10th Standard Maths

Polynomials

- Graphic Interpretation of the number of Zeros of a Polynomial

The zero of a polynomial, ${ }^{\boldsymbol{y}=\boldsymbol{p}(\boldsymbol{x})}$, (if it exists) is the x-coordinate of the point where the graph of $y=p(x)$ intersects the x-axis.

Example 1:

In the above graph, the graph intersects the x-axis at only one point.
The number of zeroes of the corresponding polynomial is 1 .
Example 2:

In the above graph, the graph intersects the x-axis at exactly two points.
The number of zeroes of the corresponding polynomial is 2 .

Example 3:

In the above graph, the graph intersects the x-axis at three points.
The number of zeroes of the corresponding polynomial is 3 .

In the above graph, the graph does not intersect the x-axis. The corresponding polynomial has no zeroes.

- Zeroes of a polynomial

A real number ' k ' is a zero of a polynomial $p(x)$, if $p(k)=0$. In this case, ' k ' is also called the root of the equation, $p(x)=0$.

Note: A polynomial of degree n can have at most n zeroes.

Example:

1. $-\frac{\mathbf{9}}{\mathbf{2}}$ is the zero of the linear polynomial, $2 x+9$, because $2 \times\left(-\frac{\mathbf{9}}{2}\right)+\mathbf{9}=-\mathbf{9 + 9}=\mathbf{0}$
2.2 and -3 are the zeroes of the quadratic polynomial, $\boldsymbol{x}^{2}+\boldsymbol{x}-\mathbf{6}$.
$\left[\because 2^{2}+2-6=0,(-3)^{2}+(-3)-6=0\right]$

Example:

Find the zeroes of the polynomial, $\boldsymbol{p}(\boldsymbol{x})=\boldsymbol{x}^{3}-\mathbf{3} \boldsymbol{x}^{2}-\mathbf{6 x + 8}$

Solution:

By trial, we obtain

$$
\begin{aligned}
& p(1)=1-3-6+8=0 \\
& (x-1) \text { is a factor } p(x) \quad \text { [By factor theorem }] \\
& \boldsymbol{p}(x)=x^{3}-\boldsymbol{x}^{2}-2 x^{2}+2 x-8 x+8 \\
& =\boldsymbol{x}^{2}(x-1)-2 x(x-1)-\mathbf{8 (x - 1)} \\
& =(x-1)\left(x^{2}-2 x-8\right) \\
& =(x-1)\left[x^{2}-4 x+2 x-8\right] \\
& =(x-1)[x(x-4)+2(x-4) \\
& =(x-1)(x-4)(x+2)
\end{aligned}
$$

$$
p(x)=0 \text {, if } x=1,4, \text { or }-2
$$

Thus, the zeroes of $p(x)$ are 1,4 , and -2 .

- Relationship between zeroes and Coefficients of a polynomial

- Linear Polynomial

The zero of the linear polynomial, $a x+b$, is $\frac{-b}{a}=\frac{-(\text { Constant tem })}{\text { Cofficient of } x}$
Example: $3 x-5$
$3 x-5=0 \Rightarrow x=\frac{5}{3}$
Zero of $3 x-5$ is $\frac{5}{3}=\frac{-(-5)}{3}=\frac{-(\text { Constant term })}{\text { Coefficient of } \boldsymbol{x}}$

- Quadratic Polynomial

If a and β are the zeroes of the quadratic polynomial, $\boldsymbol{p}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x} \boldsymbol{x} \boldsymbol{c}$, then $(\boldsymbol{x}-\boldsymbol{\alpha}),(\boldsymbol{x}-\boldsymbol{\beta})$ are the factors of $p(x)$.

$$
\boldsymbol{p}(x)=a x^{2}+b x+c=k\left[x^{2}-(\alpha+\beta) x+\alpha \beta\right] \text {, where } k \neq 0 \text { is constant. }
$$

Sum of zeroes $=\boldsymbol{\alpha}+\boldsymbol{\beta}=\frac{-\boldsymbol{b}}{\boldsymbol{a}}=-\frac{\text { Coefficient of } \boldsymbol{x}}{\text { Cofficient of } \boldsymbol{x}^{2}}$
Product of zeroes $=\boldsymbol{\alpha} \boldsymbol{\beta}=\frac{\boldsymbol{c}}{\boldsymbol{a}}=\frac{\text { Constant term }}{\text { Cofficient of } \boldsymbol{x}^{2}}$

Example:

Find the zeroes of the quadratic polynomial, $2 \mathbf{x}^{\mathbf{2}} \mathbf{+ 1 7 x - 9}$, and verify the relationship between the zeroes and the coefficients.

Solution:

$$
\begin{aligned}
p(x) & =2 x^{2}+17 x-9 \\
& =2 x^{2}+18 x-x-9 \\
& =2 x(x+9)-1(x+9) \\
& =(x+9)(2 x-1)
\end{aligned}
$$

The zeroes of $p(x)$ are given by,

$$
\begin{aligned}
& p(x)=0 \\
& \Rightarrow(x+9)(2 x-1)=0 \\
& \Rightarrow 2 x-1=0 \text { or } x+9=0 \\
& \Rightarrow x=\frac{1}{2} \text { or } x=-9
\end{aligned}
$$

