10th Standard Maths

Some Applications of Trigonometry

- Some Applications of Trigonometry
- Line of sight: It is the line drawn from the eye of an observer to a point on the object viewed by the observer.
- Angle of Elevation:

Let P be the position of the eye of the observer. Let Q be the object above the horizontal line PR.
Angle of elevation of the object Q with respect to the observer P is the angle made by the line of sight PQ with the horizontal line PR . That is, $\angle \mathrm{QPR}$ is the angle of elevation.

- Angle of Depression

Let P be the position of the eye of the observer. Let Q be the object below the horizontal line PX.
Angle of depression of the object Q with respect to the observer P is the angle made by the line of sight PQ with the horizontal line PX . That is, $\angle \mathrm{XPQ}$ is the angle of depression. It can be seen that
$\angle \mathrm{PQR}=\angle \mathrm{XPQ}$
[Alternate interior angles]
The height or length of an object or the distance between two distant objects can be calculated by using trigonometric ratios.

Example:

The angle of elevation of the top of a tower from the foot of a building is 60° and the angle of elevation of the top of the building from the foot of the tower is 30°. If the building is 16 m tall, then what is the height of the tower?

Solution:

Let AB and CD be the building and the tower respectively.
It is given that, angles of elevation $\angle \mathrm{ADB}=30^{\circ}, \angle \mathrm{CBD}=60^{\circ}$ In $\triangle \mathrm{ABD}$,

$$
\begin{aligned}
& \frac{\mathrm{AB}}{\mathrm{BD}}=\tan 30^{\circ} \\
& \Rightarrow \frac{16}{\mathrm{BD}}=\frac{1}{\sqrt{3}} \\
& \Rightarrow \mathrm{BD}=16 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Now, in \triangle CBD

$$
\begin{aligned}
& \frac{C D}{B D}=\tan 60^{\circ} \\
& \Rightarrow \frac{C D}{16 \sqrt{3}}=\sqrt{3} \\
& \Rightarrow C D=16 \sqrt{3} \times \sqrt{3} \mathrm{~m}=48 \mathrm{~m}
\end{aligned}
$$

Thus, the height of the tower is 48 m .

Example:

Two wells are located on the opposite sides of a 18 m tall building. As observed from the top of the building, the angles of depression of the two wells are 30° and 45°. Find the distance between the wells. [Use $\sqrt{\mathbf{3}}=\mathbf{1 7 3 2}$]

Solution:

The given situation can be represented as

Here, PQ is the building. A and B are the positions of the two wells such that:
$\angle \mathrm{XPB}=30^{\circ}, \angle \mathrm{XPA}=45^{\circ}$
Now, $\angle \mathrm{PAQ}=\angle \mathrm{XPA}=45^{\circ}$
$\angle \mathrm{PBQ}=\angle \mathrm{XPB}=30^{\circ}$
In $\triangle P A Q$, we have

$$
\begin{aligned}
& \frac{P Q}{A Q}=\tan 45^{\circ} \\
& \Rightarrow \frac{18}{A Q}=1 \\
& \Rightarrow A Q=18 \mathrm{~m}
\end{aligned}
$$

In $\triangle \mathrm{PBQ}$, we have

$$
\begin{aligned}
& \frac{\mathrm{PQ}}{\mathrm{QB}}=\tan 30^{\circ} \\
& \Rightarrow \frac{18}{\mathrm{QB}}=\frac{1}{\sqrt{3}} \\
& \Rightarrow \mathrm{QB}=18 \sqrt{3} \\
& \begin{aligned}
\therefore \mathrm{AB}=\mathrm{AQ}+\mathrm{QB} & =(18+18 \sqrt{3}) \mathrm{m} \\
& =18(1+\sqrt{3}) \mathrm{m} \\
& =18(1+1.732) \mathrm{m} \\
& =18 \times 2.732 \mathrm{~m} \\
& =49.176 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

