10th Standard Maths

Quadratic Equations

- Identification of quadratic equations

Example: Check whether the following are quadratic equations or not.
(i) $(2 x+3)^{2}=12 x+3$
(ii) $x(x+3)=(x+1)(x-5)$

Solution:
(i) $(2 x+3)^{2}=12 x+3$
$\Rightarrow 4 x^{2}+12 x+y=12 x+3$
$\Rightarrow 4 x^{2}+6=0$
It is of the form $a x^{2}+b x+c=0$, where $a=4, b=0$ and $c=6$
Therefore, the given equation is a quadratic equation
(ii) $x(x+3)=(x+1)(x-5)$
$\Rightarrow x^{2}+3 x=x^{2}+x-5 x-5$
$\Rightarrow 7 x+5=0$
It is not of the form $a x^{2}+b x+c=0$, since the maximum power (or degree) of equation is 1 .
Therefore, the given equation is not a quadratic equation.

- Express given situation mathematically

Example 1:

An express train takes 2 hour less than a passenger train to travel a distance of 240 km . If the average speed of the express train is $20 \mathrm{~km} / \mathrm{h}$ more than that of a passenger train, then form a quadratic equation to find the average speed of the express train?

Solution:

Let the average speed of the express train be $x \mathrm{~km} / \mathrm{h}$.
Since it is given that the speed of the express train is $20 \mathrm{~km} / \mathrm{h}$ more than that of a passenger train,
Therefore, the speed of the passenger train will be $x-20 \mathrm{~km} / \mathrm{h}$.
Also we know that Time $=\frac{\text { Distance }}{\text { Speed }}$
Time taken by the express train to cover $240 \mathrm{~km}=\frac{240}{x}$
Time taken by the passenger train to cover $240 \mathrm{~km}=\frac{240}{x-20}$
And the express train takes 2 hour less than the passenger train. Therefore,

$$
\begin{aligned}
& \frac{240}{x-20}-\frac{240}{x}=2 \\
& \Rightarrow 240\left[\frac{x-(x-20)}{x(x-20)}\right]=2 \\
& \Rightarrow 120\left(\frac{20}{x^{2}-20 x}\right)=1 \\
& \Rightarrow 2400=x^{2}-20 x \\
& \Rightarrow x^{2}-20 x-2400=0
\end{aligned}
$$

This is the required quadratic equation.

- Solution of Quadratic Equation by Factorization Method

If we can factorize $a \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}=\mathbf{0}$, where $a \neq 0$, into a product of two linear factors, then the roots of this quadratic equation can be calculated by equating each factor to zero.

Example:

Find the roots of the equation, $2 x^{2}-7 \sqrt{3} x+15=0$, by factorisation.
Solution:

$$
\begin{aligned}
& 2 x^{2}-7 \sqrt{3} x+15=0 \\
& \Rightarrow 2 x^{2}-2 \sqrt{3} x-5 \sqrt{3} x+15=0 \\
& \Rightarrow 2 x(x-\sqrt{3})-5 \sqrt{3}(x-\sqrt{3})=0 \\
& \Rightarrow(x-\sqrt{3})(2 x-5 \sqrt{3})=0 \\
& \Rightarrow(x-\sqrt{3})=0 \text { or }(2 x-5 \sqrt{3})=0 \\
& \Rightarrow x=\sqrt{3} \text { or } x=\frac{5 \sqrt{3}}{2}
\end{aligned}
$$

Therefore, $\sqrt{3}$ and $\frac{5 \sqrt{3}}{2}$ are the roots of the given quadratic equation.

- Solution of Quadratic Equation by completing the square

A quadratic equation can also be solved by the method of completing the square.

Example:

Find the roots of the quadratic equation, $5 x^{2}+7 x-6=0$, by the method of completing the square.

Solution:

$$
\begin{aligned}
& 5 x^{2}+7 x-6=0 \\
& \Rightarrow 5\left[x^{2}+\frac{7}{5} x-\frac{6}{5}\right]=0 \\
& \Rightarrow x^{2}+2 \times x \times \frac{7}{10}+\left(\frac{7}{10}\right)^{2}-\left(\frac{7}{10}\right)^{2}-\frac{6}{5}=0 \\
& \Rightarrow\left(x+\frac{7}{10}\right)^{2}-\frac{49}{100}-\frac{6}{5}=0 \\
& \Rightarrow\left(x+\frac{7}{10}\right)^{2}=\frac{169}{100} \\
& \Rightarrow\left(x+\frac{7}{10}\right)= \pm \sqrt{\frac{169}{100}}= \pm \frac{13}{10} \\
& \Rightarrow x+\frac{7}{10}=\frac{13}{10} \text { ar } x+\frac{7}{10}=-\frac{13}{10} \\
& \Rightarrow x=\frac{13}{10}-\frac{7}{10}=\frac{3}{5} \text { or } x=-\frac{13}{10}-\frac{7}{10}=-2
\end{aligned}
$$

Therefore, -2 and 5 are the roots of the given quadratic equation.

- Quadratic Formula to find solution of quadratic equation:

The roots of the quadratic equation, $\boldsymbol{a x ^ { 2 } + \boldsymbol { x } + \boldsymbol { c } = \mathbf { 0 } \text { , are given }}$
by, $\frac{-b \pm \sqrt{b^{2}-4 a x}}{2 a}$, where $b^{2}-4 a x \geq 0$

Example:

Find the roots of the equation, $2 \mathbf{x}^{2}-\mathbf{3 x}-\mathbf{4 4}=\mathbf{0}$, if they exist, using the quadratic formula.

Solution:
$2 x^{2}-3 x-44=0$
Here, $a=2, b=-3, c=-4$
$\therefore b^{2}-4 a c=(-3)^{2}-4 \times 2 \times(-44)=9+352=361>0$
The roots of the given equation are given by $\frac{-b \pm \sqrt{b^{2}-4 a x}}{2 a}$.
$\Rightarrow x=\frac{-(-3) \pm \sqrt{361}}{2 \times 2}=\frac{3 \pm 19}{4}$
$\Rightarrow x=\frac{3+19}{4}=\frac{11}{2} \propto x=\frac{3-19}{4}=-4$
The roots are -4 and $\frac{\mathbf{1 1}}{\mathbf{2}}$.

- Nature of roots of Quadratic Equation

 discriminant ' D ' is defined as $\mathbf{D}=\boldsymbol{b}^{2}-\boldsymbol{4 a c}$

The quadratic equation,, $\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}=\mathbf{0}$, where $\boldsymbol{a} \neq \mathbf{0}$, has
1.
1.

1. two distinct real roots, if $\mathbf{D}=b^{2}-\mathbf{4 a x}>0$
2. two equal real roots, if $\mathbf{D}=\boldsymbol{b}^{2}-\mathbf{4 a c}=\mathbf{0}$
3. has no real roots, if $\mathbf{D}=\boldsymbol{b}^{2}-\mathbf{4 a c}<\mathbf{0}$

Example: Determine the nature of the roots of the following equations
(a) $2 x^{2}+5 x-117=0$
(b) $3 x^{2}+5 x+6=0$

Solution:
(a) Here, $a=2, b=5, c=-117$

$$
D=b^{2}-4 a c=5^{2}-4 \times 2 \times(-117)=25+936=961>0
$$

Therefore, the roots of the given equation are real and distinct.
(b) Here, $a=3, b=5, c=6$

$$
\therefore \mathrm{D}=b^{2}-4 a c=5^{2}-4 \times 3 \times 6=25-72=-47<0
$$

Therefore, the roots of the given equation are not real.