Zeroes of $p(x)$ are $\boldsymbol{\alpha}^{\boldsymbol{1}=\frac{\mathbf{1}}{\mathbf{2}}}$ and $\beta=-9$
Sum of zeroes $=\boldsymbol{\alpha}+\boldsymbol{\beta}=\frac{1}{2}-9=\frac{-17}{2}=-\frac{\text { Cofficient of } \boldsymbol{x}}{\text { Coefficient of } \boldsymbol{x}^{2}}$
Product of zeroes $=\alpha \boldsymbol{\beta}=\frac{\mathbf{1}}{2} \times-\mathbf{9}=\frac{\mathbf{- 9}}{2}=-\frac{\text { Constant trem }}{\text { Coefficient of } \boldsymbol{x}^{2}}$

- Formation of Polynomial using the Sum and Product of Zeroes

Example:

Find a quadratic polynomial, the sum and the product of whose zeroes

$$
\text { are } \frac{-14}{3} \text { and } \frac{-5}{3} .
$$

Solution:

Given that,
$\alpha+\beta=\frac{-14}{3} \alpha \beta=\frac{-5}{3}$
The required polynomial is given by,

$$
\begin{aligned}
p(x) & =k\left[x^{2}-(\alpha+\beta) x+\alpha \beta\right] \\
& =k\left[x^{2}-\left(\frac{-14}{3}\right) x+\left(\frac{-5}{3}\right)\right]=k\left[x^{2}+\frac{14}{3} x-\frac{5}{3}\right]
\end{aligned}
$$

For $k=3$,

$$
p(x)=3\left[x^{2}+\frac{14}{3} x-\frac{5}{3}\right]=3 x^{2}+14 x-5
$$

One of the quadratic polynomials, which fit the given condition, is $\mathbf{3 \boldsymbol { x } ^ { 2 } + 1 4 x - 5}$.

- Cubic polynomial

If $\boldsymbol{\alpha}_{,} \boldsymbol{\beta}, \boldsymbol{\gamma}$ are the zeroes of the cubic
polynomial, $f(x)=a x^{3}+b x^{2}+c x+d$, then $(x-\alpha),(x-\beta),(x-\boldsymbol{\gamma})$ are the factors of $f(x)$.
$f(x)=a x^{3}+b x^{2}+c x+d=k\left[x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta y+\gamma \alpha) x-\alpha \beta y\right]$, where k is a non-zero constant
$\alpha+\beta+\gamma=-\frac{b}{a}=-\frac{\text { Coefficient of } x^{2}}{\text { Coefficient of } x^{3}}$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}=\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{3}}$
$\alpha \beta y=\frac{-d}{a}=-\frac{\text { Constant term }}{\text { Coefficient of } \boldsymbol{x}^{3}}$

- Division of polynomial by polynomial of degree more than 1 can be done as follows:

Example:
Divide $x^{4}-x^{3}+3 x^{2}-x+3$ by $x^{2}-x+1$.
Solution:
It is given that,

Dividend $=x^{4}-x^{3}+3 x^{2}-x+3$, Divisor $=x^{2}-x+1$

$$
\begin{array}{r}
x ^ { 2 } - x + 1 \longdiv { x ^ { 2 } + 2 } \begin{array} { r }
{ x ^ { 3 } + 3 x ^ { 2 } - x + 3 } \\
{ x ^ { 4 } - x ^ { 3 } + x ^ { 2 } } \\
{ - + - } \\
{ 2 x ^ { 2 } - x + 3 } \\
{ 2 x ^ { 2 } - 2 x + 2 } \\
{ - + \quad - } \\
{ \frac { x + 1 } { } }
\end{array}
\end{array}
$$

- Division Algorithm of Polynomials states that:

Dividend $=$ Divisor \times Quotient + Remainder

i.e., $p(x)=g(x) \times q(x)+r(x)$

Here, degree of $r(x)$ < degree of $g(x)$ and degree of $q(x)=$ degree of $p(x)-$ degree of $g(x)$

Example:

By applying division algorithm, find the quotient and remainder when $p(x)$
$=x^{4}+3 x^{3}+2 x^{2}+5 x-\frac{5}{2}$ is divided by $g(x)=x^{3}+2 x-1$.

Solution:

$p(x)=x^{4}+3 x^{3}+2 x^{2}+5 x-\frac{5}{2}, g(x)=x^{3}+2 x-1$
$\operatorname{deg} p(x)=4, \operatorname{deg} g(x)=3$
Degree of quotient $q(x)=4-3=1$, and deg of remainder $r(x)<\operatorname{deg} g(x)=3$
Let $q(x)=a x+b, r(x)=c x^{2}+d x+e$
By division algorithm,

$$
\begin{aligned}
& p(x)=g(x) \times q(x)+r(x) \\
& \begin{aligned}
\Rightarrow x^{4}+3 x^{3}+2 x^{2}+5 x-\frac{5}{2}= & (a x+b)\left(x^{3}+2 x-1\right)+\left(c x^{2}+d x+e\right) \\
& =a x^{4}+2 a x^{2}-a x+b x^{3}+2 b x-b+c x^{2}+d x+e \\
& =a x^{4}+b x^{3}+(2 a+c) x^{2}+(-a+2 b+d) x+(-b+e)
\end{aligned}
\end{aligned}
$$

Equating the coefficients of respective powers, we obtain

$$
\begin{aligned}
& a=1, b=3 \\
& 2 a+c=2 \\
& \Rightarrow 2+c=2 \\
& \Rightarrow c=0
\end{aligned}
$$

$$
\begin{aligned}
& -a+2 b+d=5 \\
& \Rightarrow-1+6+d=5 \\
& \Rightarrow d=0 \\
& -b+e=-\frac{5}{2} \\
& \Rightarrow e=3=\frac{1}{2}
\end{aligned}
$$

Quotient, $q(x)=x+3$

Remainder, $r(x)=\frac{1}{2}$

