10th Standard Maths

Real Numbers

- Euclid's Division Lemma

For any given positive integers a and b, there exists unique integers q and r such that
$a=b q+r$ where $0 \leq r<b$
Note: If b divides a, then $r=0$

Example 1:

For $a=15, b=3$, it can be observed that
$15=3 \times 5+0$
Here, $q=5$ and $r=0$
If b divides a, then $0<r<b$

Example 2:

For $a=20, b=6$, it can be observed that $20=6 \times 3+2$
Here, $q=6, r=2,0<2<6$

- Euclid's division algorithm

Euclid's division algorithm is a series of well-defined steps based on "Euclid's division lemma", to give a procedure for calculating problems.

Steps for finding HCF of two positive integers a and $b(a>b)$ by using Euclid's division algorithm:

Step 1: Applying Euclid's division lemma to a and b to find whole numbers q and r, such that $a=b q+r, 0 \leq r<b$
Step 2: If $r=0$, then $\operatorname{HCF}(a, b)=b$
If $r \neq 0$, then again apply division lemma to b and r
Step 3: Continue the same procedure till the remainder is 0 . The divisor at this stage will be the HCF of a and b.

Note: $\operatorname{HCF}(a, b)=\operatorname{HCF}(b, r)$

Example:

Find the HCF of 48 and 88.

Solution:

Take $a=88, b=48$
Applying Euclid's division lemma, we get
$88=48 \times 1+40$
(Here, $0 \leq 40<48$)

$$
\begin{array}{lr}
48=40 \times 1+8 & (\text { Here, } 0 \leq 8<40) \\
40=8 \times 5+0 & \text { (Here, } r= \\
\text { HCF }(48,88)=8 &
\end{array}
$$

- For any positive integer $a, b, \operatorname{HCF}(\boldsymbol{a}, \boldsymbol{b}) \times \operatorname{LCM}(\boldsymbol{a}, \boldsymbol{b})=\boldsymbol{a} \times \boldsymbol{b}$

Example 1:

Find the LCM of 315 and 360 by the prime factorisation method. Hence, find their HCF.

Solution:

$$
\begin{aligned}
& 315=3 \times 3 \times 5 \times 7=3^{2} \times 5 \times 7 \\
& 360=2 \times 2 \times 2 \times 3 \times 3 \times 5=2^{3} \times 3^{2} \times 5 \\
& \text { LCM }=3^{2} \times 5 \times 7 \times 2^{3}=2520 \\
& \therefore \text { HCF }(315,360)=\frac{315 \times 360}{\operatorname{LCM}(315,360)}=\frac{315 \times 360}{2520}=45
\end{aligned}
$$

Example 2:

Find the HCF of 300,360 and 240 by the prime factorisation method.

Solution:

$300=2^{2} \times 3 \times 5^{2}$
$360=2^{3} \times 3^{2} \times 5$
$240=2^{4} \times 3 \times 5$
HCF $(300,360,240)=2^{2} \times 3 \times 5=60$

- Euclid's Division Lemma

For any given positive integers a and b, there exists unique integers q and r such that $a=b q+r$ where $0 \leq r<b$

Note: If b divides a, then $r=0$

Example 1:

For $a=15, b=3$, it can be observed that
$15=3 \times 5+0$
Here, $q=5$ and $r=0$
If b divides a, then $0<r<b$

Example 2:

For $a=20, b=6$, it can be observed that $20=6 \times 3+2$
Here, $q=6, r=2,0<2<6$

- Euclid's division algorithm

Euclid's division algorithm is a series of well-defined steps based on "Euclid's division lemma", to give a procedure for calculating problems.

Steps for finding HCF of two positive integers a and $b(a>b)$ by using Euclid's division algorithm:

Step 1: Applying Euclid's division lemma to a and b to find whole numbers q and r, such that $a=b q+r, 0 \leq r<b$
Step 2: If $r=0$, then $\operatorname{HCF}(a, b)=b$
If $r \neq 0$, then again apply division lemma to b and r
Step 3: Continue the same procedure till the remainder is 0 . The divisor at this stage will be the HCF of a and b.

