11th Standard - Mathematics

Relations and Functions

Ordered Pair

An ordered pair consists of two objects or elements in a given fixed order.

Equality of Two Ordered Pairs

Two ordered pairs (a, b) and (c, d) are equal if $\mathrm{a}=\mathrm{c}$ and $\mathrm{b}=\mathrm{d}$.

Cartesian Product of Two Sets

For any two non-empty sets A and B, the set of all ordered pairs (a, b) where a $\in A$ and $b \in B$ is called the cartesian product of sets A and B and is denoted by $\mathrm{A} \times \mathrm{B}$.

Thus, $\mathrm{A} \times \mathrm{B}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a} \in \mathrm{A}$ and $\mathrm{b} \in \mathrm{B}\}$
If $\mathrm{A}=\Phi$ or $\mathrm{B}=\Phi$, then we define $\mathrm{A} \times \mathrm{B}=\Phi$

Note:

- $\mathrm{A} \times \mathrm{B} \neq \mathrm{B} \times \mathrm{A}$
- If $n(A)=m$ and $n(B)=n$, then $n(A \times B)=m n$ and $n(B \times A)=m n$
- If atieast one of A and B is infinite, then $(A \times B)$ is infinite and $(B \times A)$ is infinite.

Relations

A relation R from a non-empty set A to a non-empty set B is a subset of the cartesian product set $\mathrm{A} \times \mathrm{B}$. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in $\mathrm{A} \times$ B.

The set of all first elements in a relation R is called the domain of the relation B, and the set of all second elements called images is called the range of R.

Note:

- A relation may be represented either by the Roster form or by the set of builder form, or by an arrow diagram which is a visual representation of relation.
- If $n(A)=m, n(B)=n$, then $n(A \times B)=m n$ and the total number of possible relations from set A to set $B=2 \mathrm{mn}$

Inverse of Relation

For any two non-empty sets A and B. Let R be a relation from a set A to a set B . Then, the inverse of relation R, denoted by R^{-1} is a relation from B to A and it is defined by
$R^{-1}=\{(b, a):(a, b) \in R\}$
Domain of $\mathrm{R}=$ Range of R^{-1} and
Range of $\mathrm{R}=$ Domain of R^{-1}.

Functions

A relation f from a set A to set B is said to be function, if every element of set A has one and only image in set B.

In other words, a function f is a relation such that no two pairs in the relation have the first element.

Real-Valued Function

A function $f: A \rightarrow B$ is called a real-valued function if B is a subset of R (set of all real numbers). If A and B both are subsets of R, then f is called a real function.

Some Specific Types of Functions

Identity function: The function $f: R \rightarrow R$ defined by $f(x)=x$ for each $x \in R$ is called identity function.

Domain of $f=R$; Range of $f=R$

Constant function: The function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{C}, \mathrm{x} \in \mathrm{R}$, where C is a constant $\in R$, is called a constant function.

Domain of $f=R$; Range of $f=C$

Polynomial function: A real valued function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{a}_{0}+$ $a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$, where $n \in N$ and $a_{0}, a_{1}, a_{2}, \ldots a_{n} \in R$ for each $x \in R$, is called polynomial function.

Rational function: These are the real function of type $f(x) g(x)$, where $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are polynomial functions of x defined in a domain, where $\mathrm{g}(\mathrm{x}) \neq 0$.

The modulus function: The real function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$ or

$$
f(x)=\left\{\begin{array}{cc}
-x, & x<0 \\
x, & x \geq 0
\end{array}\right.
$$

for all values of $x \in R$ is called the modulus function.
Domaim of $f=R$
Range of $f=R^{+} U\{0\}$ i.e. $[0, \infty)$

Signum function: The real function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=|\mathrm{x}| \mathrm{x}, \mathrm{x} \neq 0$ and 0 , if $\mathrm{x}=0$
or

$$
f(x)=\left\{\begin{array}{cc}
\frac{|x|}{x}, & x \neq 0 \\
0, & x=0
\end{array}=\left\{\begin{array}{cc}
-1, & x<0 \\
0, & x=0 \\
1, & x>0
\end{array}\right.\right.
$$

is called the signum function.
Domain of $f=R$; Range of $f=\{-1,0,1\}$

Greatest integer function: The real function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=$ $\{x\}, x \in R$ assumes that the values of the greatest integer less than or equal to x, is called the greatest integer function.
Domain of $\mathrm{f}=\mathrm{R}$; Range of $\mathrm{f}=$ Integer

Fractional part function: The real function $f: R \rightarrow R$ defined by $f(x)=\{x\}$, $x \in R$ is called the fractional part function.
$f(x)=\{x\}=x-[x]$ for all $x \in R$
Domain of $f=R$; Range of $f=[0,1)$

Algebra of Real Functions

Addition of two real functions: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{R}$ be any two real functions, where $X \in R$. Then, we define $(f+g): X \rightarrow R$ by
$(f+g)(x)=f(x)+g(x)$, for all $x \in X$.

Subtraction of a real function from another: Let $f: X \rightarrow R$ and $g: X \rightarrow$ R be any two real functions, where $X \subseteq R$. Then, we define $(f-g): X \rightarrow R$ by ($f-$ g) $(x)=f(x)-g(x)$, for all $x \in X$.

Multiplication by a scalar: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}$ be a real function and K be any scalar belonging to R. Then, the product of $K f$ is function from X to R defined by $(\mathrm{Kf})(\mathrm{x})=\mathrm{Kf}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$.

Multiplication of two real functions: Let $f: X \rightarrow R$ and $g: X \rightarrow R$ be any two real functions, where $X \subseteq R$. Then, product of these two functions i.e. f.g : $X \rightarrow R$ is defined by $(f g) x=f(x) . g(x) \forall x \in X$.

Quotient of two real functions: Let f and g be two real functions defined from $X \rightarrow R$. The quotient of f by g denoted by $f g$ is a function defined from $X \rightarrow$ R as

$$
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \text { where } g(x) \neq 0, \forall x \in X .
$$

