8th Standard-Maths

Factorisation

- Factorization is the decomposition of an algebraic expression into product of factors. Factors of an algebraic term can be numbers or algebraic variables or algebraic expressions.

For example, the factors of $2 a^{2} b$ are $2, a, a, b$, since $2 a^{2} b=2 \times a \times a \times b$
The factors, $2, a, a, b$, are said to be irreducible factors of $2 a^{2} b$ since they cannot be expressed further as a product of factors.

Also, $2 a^{2} b=1 \times 2 \times a \times a \times b$
Therefore, 1 is also a factor of $2 a^{2} b$. In fact, 1 is a factor of every term. However, we do not represent 1 as a separate factor of any term unless it is specially required.
For example, the expression, $2 x^{2}(x+1)$, can be factorized as $2 \times x \times x \times(x+1)$.
Here, the algebraic expression $(x+1)$ is a factor of $2 x^{2}(x+1)$.

- Factorization of expressions by the method of common factors

This method involves the following steps.
Step 1: Write each term of the expression as a product of irreducible factors.
Step 2: Observe the factors, which are common to the terms and separate them.
Step 3: Combine the remaining factors of each term by making use of distributive law.
Example: Factorize $12 p^{2} q+8 p q^{2}+18 p q$.
Solution: We have,
$12 p^{2} q=2 \times 2 \times 3 \times p \times p \times q$
$8 p q^{2}=2 \times 2 \times 2 \times p \times q \times q$
$18 p q=2 \times 3 \times 3 \times p \times q$
The common factors are $2, p$, and q.
$\therefore 12 p^{2} q+8 p q^{2}+18 p q$
$=2 \times p \times q[(2 \times 3 \times p)+(2 \times 2 \times q)+(3 \times 3)]$
$=2 p q(6 p+4 q+9)$

- Factorization by regrouping terms

Sometimes, all terms in a given expression do not have a common factor. However, the terms can be grouped by trial and error method in such a way that all the terms in each group have a common factor. Then, there happens to occur a common factor amongst each group, which leads to the required factorization.

Example: Factorize $2 a^{2}-b+2 a-a b$.
Solution: $2 a^{2}-b+2 a-a b=2 a^{2}+2 a-b-a b$
The terms, $2 a^{2}$ and $2 a$, have common factors, 2 and a.
The terms, $-b$ and $-a b$ have common factors, -1 and b.
Therefore,
$2 a^{2}-b+2 a-a b=2 a^{2}+2 a-b-a b$
$=2 a(a+1)-b(1+a)$
$=(a+1)(2 a-b) \quad$ (As the factor, $(1+a)$, is common to both the terms)
Thus, the factors of the given expression are $(a+1)$ and $(2 a-b)$.

- Some of the expressions can also be factorized by making use of the following identities.

1. $a^{2}+2 a b+b^{2}=(a+b)^{2}$
2. $a^{2}-2 a b+b^{2}=(a-b)^{2}$
3. $a^{2}-b^{2}=(a+b)(a-b)$

For example, the expression $4 x^{2}+12 x y+9 y^{2}-4$ can be factorized as follows:
$4 x^{2}+12 x y+9 y^{2}-4$
$=\left(2 x^{2}\right)+2(2 x)(3 y)+(3 y)^{2}-4$
$=(2 x+3 y)^{2}-4 \quad$ [Using the identity, $\left.a^{2}+2 a b+b^{2}=(a+b)^{2}\right]$
$=(2 x+3 y)^{2}-(2)^{2}$
$=(2 x+3 y+2)(2 x+3 y-2) \quad\left[\right.$ Using the identity, $\left.a^{2}-b^{2}=(a+b)(a-b)\right]$

- Factorization by using the identity, $x^{2}+(a+b) x+a b=(x+a)(x+b)$.

To apply this identity in an expression of the type $x^{2}+p x+q$, we observe the coefficient of x and the constant term.
Two numbers, a and b, are chosen such that their product is q and their sum is p.
i.e., $a+b=p$ and $a b=q$

Then, the expression, $x^{2}+p x+q$, becomes $(x+a)(x+\mathrm{b})$.
Example: Factorize $a^{2}-2 a-8$.
Solution: Observe that, $-8=(-4) \times 2$ and $(-4)+2=-2$
Therefore, $a^{2}-2 a-8=a^{2}-4 a+2 a-8$
$=a(a-4)+2(a-4)$
$=(a-4)(a+2)$

- Division of any polynomial by a monomial is carried out either by dividing each term of the polynomial by the monomial or by the common factor method.

For example, $\left(8 x^{3}+4 x^{2} y+6 x y^{2}\right)$ can be divided by $2 x$ as follows:

$$
\begin{aligned}
\left(8 x^{3}+4 x^{2} y+6 x y^{2}\right)-2 x & =\frac{8 x^{3}+4 x^{2} y+6 x y^{2}}{2 x} \\
& =\frac{8 x^{3}}{2 x}+\frac{4 x^{2} y}{2 x}+\frac{6 x y^{2}}{2 x} \\
& =4 x^{2}+2 x y+3 y^{2}
\end{aligned}
$$

Or,
$\left(8 x^{3}+4 x^{2} y=6 x y^{2}\right) \div 2 x=\frac{2 \times x\left(4 x^{2}+2 x y+3 y^{2}\right)}{2 \times x}=4 x^{2}+2 x y$