Note: $\operatorname{HCF}(a, b)=\operatorname{HCF}(b, r)$

Example:

Find the HCF of 48 and 88.

Solution:

Take $a=88, b=48$
Applying Euclid's division lemma, we get
$88=48 \times 1+40$
(Here, $0 \leq 40<48$)
$48=40 \times 1+8$
$40=8 \times 5+0$
(Here, $0 \leq 8<40$)
(Here, $r=0$)
$\operatorname{HCF}(48,88)=8$

- Using Euclid's division lemma to prove mathematical relationships

Result 1:

Every positive even integer is of the form $2 q$, while every positive odd integer is of the form $2 q+1$, where q is some integer.
Proof:
Let a be any given positive integer.
Take $b=2$
By applying Euclid's division lemma, we have
$a=2 q+r$ where $0 \leq r<2$
As $0 \leq r<2$, either $r=0$ or $r=1$
If $r=0$, then $a=2 q$, which tells us that a is an even integer.
If $r=1$, then $a=2 q+1$
It is known that every positive integer is either even or odd.
Therefore, a positive odd integer is of the form $2 q+1$.

Result 2:

Any positive integer is of the form $3 q, 3 q+1$ or $3 q+2$, where q is an integer.
Proof:
Let a be any positive integer.
Take $b=3$
Applying Euclid's division lemma, we have
$a=3 q+r$, where $0 \leq r<3$ and q is an integer
Now, $0 \leq r<3 \mathrm{P} r=0,1$, or 2
$\therefore a=3 q+r$
$\Rightarrow a=3 q+0, a=3 q+1, a=3 q+2$
Thus, $a=3 q$ or $a=3 q+1$ or $a=3 q+2$, where q is an integer.

- Fundamental theorem of arithmetic states that very composite number can be uniquely expressed (factorised) as a product of primes apart from the order in which the prime factors occur.

Example: 1260 can be uniquely factorised as

2	1260
2	630
3	315
3	105
5	35
	7

$1260=2 \times 2 \times 3 \times 3 \times 5 \times 7$
Example: Factor tree of 84

- For any positive integer $a, b, \operatorname{HCF}(\boldsymbol{a}, \boldsymbol{b}) \times \mathbf{L C M}(\boldsymbol{a}, \boldsymbol{b})=\boldsymbol{a} \times \boldsymbol{b}$

Example 1:

Find the LCM of 315 and 360 by the prime factorisation method. Hence, find their HCF.

Solution:

$315=3 \times 3 \times 5 \times 7=3^{2} \times 5 \times 7$
$360=2 \times 2 \times 2 \times 3 \times 3 \times 5=2^{3} \times 3^{2} \times 5$
LCM $=3^{2} \times 5 \times 7 \times 2^{3}=2520$
$\therefore \operatorname{HCF}(315,360)=\frac{315 \times 360}{\operatorname{LCM}(315,360)}=\frac{315 \times 360}{2520}=45$

Example 2:

Find the HCF of 300,360 and 240 by the prime factorisation method.

Solution:

$300=2^{2} \times 3 \times 5^{2}$
$360=2^{3} \times 3^{2} \times 5$
$240=2^{4} \times 3 \times 5$
$\mathrm{HCF}(300,360,240)=2^{2} \times 3 \times 5=60$

- According to fundamental theorem of arithmetic, a number can be represented as the product of primes having a unique factorisation.

Example:

Check whether 15^{n} in divisible by 10 or not for any natural number n. Justify your answer.

Solution:

A number is divisible by 10 if it is divisible by both 2 and 5.
$15^{n}=(3.5)^{n}$
3 and 5 are the only primes that occur in the factorisation of 15^{n}
By uniqueness of fundamental theorem of arithmetic, there is no other prime except 3 and 5 in the factorisation of 15^{n}.
2 does not occur in the factorisation of 15^{n}.
Hence, 15^{n} is not divisible by 10.

