11th Standard - Mathematics

Limits and Derivatives

Limit

Let $y=f(x)$ be a function of x. If at $x=a, f(x)$ takes indeterminate form, then we consider the values of the function which is very near to a. If these value tend to a definite unique number as x tends to a , then the unique number so obtained is called the limit of $f(x)$ at $x=a$ and we write it as $\lim x \rightarrow \operatorname{af}(x)$.

Left Hand and Right-Hand Limits

If values of the function at the point which are very near to a on the left tends to a definite unique number as x tends to a , then the unique number so obtained is called the left-hand limit of $f(x)$ at $x=a$, we write it as

$$
f(a-0)=\lim _{x \rightarrow \boldsymbol{\infty}^{-}} f(x)=\lim _{h \rightarrow 0} f(a-h)
$$

Similarly, right hand limit is

$$
f(a+0)=\lim _{x \rightarrow a^{+}} f(x)=\lim _{h \rightarrow 0} f(a+h)
$$

Existence of Limit

$\lim f(x)$ exists, if
$x \rightarrow a$
(i) $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ both exists
(ii) $\lim _{x \rightarrow \mathrm{a}^{-}} f(x)=\lim _{x \rightarrow \mathrm{a}^{+}} f(x)$

Some Properties of Limits

Let f and g be two functions such that both $\lim x \rightarrow a f(x)$ and $\lim \lim x \rightarrow \operatorname{ag}(x)$ exists, then
(i) $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
(ii) $\lim _{x \rightarrow a} k f(x)=k \lim _{x \rightarrow a} f(x)$
(iii) $\lim _{x \rightarrow a} f(x) \cdot g(x)=\lim _{x \rightarrow a} f(x) \times \lim _{x \rightarrow a} g(x)$
(iv) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$, where $g(x) \neq 0$

Some Standard Limits

(i) $\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}$
(ii) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
(iii) $\lim _{x \rightarrow 0} \frac{\tan x}{x}=1$
(iv) $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a$
(v) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
(vi) $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$

Derivatives

Suppose f is a real-valued function, then
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ is called the derivative of f at x iff $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exists finitely.

Fundamental Derivative Rules of Function

Let f and g be two functions such that their derivatives are defined in a common domain, then
(i) $\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]$
(ii) $\frac{d}{d x}\left[(f(x)-g(x)]=\frac{d}{d x}[f(x)]-\frac{d}{d x}[g(x)]\right.$
(iii) $\frac{d}{d x}[f(x) \cdot g(x)]=\left[\frac{d}{d x} f(x)\right] \cdot g(x)+f(x) \cdot\left[\frac{d}{d x} g(x)\right]$
(iv) $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{\left[\frac{d}{d x} f(x)\right] \cdot g(x)-f(x) \cdot\left[\frac{d}{d x} g(x)\right]}{[g(x)]^{2}}$

Some Standard Derivatives

(i) $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
(ii) $\frac{d}{d x}(\sin x)=\cos x$
(iii) $\frac{d}{d x}(\cos x)=-\sin x$
(iv) $\frac{d}{d x}(\tan x)=\sec ^{2} x$
(v) $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
(vi) $\frac{d}{d x}(\sec x)=\sec x \tan x$
(vii) $\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$
(viii) $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log _{\theta} a$
(ix) $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
(x) $\frac{d}{d x}\left(\log _{e} x\right)=\frac{1}{x}$

