10th Standard Maths

Surface Areas and Volumes

- Curve Surface area of combination of solids:
- Curved surface area of a cuboid $=2 h(l+b)$

- Curved surface area of a cube $=4 a^{2}$

- Curved surface area (CSA) of a cylinder $=2 \pi r h$

-
- Slant height of the cone, $l=\sqrt{r^{2}+h^{2}}$, where h is the height of the cone

Curved surface area (CSA) of a cone $=\pi r l$

-

- Curved surface area (CSA) of a hemisphere $=2 \pi r^{2}$

Note: Height of the hemisphere $=$ Radius of the hemisphere

Example:

A toy is in the form of a hemisphere mounted by a cone. The diameter of the hemisphere is 14 cm and height of the whole toy is 31 cm . If the surface of the toy is painted at the rate of Rs 1 per $6 \mathrm{~cm}^{2}$, then find the cost required to paint the entire toy.

Solution:

It is given that the diameter of the hemisphere is 14 cm .
\therefore Radius of the hemisphere, $r=7 \mathrm{~cm}$
Radius of the base of the cone, $r=7 \mathrm{~cm}$
From the figure, height of cone, $h=31-7=24 \mathrm{~cm}$
Now, $l=\sqrt{h^{2}+r^{2}}=\sqrt{24^{2}+7^{2}}=\sqrt{625}=25 \mathrm{~cm}$
\therefore Surface area of the toy $=$ C.S.A. of hemisphere + C.S.A. of cone
$=2 \pi r^{2}+\pi r l$
$=\pi r(2 r+l)$
$=\frac{22}{7} \times 7 \times(2 \times 7+25)$
$=858 \mathrm{~cm}^{2}$
\therefore Cost required for painting $=858 \times \frac{\mathbf{1}}{\mathbf{6}}=$ Rs 143 .

- Total Surface area of combination of solids

Example:

A hemispherical depression of the greatest possible diameter is cut out from one face of a cubical wooden block. If the edge of the cube is 7 cm long, then find the surface area of the remaining solid.

Solution:

It is clear that the greatest possible diameter of the hemisphere is 7 cm .
Radius of hemisphere $={ }^{\frac{7}{2}} \mathrm{~cm}$
Total Surface area of the remaining solid = TSA of the cube + CSA of the hemisphere Area of the base of the hemisphere
TSA of the cube $=6 \times(7 \mathrm{~cm})^{2}=6 \times 49 \mathrm{~cm}^{2}=\mathbf{2 9 4} \mathrm{cm}^{2}$
CSA of the hemisphere $=2 \times \pi \times\left(\frac{7}{2}\right)^{2} \mathbf{c m}^{2}=2 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \mathbf{c m}^{2}=77 \mathrm{~cm}^{2}$
Area of the base of the hemisphere $=\pi \times\left(\frac{7}{2}\right)^{2} \mathbf{c m}^{2}=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \mathbf{c m}^{2}=\mathbf{3 8 5} \mathbf{c m}^{2}$
Therefore, area of the remaining solid $=(294+77-38.5) \mathrm{cm}^{2}=332.5 \mathrm{~cm}^{2}$

- Volume of combination of solids

1. Volume of a cuboid $=l \times b \times h$, where l, b, h are respectively length, breadth and height of the cuboid.
2. Volume of a cube $=a^{3}$, where a is the edge of the cube.
3. Volume of a cylinder $=\pi r^{2} h$, where r is the radius and h is the height of the cylinder.
4. Volume of a cone $=\frac{\mathbf{1}}{\mathbf{3}} \boldsymbol{\pi}^{2} h$, where r is the radius and h is the height of the cone.
5. Volume of a sphere of radius $\boldsymbol{r}=\frac{\mathbf{4}}{\mathbf{3}} \boldsymbol{\pi} \boldsymbol{r}^{\mathbf{3}}$.
6. Volume of a hemisphere of radius $r=\frac{2}{3} \boldsymbol{\pi} \boldsymbol{r}^{\mathbf{3}}$.

Note: Volume of the combination of solids is the sum of the volumes of the individual solids.

Example:

A solid is in the shape of a cylinder surmounted by a cone. The diameter of the base of the solid is 14 cm and the height of the solid is 18 cm . If the length of the cylindrical part in 12 cm , then find the volume of the solid.

Solution:

Volume of the solid $=$ Volume of the cylindrical part + Volume of the conical part

Diameter of the base $=14 \mathrm{~cm}$
Radius of the base $=\frac{\mathbf{1 4}}{\mathbf{2}} \mathbf{c m}=7 \mathbf{c m}$
Radius of the conical part = Radius of the cylindrical part $=7 \mathrm{~cm}$
Height of the solid $=18 \mathrm{~cm}$
Height of the cylindrical part $=12 \mathrm{~cm}$
Height of the conical part $=(18-12) \mathrm{cm}=6 \mathrm{~cm}$
Volume of the cylindrical
part $=\pi \times(\text { Radfus })^{2} \times$ Height $=\frac{22}{7} \times 7^{2} \times 12 \mathrm{~cm}^{3}=1848 \mathrm{~cm}^{3}$
Volume of the conical
part $=\frac{1}{3} \pi \times(\text { Radus })^{2} \times$ Height $=\frac{1}{3} \times \frac{22}{7} \times 7^{2} \times 6 \mathrm{~cm}^{3}=308 \mathrm{~cm}^{3}$
Thus, volume of the solid $=(1848+308) \mathrm{cm}^{3}=2156 \mathrm{~cm}^{3}$.