- Every number of the form \sqrt{p}, where p is a prime number is called an irrational number. For example, $\sqrt{3}, \sqrt{11}, \sqrt{12}$ etc.

Theorem: If a prime number p divides a^{2}, then p divides a, where a is a positive integer.

Example:

Prove that $\sqrt{7}$ is an irrational number.

Solution:

If possible, suppose $\sqrt{7}$ is a rational number.
Then, $\sqrt{7}=\frac{p}{q}$, where p, q are integers, $q \neq 0$.
If $\operatorname{HCF}(p, q) \neq 1$, then by dividing p and q by $\operatorname{HCF}^{(p, q)}, \sqrt{7}$ can be reduced as
$\sqrt{7}=\frac{a}{b}$ where $\operatorname{HCF}(a, b)=1$
$\Rightarrow \sqrt{7} b=a$
$\Rightarrow 7 b^{2}=a^{2}$
$\Rightarrow a^{2}$ is divisible by 7
$\Rightarrow a$ is divisible by 7
$\Rightarrow a=7 c$, where c is an integer
$\therefore \sqrt{7} c=b$
$\Rightarrow 7 b^{2}=49 c^{2}$
$\Rightarrow b^{2}=7 c^{2}$
$\Rightarrow b^{2}$ is divisible by 7
$\Rightarrow b$ is divisible by 7
From (2) and (3), 7 is a common factor of a and b. which contradicts (1)
$\therefore \sqrt{7}$ is an irrational number.

Example:

Show that $\sqrt{12}-6$ is an irrational number.

Solution:

If possible, suppose $\sqrt{12}-6$ is a rational number.
Then $\sqrt{12}-6=\frac{p}{q}$ for some integers $p, q\left(q^{1} 0\right)$
Now,
$\sqrt{12}-6=\frac{p}{q}$
$\Rightarrow 2 \sqrt{3}=\frac{p}{q}+6$
$\Rightarrow \sqrt{3}=\frac{1}{2}\left(\frac{p}{q}+6\right)$
As $p, q, 6$ and 2 are integers, $\frac{1}{2}\left(\frac{p}{q}+6\right)$ is rational number, so is $\sqrt{3}$.
This conclusion contradicts the fact that $\sqrt{3}$ is irrational.
Thus, $\sqrt{12}-6$ is an irrational number.

- Decimal expansion of a rational number can be oftwo types:
(i) Terminating
(ii) Non-terminating and repetitive

In order to find decimal expansion of rational numbers we use long division method.
For example, to find the decimal expansion of $\frac{1237}{25}$
We perform the long division of 1237 by 25 .

25 \begin{tabular}{c}
49.48

1237.00
100

\hline 237

225

\hline 120

\hline 100

\hline 200

200

\hline
\end{tabular}

Hence, the decimal expansion of $\frac{1237}{25}$ is 49.48 . Since the remainder is obtained as zero, the decimal number is terminating.

- If x is a rational number with terminating decimal expansion then it can be expressed in p
the q form, where p and q are co-prime (the HCF of p and q is 1) and the prime factorisation of q is of the form $2^{n} 5^{m}$, where n and m are non-negative integers.
\underline{p}
- Let $x={ }^{q}$ be any rational number.
i. If the prime factorization of q is of the form $2^{m} 5^{n}$, where m and n are non-negative integers, then x has a terminating decimal expansion.
ii. If the prime factorisation of q is not of the form $2^{m} 5^{n}$, where m and n are non-negative integers, then x has a non-terminating and repetitive decimal expansion.

For example, $\frac{17}{1600}=\frac{17}{2^{6} \times 5^{2}}$ has the denominator in the form $2^{n} 5^{m}$, where $n=6$ and $m=2$ are non-negative integers. So, it has a terminating decimal expansion.
$\frac{723}{392}=\frac{3 \times 241}{2^{3} \times 7^{2}}$ integers. So, it has a non-terminating decimal expansion.

