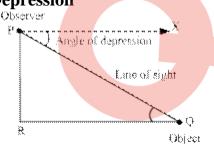

<u>QB365 - Question Bank Software</u>

10th Standard Maths

Some Applications of Trigonometry


- Some Applications of Trigonometry .
- Line of sight: It is the line drawn from the eye of an observer to a point on the object 0 viewed by the observer.
- Angle of Elevation: 0

Let P be the position of the eye of the observer. Let Q be the object above the horizontal line PR.

Angle of elevation of the object Q with respect to the observer P is the angle made by the line of sight PQ with the horizontal line PR. That is, $\angle QPR$ is the UESTIONBA angle of elevation.

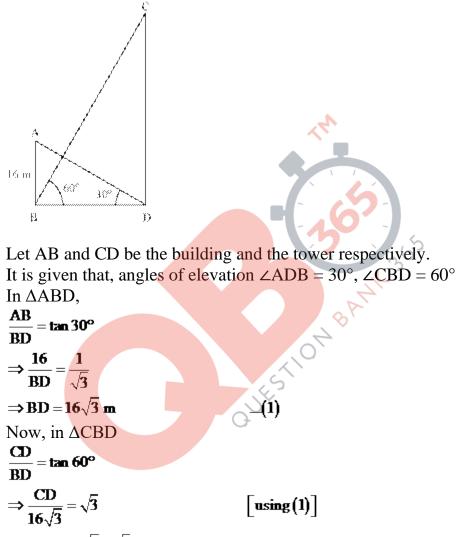
Angle of Depression 0

Let P be the position of the eye of the observer. Let Q be the object below the horizontal line PX.

Angle of depression of the object Q with respect to the observer P is the angle made by the line of sight PQ with the horizontal line PX. That is, $\angle XPQ$ is the angle of depression. It can be seen that

 $\angle POR = \angle XPO$ [Alternate interior angles]

The height or length of an object or the distance between two distant objects can be calculated by using trigonometric ratios.


Example:

QB365 - Question Bank Software

QB365 - Question Bank Software

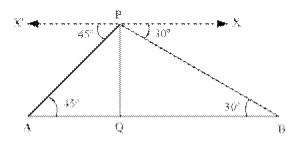
The angle of elevation of the top of a tower from the foot of a building is 60° and the angle of elevation of the top of the building from the foot of the tower is 30° . If the building is 16 m tall, then what is the height of the tower?

Solution:

$$\Rightarrow$$
 CD = 16 $\sqrt{3} \times \sqrt{3}$ m = 48 m

Thus, the height of the tower is 48 m.

Example:


Two wells are located on the opposite sides of a 18 m tall building. As observed from the top of the building, the angles of depression of the two

wells are 30° and 45°. Find the distance between the wells. [Use $\sqrt{3} = 1.732$]

Solution:

The given situation can be represented as

QB365 - Question Bank Software

Here, PQ is the building. A and B are the positions of the two wells such that:

 \angle XPB = 30°, \angle XPA =45° Now, $\angle PAQ = \angle XPA = 45^{\circ}$ $\angle PBQ = \angle XPB = 30^{\circ}$ In $\triangle PAQ$, we have $\frac{PQ}{AQ} = \tan 45^{\circ}$ QUESTION BANK 365 $\Rightarrow \frac{18}{AQ} = 1$ \Rightarrow AQ=18m In $\triangle PBQ$, we have $\frac{PQ}{QB} = \tan 30^\circ$ $\Rightarrow \frac{18}{\text{QB}} = \frac{1}{\sqrt{3}}$ \Rightarrow QB = 18 $\sqrt{3}$ $\therefore \mathbf{AB} = \mathbf{AQ} + \mathbf{QB} = (\mathbf{18} + \mathbf{18}\sqrt{3})\mathbf{m}$ $= 18(1 + \sqrt{3})m$ =18(1+1.732)m =18×2.732 m = **49_176 m**

QB365 - Question Bank Software