- Conversion of a solid from one shape into another

When a solid is converted into another solid of a different shape, the volume of the solid does not change.

Example:

A metallic block of dimensions $8.4 \mathrm{~cm} \times 6 \mathrm{~cm} \times 4.4 \mathrm{~cm}$ is melted and recast into the shape of a cone of radius 4.2 cm . Find the height of the cone.

Solution:

Volume of the cuboidal block $=$ Length \times Breadth \times Height

$$
=8.4 \times 6 \times 4.4 \mathrm{~cm}^{3}
$$

Let h be the height of the cone.
Radius of the cone $=4.2 \mathrm{~cm}$
Volume of the cone $=\frac{1}{3} \pi r^{2} h=\frac{\mathbf{1}}{\mathbf{3}} \times \boldsymbol{\pi} \times \mathbf{4} \mathbf{2}^{2} \times h$
Since the cuboidal block is converted into the shape of a cone
Volume of the cuboid $=$ Volume of the cone

$$
\begin{aligned}
& \Rightarrow(8.4 \times 6 \times 4.4) \mathrm{cm}^{3}=\frac{1}{3} \pi \times(4.2 \mathrm{~cm})^{2} \times h \\
& \Rightarrow h=\frac{8.4 \times 6 \times 4.4 \times 3 \times 7}{4.2 \times 42 \times 22} \mathrm{~cm}=12 \mathrm{~cm}
\end{aligned}
$$

Thus, the height of the cone is 12 cm .

- Frustum of a cone

- CSA of the frustum of a cone $=\pi\left(r_{1}+r_{2}\right) /$
- TSA of the frustum of a cone

$$
=\pi\left(r_{1}+r_{2}\right) \mid+\pi r_{1}^{2}+\pi r_{2}^{2}
$$

where r_{1} and r_{2} are the radi of the $\left(r_{1}>r_{2}\right)$ ends of the frustum of a cone, and $I=\sqrt{h^{2}+}$

Example:

A bucket, made up of aluminium sheet, is opened from the top and is in the shape of the frustum of a cone of slant height 32 cm , with the radii of its lower and upper ends being 7 cm and 14 cm respectively. Find the area of the aluminium sheet used for making it.

Solution:

The area of the aluminium sheet used for making the bucket
$=$ CSA of the frustum of the cone + Area of the lower base
Now, the CSA of the frustum of the cone $=\boldsymbol{\pi}\left(\boldsymbol{r}_{\mathbf{i}}+\boldsymbol{r}_{2}\right) \boldsymbol{l}$, where r_{1} and r_{2} are radii of the lower and upper ends and l is the slant height of the bucket CSA of the frustum of the cone
$=\pi(7+44) \times 32 \mathrm{~cm}^{2}=\frac{22}{7} \times 21 \times 32 \mathrm{~cm}^{2}=2112 \mathrm{~cm}^{2}$
Area of the lower base $=\frac{22}{7} \times 7 \times 7 \mathbf{c m}^{2}=154 \mathbf{c m}^{2}$
Thus, the area of the aluminium sheet used $=(2112+154) \mathrm{cm}^{2}=2266 \mathrm{~cm}^{2}$

- Frustum of a cone

Volume of the frustum of a cone
$=\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} \cdot r_{2}\right)$
where r_{1} and r_{2} are the radii of the ends $\left(r_{1}>r_{2}\right)$ of the frustum of a cone
and h is the height of the frustum.

Example:

If the radii of the circular ends of a conical bucket which is 42 cm high, are
21 cm and 14 cm . If the bucket is filled will milk. Find the quantity of milk (in litres) in the bucket.

Solution:

Clearly, bucket forms a frustum of a cone such that the radii of its circular ends are $r_{1}=21 \mathrm{~cm}, r_{2}=14 \mathrm{~cm}$ and height $h=42 \mathrm{~cm}$. Therefore,
Capacity of milk in bucket $=$ volume of the frustum
$=\frac{1}{3} \pi h\left(r_{1}^{2}+t_{2}^{2}+r_{1} \cdot r_{2}\right)$
$=\frac{1}{3} \times \frac{22}{7} \times 42\left(21^{2}+14^{2}+21 \times 14\right)$
$=44(441+196+294)$
$=40964 \mathrm{~cm}^{3}$
We know
1 litre $=1000 \mathrm{~cm} 3$
$\therefore 1 \mathrm{~cm}^{3}=\frac{1}{1000}$ Litres
Therefore, quantity of milk in bucket $=40964 \times \frac{1}{1000}$ litres $=40.964$ Litres

