# 10th Standard Maths 

## Triangles

## Similar Figures



The above are similar figures.

- All congruent figures are similar but similar figures need not be congruent.
- Two regular polygons of the same number of sides are similar, if
(i) their corresponding angles are equal and
(ii) their corresponding sides are in the same ratio (or proportion).


## Similarity of Triangles:

- Two triangles are similar, if
a) their corresponding angles are equal and
b) their corresponding sides are in the same ratio (or proportion).
- Criterion of similarity:

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$, if
(i) if $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$ and
(ii) $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$, then the two triangles are similar.


Theorems in similarity (SSS, AA, SAS, BPT)
AA criterion of similarity or AAA criterion:
If in two triangles, the corresponding angles are equal, then their corresponding sides are in the same ratio (or proportion) and hence the two triangles are similar.

This criterion is referred to as the AAA (Angle-Angle-Angle) criterion of similarity of two triangles.

This theorem can be proved by taking two triangles ABC and DEF such that $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}$, $\angle \mathrm{C}=\angle \mathrm{F}$.


Cut $D P=A B$ and $D Q=A C$ and join $P Q$.
So, $\triangle \mathrm{ABC} \cong \triangle \mathrm{DPQ}$
This gives $\angle \mathrm{B}=\angle \mathrm{P}=\angle \mathrm{E}$ and $\mathrm{PQ} \| \mathrm{EF}$
Therefore, $\frac{D P}{P E}=\frac{D Q}{Q F}$
i.e. $\frac{A B}{D E}=\frac{A C}{D F}$

Similarly, $\frac{A B}{D E}=\frac{B C}{E F}$ and so
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

## SSS criterion of similarity:

If in two triangles, the sides of one triangle are proportional to (i.e. in the same ratio of) the sides of the other triangle, then their corresponding angles are equal and hence the two triangles are similar.

This criterion is referred to as the SSS (Side-Side-Side) similarity criterion for two triangles.

This theorem can be proved by taking two triangles ABC and DEF such that
$\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}(<1)$


Cut $\mathrm{DP}=\mathrm{AB}$ and $\mathrm{DQ}=\mathrm{AC}$ and join PQ .
It can be seen that $\frac{D P}{P E}=\frac{D Q}{Q F}$ and
$\mathrm{PQ} \| \mathrm{EF}$
So, $\angle \mathrm{P}=\angle \mathrm{E}$ and $\angle \mathrm{Q}=\angle \mathrm{F}$
Therefore, $\frac{D P}{D E}=\frac{D Q}{D F}=\frac{P Q}{E F}$

So, $\frac{D P}{D E}=\frac{D Q}{D F}=\frac{B C}{E F}$
So, $B C=P Q$

## SAS criterion of similarity:

If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

This criterion is referred to as the SAS (Side-Angle-Side) similarity criterion for two triangles.

As before, this theorem can be proved by taking two triangles ABC and DEF such that $\frac{A B}{D E}=\frac{A C}{D F}(<1)$ and $\angle \mathrm{A}=\angle \mathrm{D}$.
Cut $\mathrm{DP}=\mathrm{AB}, \mathrm{DQ}=\mathrm{AC}$ and join PQ .


Now, $\mathrm{PQ}|\mid \mathrm{EF}$ and $\triangle \mathrm{ABC} \cong \triangle \mathrm{DPQ}$
So, $\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{P}$ and $\angle \mathrm{C}=\angle \mathrm{Q}$
Therefore, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

## Basic Proportionality theorem:

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Proof: We are given a triangle ABC in which a line parallel to side BC intersects the other two sides $A B$ and $A C$ at $D$ and $E$ respectively.


We need to prove that $\frac{A D}{D B}=\frac{A E}{E C}$
Let us join BE and CD and then draw
$\mathrm{DM} \perp \mathrm{AC}$ and $\mathrm{EN} \perp \mathrm{AB}$
Now, area of $\triangle \mathrm{ADE}=\frac{1}{2} \times$ base $\times$ height
$=\frac{1}{2} \times \mathrm{AD} \times \mathrm{EN}$
Recall from Class IX, that area of $\triangle \mathrm{ADE}$ is denoted as $\operatorname{ar}(\mathrm{ADE})$.
So, $\operatorname{ar}(\mathrm{ADE})=\frac{1}{2} \times \mathrm{AD} \times \mathrm{EN}$
Similarly, $\operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \times \mathrm{DB} \times \mathrm{EN}$
$\operatorname{ar}(\mathrm{ADE})=\frac{1}{2} \times \mathrm{AE} \times \mathrm{DM}$ and
$\operatorname{ar}(\mathrm{DEC})=\frac{1}{2} \times \mathrm{EC} \times \mathrm{DM}$
Therefore, $\frac{\operatorname{ar}(A D E)}{\operatorname{ar}(B D E)}=\frac{\frac{1}{2} \times A D \times E N}{\frac{1}{2} \times D B \times E N}$
$=\frac{A D}{D B} \ldots$
and $\frac{\operatorname{ar}(A D E)}{\operatorname{ar}(D E C)}=\frac{\frac{1}{2} \times A E \times D M}{\frac{1}{2} \times E C \times D M}$
$=\frac{A E}{E C}$.

