10th Standard Maths

Circles

Tangent to a Circle

A tangent is a line touching a circle at one point

1. Non-intersecting line - fig (i): The circle and the line $A B$ have no common point.
2. Secant - fig (ii): The line $A B$ intersects the circle at two points A and $B . A B$ is the secant of the circle.
3. Tangent - fig (iii): The line $A B$ touches the circle at only one point. P is the point on the line and on the circle. P is called the point of contact. AB is the tangent to the circle at P .

Number of Tangents from a Point on a Circle

From a point inside a circle, no tangents can be drawn to the circle.

From a point on a circle, only 1 tangent can be drawn to the circle.
In this figure, P is a point on the circle. There is only 1 tangent at $\mathrm{P} . \mathrm{P}$ is called the point of contact.

From a point outside a circle, exactly 2 tangents can be drawn to the circle. In this figure, P is the external point. PQ and PR are the tangents to the circle at points Q and R respectively. The length of a tangent is the length of the segment of the tangent from the external point to the point of contact. In this figure, PQ and PR are the lengths of the 2 tangents.

Theorem 1:

The tangent at any point of a circle is perpendicular to the radius through the point of contact.

Given:

AB is a tangent to the circle with centre $\mathrm{O} . \mathrm{P}$ is the point of contact. OP is the radius of the circle.
To prove:
$\mathrm{OP} \perp \mathrm{AB}$
Proof:
Let Q be any point (other than P) on the tangent AB .
Then Q lies outside the circle.
$\Rightarrow O Q>r$
$\Rightarrow O Q>O P$ For any point Q on the tangent other than P .
$\Rightarrow \mathrm{OP}$ is the shortest distance between the point O and the line AB .
$\Rightarrow \mathrm{OP} \perp \mathrm{AB}$
(\because The shortest line segment drawn from a point to a given line, is perpendicular to the line)
Thus, the theorem is proved.
From the above theorem,

1. The perpendicular drawn from the centre to the tangent of a circle passes through the point of contact.
2. If OP is a radius of a circle with centre O , a perpendicular drawn on OP at P , is the tangent to the circle at P .

Theorem2:

The lengths of tangents drawn from an external point to a circle are equal.

Given:

P is an external point to a circle with centre O . PA and PB are the tangents from P to the circle. A and B are the points of contact.
To prove:
$\mathrm{PA}=\mathrm{PB}$
Construction:
Join OA, OB, OP.

Proof:

In triangle APO and BPO,

Statement	Reason
$\mathrm{OA}=\mathrm{OB}$	Radii of the same circle
$\angle O A P=\angle O B P=90^{\circ}$	The radius is perpendicular to the tangent at the point of the contact.
$\mathrm{OP}=\mathrm{OP}$	Common
$\triangle O A P \cong \triangle O B P$	By SAS postulate
$\mathrm{PA}=\mathrm{PB}$	$\mathrm{CPCT}($ Third side of the triangles)

From the above theorem,

1. $\angle A O P=\angle B O P(\mathrm{CPCT})$ This states that the two tangents subtend equal angles at the centre of the circle
2. $\angle A P O=\angle B P O(\mathrm{CPCT})$ The tangents are equally inclined to the line joining the point and the centre of the circle.
Or the centre of the circle lies on the angle bisector of the $\angle A P B$.
