10th Standard Maths

Arithmetic Progressions

- The Concept of Arithmetic Progression
- An arithmetic progression is a list of numbers in which the difference between any two consecutive terms is equal.
- In an AP, each term, except the first term, is obtained by adding a fixed number called common difference to the preceding term.
- The common difference of an AP can be positive, negative or zero.

Example 1:

1.
2. 3.

 and 3 respectively.
2.
3.

is an AP whose first term and common difference are 7 and -2 respectively.
4.
5. 3.
 is an AP whose first term and common difference are -7 and 0 respectively.

- The general form of an AP can be written as $a, a+d, a+2 d, a+3 d \ldots$, where a is the first term and d is the common difference.
- A given list of numbers i.e., $a_{1}, a_{2}, a_{3} \ldots$ forms an AP if $a_{k+1}-a_{k}$ is the same for all values of k.

Example 2:

Which of the following lists of numbers forms an AP? If it forms an AP, then write its next three terms.
(a) $-4,0,4,8, \ldots$
(b) $2,4,8,16, \ldots$

Solution:

(a) $-4,0,4,8, \ldots$

$$
\begin{aligned}
& a_{2}-a_{1}=0-(-4)=4 \\
& a_{3}-a_{2}=4-0=4 \\
& a_{4}-a_{3}=8-4=4
\end{aligned}
$$

$a_{n+1}-a_{n}=4$; for all values of n
Therefore, the given list of numbers forms an AP with 4 being its common difference.
The next three terms of the AP are $8+4=12,12+4=16,16+4=20$ Hence, AP: $-4,0,4,8,12,16,20 \ldots$
(b) $2,4,8,16, \ldots$
$a_{2}-a_{1}=4-2=2$
$a_{3}-a_{2}=8-4=4$
$a_{3}-a_{2} \neq a_{2}-a_{1}$
Therefore, the given list of numbers does not form an AP.

- The terminology related to arithmetic progression
- An arithmetic progression is a list of numbers in which each term is obtained by adding a fixed number to the preceding term except the first term.
- The fixed number is called the common difference (d) of the A.P. The common difference can be either positive or negative or zero.
- The general form of an A.P.
- $a,(a+d),(a+2 d),(a+3 d), \ldots,[a+(n-1) d], \ldots$ where a is the first term and d is common difference
- Type of AP
- Finite AP: The APs have finite number of terms.
- Infinite AP: The APs have not finite number of terms.
- In an A.P., except the first term, all the terms can be obtained by adding the common difference to the previous term.
- In an A.P., except the last term, all the terms can be obtained by subtracting the common difference from its subsequent term.

Example:

Find the first four terms of an A.P. whose first term is 9 and the common difference is 6 .
Solution:
$a=9, d=6$
$a_{2}=a+d=9+6=15$
$a_{3}=a+2 d=9+2 \times 6=9+12=21$
$a_{4}=a+3 d=9+3 \times 6=9+18=27$
The first four terms are 9, 15, 21, 27.

- $n^{\text {th }}$ term of an AP

The $n^{\text {th }}$ term $\left(a_{n}\right)$ of an AP with first term a and common difference d is given by $a_{n}=a+(n-1) d$.
Here, a_{n} is called the general term of the AP.

- $\boldsymbol{n}^{\text {th }}$ term from the end of an AP

The $n^{\text {th }}$ term from the end of an AP with last term l and common difference d is given by $l-(n-1) d$.

Example:

Find the $12^{\text {th }}$ term of the AP $5,9,13 \ldots$

Solution:

Here, $a=5, d=9-5=4, n=12$

$$
\begin{aligned}
a_{12} & =a+(n-1) d \\
& =5+(12-1) 4 \\
& =5+11 \times 4 \\
& =5+44 \\
& =49
\end{aligned}
$$

- Sum of n terms of an AP
- The sum of the first n terms of an AP is given by $\mathrm{Sn}=\mathrm{n} 22 \mathrm{a}+\mathrm{n}-1 \mathrm{~d}$, where a is the first term and d is the common difference.
- If there are only n terms in an AP, then $\mathrm{Sn}=\mathrm{n} 2 \mathrm{a}+\mathrm{l}$, where $I=a_{n}$ is the last term.

Example:

Find the value of $2+10+18+\ldots+802$.
Solution:
$2,10,18 \ldots 802$ is an AP where $a=2, d=8$, and $I=802$.
Let there be n terms in the series. Then,
$a_{n}=802$
$\Rightarrow a+(n-1) d=802$
$\Rightarrow 2+(n-1) 8=802$
$\Rightarrow 8(n-1)=800$
$\Rightarrow n-1=100$
$\Rightarrow n=101$
Thus, required sum $=\mathrm{n} 2 \mathrm{a}+\mathrm{I}=10122+802=40602$

- Properties of an Arithmetic progression
- If a constant is added or subtracted or multiplied to each term of an A.P. then the resulting sequence is also an A.P.
- If each term of an A.P. is divided by a non-zero constant then the resulting sequence is also an A.P.
- Arithmetic mean
- For any two numbers a and b, we can insert a number A between them such that a, A, b is an A.P. Such a number i.e., A is called the arithmetic mean (A.M) of numbers a and b and it is given by $\mathrm{A}=\frac{a+b}{2}$.
- For any two given numbers a and b, we can insert as many numbers between them as we want such that the resulting sequence becomes an A.P.

Let $A_{1}, A_{2} \ldots A_{n}$ be n numbers between a and b such that $a, A_{1}, A_{2} \ldots A_{n}, b$ is an A.P.
Here, common difference (d) is given by $\frac{b-a}{n+1}$.

Example:

Insert three numbers between -2 and 18 such that the resulting sequence is an A.P.

Solution:

Let A_{1}, A_{2}, and A_{3} be three numbers between - 2 and 18 such that $2, A_{1}, A_{2}, A_{3}, 18$ are in an A.P.
Here, $a=-2, b=18, n=5$
$\therefore 18=-2+(5-1) d$
$\Rightarrow 20=4 d$
$\Rightarrow d=5$
Thus, $A_{1}=a+d=-2+5=3$
$A_{2}=a+2 d=-2+10=8$
$A_{3}=a+3 d=-2+15=13$
Hence, the required three numbers between -2 and 18 are 3,8 , and 13 .