Note that $\triangle \mathrm{BDE}$ and $\triangle \mathrm{DEC}$ are on the same base DE and between the same parallels BC and DE .
So, $\operatorname{ar}(\mathrm{BDE})=\operatorname{ar}(\mathrm{DEC}) \ldots(3)$
Therefore, from (1), (2) and (3), we have:
$\frac{A D}{D B}=\frac{A E}{E C}$

## Areas of Similar Triangles:

The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Proof: We are given two triangles $A B C$ and $P Q R$ such that $\triangle A B C \sim \triangle P Q R$


We need to prove that
$\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{C A}{R P}\right)^{2}$

For finding the areas of the two triangles, we draw altitudes AM and PN of the triangles.
Now, $\operatorname{ar}(\mathrm{ABC})=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AM}$
and $\operatorname{ar}(\mathrm{PQR})=\frac{1}{2} \times \mathrm{QR} \times \mathrm{PN}$
So, $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\frac{\frac{1}{2} \times B C \times A M}{\frac{1}{2} \times Q R \times P N} \ldots$
Now, in $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$,
$\angle \mathrm{B}=\angle \mathrm{Q} \quad($ As $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR})$
and $\angle \mathrm{M}=\angle \mathrm{N} \quad$ (Each is $90^{\circ}$ )
So, $\triangle \mathrm{ABM} \sim \triangle \mathrm{PQN} \quad$ (AA similarity criterion)
Therefore, $\frac{A M}{P N}=\frac{A B}{P Q} \ldots$
Also, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ (Given)
So, $\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P} \ldots$
Therefore, $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\frac{A B}{P Q} \times \frac{A M}{P N}$
[From (1) \& (3)]
$=\frac{A B}{P Q} \times \frac{A B}{P Q} \quad[$ From (2) $]$
$=\left(\frac{A B}{P Q}\right)^{2}$
Now using (3) we get:
$\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(P Q R)}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{C A}{R P}\right)^{2}$

## Proof of Pythagoras Theorem Using Similarity



You may note that in $\triangle A D B$ and $\triangle A B C$
$\angle \mathrm{A}=\angle \mathrm{A}$
and $\angle \mathrm{ADB}=\angle \mathrm{ABC}$
So, $\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$
Similarly, $\triangle \mathrm{BDC} \sim \triangle \mathrm{ABC}$
From (1) and (2), triangles on both sides of the perpendicular BD are similar to the whole triangle ABC.
Also, since $\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$
and $\triangle \mathrm{BDC} \sim \triangle \mathrm{ABC}$
So, $\triangle \mathrm{BDC} \sim \triangle \mathrm{BDC}$

If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, then the triangles on both sides of the perpendicular are similar to the whole triangle and to each other.

## Let us now apply this theorem in proving the Pythagoras Theorem:

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Proof: We are given a right triangle ABC right angled at B .


We need to prove that $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Let us draw $\mathrm{BD} \perp \mathrm{AC}$.
Now, $\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$
So, $\frac{A D}{A B}=\frac{A B}{A C}$ (Sides are proportional)
or $\mathrm{AD} \cdot \mathrm{AC}=\mathrm{AB}^{2}$
Also, $\Delta \mathrm{BDC} \sim \Delta \mathrm{ABC}$
So, $\frac{C D}{B C}=\frac{B C}{A C}$
or $\mathrm{CD} \cdot \mathrm{AC}=\mathrm{BC}^{2}$
Adding (1) and (2),
$\mathrm{AD} \cdot \mathrm{AC}+\mathrm{CD} \cdot \mathrm{AC}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Or $A C(A D+C D)=A B^{2}+B C^{2}$
Or $A C \cdot A C=A B^{2}+B C^{2}$
Or $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$

## Converse of Pythagoras Theorem:

In a right triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite the first side is a right angle.

Proof: Here we are given a triangle ABC in which $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
We need to prove that $\angle \mathrm{B}=90^{\circ}$
To start with, we construct a $\triangle \mathrm{PQR}$ right angled at Q such that $\mathrm{PQ}=\mathrm{AB}$ and $\mathrm{QR}=\mathrm{BC}$


Now, from $\triangle \mathrm{PQR}$, we have:
$\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2} \quad$ (Pythagoras Theorem, as $\angle \mathrm{Q}=90^{\circ}$ )
Or $\mathrm{PR}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$ (By construction). (1)
But $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$ (Given)... (2)
So, $\mathrm{AC}=\mathrm{PR}[$ From (1) and (2)] ... (3)
Now, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,
$\mathrm{AB}=\mathrm{PQ}$ (By construction)
$\mathrm{BC}=\mathrm{QR}$ (By construction)
$\mathrm{AC}=\mathrm{PR}$ [Proved in (3) above]
So, $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ (SSS congruence)
Therefore, $\angle \mathrm{B}=\angle \mathrm{Q}$ (CPCT)
But $\angle \mathrm{Q}=90^{\circ}$ (By construction)
So, $\angle \mathrm{Q}=90^{\circ}$

