\log x) \cdot \int \frac{1}{x^{2}} d x\right] d x$
$\mathrm{y}(\log \mathrm{x})=-2 \frac{\log x}{x}-\frac{1}{x}+C$
5. Form the differential equation of the family of circles having centre on the y-axis and radius 3 units.

Solution: Equation of circle having centre ($0, \mathrm{a}$) and radius is 3 units

$$
\begin{equation*}
\overline{x^{2}+y^{2}-2 a y+a^{2}-9=0, ~} \tag{1}
\end{equation*}
$$

\qquad $\left\{\right.$ using $\left.(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}\right\}$

- Differentiating: $2 x+2 y y^{\prime}-2 a y^{\prime}=0$
- Getting $a=\frac{x+y y^{\prime}}{y^{\prime}}$
- Putting the value of a in (1) to get the answer

6. Find the general solution of the differential equation $2 x^{2} \frac{d y}{d x}-2 x y+y^{2}=0$.

Solution: Consider the equation $2 \mathrm{x}^{2} \frac{d y}{d x}-2 \mathrm{xy}+\mathrm{y}^{2}=0$
$\frac{d y}{d x}=\frac{2 x y-y^{2}}{2 x^{2}}$
Let $\mathrm{y}=\mathrm{vx} \quad ; \quad \frac{d y}{d x}=\mathrm{v}+\mathrm{x} \frac{d v}{d x}$
From (i), we get
$\mathrm{v}+\mathrm{X} \frac{d v}{d x}=\mathrm{v}-\frac{v^{2}}{2}$
$\mathrm{X} \frac{d v}{d x}=-\frac{v^{2}}{2}$
Integrating both sides by separating the variable
$-\frac{1}{v}=-\frac{1}{2} \log |\mathrm{x}|+\mathrm{c}$
$-\frac{x}{y}=-\frac{1}{2} \log |\mathrm{x}|+\mathrm{c}$ is the required solution.
7. Form the differential equation representing the parabola having vertex at the origin and axis along positive direction of x -axis.
Solution: Given $y^{2}=4 a x$

$$
2 y \frac{d y}{d x}=4 a
$$

$y \frac{d y}{d x}=2 \frac{y^{2}}{4 x}$

$$
y \frac{d y}{d x}=\frac{y^{2}}{2 x} \text { which is the required differential equation. }
$$

8. Solvethe $\left(\mathrm{x}+3 \mathrm{y}^{2}\right) \frac{d y}{d x}=\mathrm{y}(\mathrm{y}>0)$

Solution: Given differential equation is $\left(\mathrm{x}+3 \mathrm{y}^{2}\right) \frac{d y}{d x} \Rightarrow \mathrm{y}^{2}(\mathrm{y}>0)$
We can write as $\frac{d x}{d y}=\frac{x+3 y^{2}}{y}=\frac{1}{y} \cdot x+3 y \Rightarrow \frac{d x}{d y}+\left(\frac{-1}{y}\right) . \mathrm{X}=3 \mathrm{y}$
This is a linear equation in the form
$\frac{d x}{d y}+\mathrm{Px}=\mathrm{Q}$ where $\mathrm{P}=-\frac{1}{y}$ and Q is ${ }^{3} y$
$\mathrm{IF}=e^{\int p d y}=e^{\int-\frac{1}{y} d y}=e^{-10 g y}=-\frac{1}{y}$
Required solution is $x \times I F=\int Q \times I F d y+C$
9. Solve $\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}$

Solution: $\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}$
$\Rightarrow e^{\int p d y}=e^{\int-\frac{1}{y} d y} \Rightarrow e^{y}\left(x^{2}+e^{x}\right) d x$
Integrating both sides, we get
$\Rightarrow \int e^{y} d y=\int\left(e^{x}+x^{2}\right) d x$
$\Rightarrow e^{y}=e^{x}+\frac{x^{x}}{3}+C$, which is the required solution.
10. Solve $\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0$

Solution: we have $\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0$
$\Rightarrow \frac{d x}{d y}=\frac{-e^{\frac{x}{y}\left(-\frac{x}{y}\right)}}{1+e^{\frac{x}{y}}}=g\left(\frac{x}{y}\right) \ldots \ldots$
Here, RHS of differential equation is of the form $g\left(\frac{x}{y}\right)$, so it is a homogenous function of degree zero.
Now we put $\mathrm{X}=\mathrm{vy}$ and, $\left(\frac{d x}{d y}\right)=v+y \frac{d v}{d y}$
From 1, we get $v+y \frac{d v}{d y}=\frac{-e^{v}(1-v)}{1+e^{v}}$
$y \frac{d v}{d y}=\frac{-e^{v}(1-v)}{1+e^{v}}-v=-\left(\frac{\left(v+e^{v}\right)}{1+e^{v}}\right) \Rightarrow \frac{1+e^{v}}{-\left(v+e^{v}\right)} d v$
On integrating both sides, we get
$-\log \left|v+e^{v}\right|+\log C=\log |y| \Rightarrow \log C=\log |y|+\log \left|v+e^{v}\right|$
$\Rightarrow \mathrm{C}=y\left(v+e^{v}\right)$
On substituting value of v , we get $x+y e^{y}=c$, which is required solution.

HOTS

1. Solve $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$, given that $y=1$, when $x=1$.
2. Write the order and degree of differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{\frac{2}{3}}=\left(y+\frac{d y}{d x}\right)^{\frac{1}{2}}$
3. Find the particular solution of differential equation
$\frac{d y}{d x}+y \cot x=2 x+x^{2} \cot x$, given that $y\left(\frac{\pi}{2}\right)=0$.
4.Find the particular solution of differential equation $\sqrt{1-y^{2}} \mathrm{dx}=\left(\sin ^{-1} \mathrm{y}-\mathrm{x}\right) \mathrm{dy}$
5.Form the differential equation representing the family of ellipses having foci on x -axis and centre at origin.
4. Write the order and degree of the differential equation $\left(\frac{d^{3} y}{d y^{3}}\right)^{2}+\frac{d^{2} y}{d x^{2}}+\sin \left(\frac{d y}{d x}\right)=0$

Hints

1. $\frac{d y}{d x}=\frac{x^{2}-y^{2}}{-2 x y}$ which is homogenous differential equation. Put $\mathrm{y}=\mathrm{vx} \Rightarrow \frac{d y}{d x}=\mathrm{v}+\mathrm{x} \frac{d v}{d x}$
solution.
*using given initial values, find the value of integrating constant C .
2. Order 2 and degree 4
3. Given equation is a linear differential equation. Compare it with $\frac{d y}{d x}+P y=Q$. We get $\mathrm{P}=\operatorname{cotx}$ and $\mathrm{Q}=$ $2 \mathrm{x}+\mathrm{x}^{2} \cot \mathrm{x}$,
$\mathrm{IF}=e^{\int p d x}$
General solution is y.IF $=\int Q I F d x+C$
4. $\frac{d x}{d y}=\frac{\sin ^{-1} y}{\sqrt{1-y^{2}}}-\frac{x}{\sqrt{1-y^{2}}}$
$\frac{d x}{d y}+\frac{x}{\sqrt{1-y^{2}}}=\frac{\sin ^{-1} y}{\sqrt{1-y^{2}}}$
Which is first order linear differential equation of the form

Find IF $=e^{\int p d y}$
General Solution be x.IF $=\int(\Omega . I F) d y+c$
5.Equation of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Now diff, it two times w.r.t x and eliminate $\mathrm{a} \& \mathrm{~b}$
6.Order is 3 and degree not defined

