10th Standard Maths

Constructions

- Division of a line segment in a given ratiovertical-align: middle;

Example:
Draw $\mathrm{PQ}=9 \mathrm{~cm}$ and divide it in the ratio 2:5. Justify your construction.
Solution:

Steps of construction
Draw $\overline{\mathbf{P Q}}=9 \mathrm{~cm}$
Draw a ray $\overrightarrow{\mathbf{P X}}$, making an acute angle with PQ.
Mark $7(=2+5)$ points $A_{1}, A_{2}, A_{3} \ldots A_{7}$ along $P X$ such that $\mathrm{PA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}=\mathrm{A}_{3} \mathrm{~A}_{4}=\mathrm{A}_{4} \mathrm{~A}_{5} \xlongequal{ }-\mathrm{A}_{5} \mathrm{~A}_{6}=\mathrm{A}_{6} \mathrm{~A}_{7}$ Join QA ${ }_{7}$
Through the point A_{2}, draw a line parallel to $A_{7} Q$ by making an angle equal to $\angle P A_{7} Q$ at A_{2}, intersecting $P Q$ at point R.
$\mathrm{PR}: \mathrm{RQ}=2: 5$
Justification:
We have $A_{2} R \| A_{7} Q$

$$
\therefore \frac{\mathbf{P A}_{2}}{\mathbf{A}_{2} A_{3}}=\frac{\mathbf{P R}}{\mathbf{R Q}} \quad[\text { by basic proportionality theorem }]
$$

But $\frac{\mathbf{P A}_{2}}{\mathbf{A}_{2} \mathbf{A}_{3}}=\frac{2}{5} \quad$ [by constraction]

$$
\begin{aligned}
& \therefore \frac{\mathbf{P R}}{\mathbf{R Q}}=\frac{2}{5} \\
& \Rightarrow \mathbf{P R}: \mathbf{R Q}=\mathbf{2 : 5}
\end{aligned}
$$

- Construction of a triangle similar to a given triangle as per the given scale factor

Case I: Scale factor less than 1

Example:

Draw a $\triangle \mathrm{ABC}$ with sides $\mathrm{BC}=8 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}$, and $\mathrm{ĐB}=70^{\circ}$. Then, construct a similar triangle whose sides are 35th of the corresponding sides of $\triangle \mathrm{ABC}$.
Justify your construction.

Solution:

Steps of construction:
Draw BC=8 cm
At B, draw $\angle \mathrm{XBC}=70^{\circ}$
With C as centre and radius 7 cm , draw an arc intersecting BX at A .

Join $A B$, and $D A B C$ is thus obtained.
Draw a ray $\mathrm{BY} \rightarrow$, making an acute angle with BC .
Mark 5 points, $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$, along BY such that
$\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}=\mathrm{B}_{4} \mathrm{~B}_{5}$
Join CB ${ }_{5}$
Through the point B_{3}, draw a line parallel to $\mathrm{B}_{5} \mathrm{C}$ by making an angle equal to $\angle \mathrm{BB}_{5} \mathrm{C}$, intersecting BC at C^{\prime}.
Through the point C^{\prime}, draw a line parallel to AC , intersecting BA at A^{\prime}.
Thus, $\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.

Justification:

By construction, we have

Now, in $\triangle \mathrm{ABC}$,
Since, $\mathrm{AC} \| \mathrm{A}^{\prime} \mathrm{C}^{\prime}$, so

$$
\begin{aligned}
& \frac{\mathrm{BC}}{\mathrm{CC}}=\frac{3}{2} \Rightarrow \frac{\mathrm{CC}}{\mathrm{BC}}=\frac{2}{3} \\
& \therefore 1+\frac{C C}{B C}=1+\frac{2}{3} \\
& \Rightarrow \frac{\mathrm{BC}^{-}+\mathrm{C}^{-} \mathrm{C}}{\mathrm{BC}}=\frac{5}{3} \\
& \Rightarrow \frac{\mathrm{BC}}{\mathrm{BC}^{\prime}}=\frac{5}{3} \Rightarrow \frac{\mathrm{BC}}{\mathrm{BC}}=\frac{3}{5} \\
& \therefore \triangle A^{\prime} B^{\prime} \sim \triangle A B C \\
& \Rightarrow \frac{\mathbf{A}^{\prime} \mathbf{B}}{\mathbf{A B}}=\frac{\mathbf{B C}^{\mathbf{*}}}{\mathbf{B C}} \Rightarrow \frac{\mathbf{A}^{\mathbf{C}} \mathbf{C}^{\mathbf{C}}}{\mathbf{A C}}=\frac{3}{5}
\end{aligned}
$$

Case II: Scale factor greater than 1

Example:

Construct an isosceles triangle with base 5 cm and equal sides of 6 cm .
Then, construct another triangle whose sides are 43rdof the corresponding sides of the first triangle.

Solution:

Steps of construction:
Draw BC $=5 \mathrm{~cm}$
With B and C as the centre and radius 6 cm , draw arcs on the same side of
BC , intersecting at A .
Join $A B$ and $A C$ to get the required $\triangle A B C$.

Draw a ray $\overrightarrow{\mathbf{B X}}$, making an acute angle with $\mathbf{B C}$ on the side opposite to the vertex A .
Mark 4 points $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}$, along BX such that $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}$
Join $B_{3} C$. Draw a line through B_{4} parallel to $B_{3} C$, making an angle equal to $\angle \mathrm{BB}_{3} \mathrm{C}$, intersecting the extended line segment BC at C^{\prime}.
Through point C^{\prime}, draw a line parallel to CA , intersecting extended BA at A^{\prime}.
The resulting $\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.

- Construction of tangents to a circle

Example:

Draw a circle of radius 3 cm . From a point 5 cm away from its centre, construct a pair of tangents to the circle and measure their lengths.

Solution:

1.
1.

1. Draw a circle with centre O and radius 3 cm . Take a point P such that $\mathrm{OP}=5 \mathrm{~cm}$, and then join OP.
2. Draw the perpendicular bisector of OP. Let M be the mid point of OP.
3. With M as the centre and OM as the radius, draw a circle. Let it intersect the previously drawn circle at A and B.
4. Joint PA and PB. Therefore, PA and PB are the required tangents. It can be observed that $\mathrm{PA}=\mathrm{PB}=4 \mathrm{~cm}$.
