11th Standard - Mathematics Permutations and Combinations

Fundamental Principles of Counting

Multiplication Principle: Suppose an operation A can be performed in mays and associated with each way of performing of A, another operation B can be performed in n ways, then total number of performance of two operations in the given order is mxn ways. This can be extended to any finite number of operations.

Addition Principle:

If an operation A can be performed in m ways and another operation S, which is independent of A, can be performed in n ways, then A and B can performed in $(\mathrm{m}+\mathrm{n})$ ways. This can be extended to any finite number of exclusive events.

Factorial

The continued product of first n natural number is called factorial ' n '.
It is denoted by n , or $\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots 3 \times 2 \times 1$ and $0!=1$! $=1$

Permutation

Each of the different arrangement which can be made by taking some or all of a number of objects is called permutation.

Permutation of \mathbf{n} different objects

The number of arranging of n objects taking all at a time, denoted by ${ }^{n} P_{n}$, is given by ${ }^{n} \mathrm{P}_{\mathrm{n}}=\mathrm{n}$!
The number of an arrangement of n objects taken r at a time, where $0<r \leq n$, denoted by nP_{r} is given by
${ }^{n} \mathrm{P}_{\mathrm{r}}=\mathrm{n}!(\mathrm{n}-\mathrm{r})$!

Properties of Permutation

(i) ${ }^{n} P_{n}=n(n-1)(n-2) \ldots 3 \times 2 \times 1=n$!
(ii) ${ }^{n} P_{0}=\frac{n!}{n!}=1$
(iii) ${ }^{n} P_{1}=n$
(iv) ${ }^{n} P_{n-1}=n$!
(v) ${ }^{n} P_{r}=n \cdot{ }^{n-1} P_{r-1}=n(n-1)^{n-2} P_{r-2}$
(vi) ${ }^{n-1} P_{r}+r \cdot{ }^{n-1} P_{r-1}={ }^{n} P_{r}$
(vii) $\frac{{ }^{n} P_{r}}{{ }^{n} P_{r-1}}=n-r+1$

Important Results on Permutation

The number of permutation of n things taken r at a time, when repetition of object is allowed is nr .

The number of permutation of n objects of which p 1 are of one kind, p 2 are of second kind, \ldots pk are of kth kind such that $p_{1}+p_{2}+p_{3}+\ldots+p_{k}=n$ is $n!p 1!p 2!p 3!. \mathrm{pk}$!

Number of permutation of n different objects taken r at a time, When a particular object is to be included in each arrangement is $r .{ }^{\mathrm{n}-1} \mathrm{P}_{\mathrm{r}-1}$

When a particular object is always excluded, then number of arrangements $={ }^{\mathrm{n}-1} \mathrm{P}$.

Number of permutations of n different objects taken all at a time when m specified objects always come together is m ! $(n-m+1)$!.

Number of permutation of n different objects taken all at a time when m specified objects never come together is $n!-m!(n-m+1)!$.

Combinations

Each of the different selections made by taking some or all of a number of objects irrespective of their arrangements is called combinations. The number of selection of r objects from; the given n objects is denoted by ${ }^{n} C_{r}$, and is given by
${ }^{n} C_{r}=n!r!(n-r)!$

Properties of Combinations

(i) ${ }^{n} C_{0}={ }^{n} C_{n}=1$
(ii) ${ }^{n} C_{1}={ }^{n} C_{n-1}=n$
(iii) ${ }^{n} C_{r}=\frac{{ }^{n} P_{r}}{r!}$
(iv) ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
(v) ${ }^{n} C_{r}={ }^{n} C_{n-r}$
(vi) $r^{n} C_{r-1}=(n-r+1)^{n} C_{r-1}$

