8th Standard- Maths

Rational Numbers

- Rational numbers on number line

Rational numbers can be represented on number line in the similar manner like fractions and integers.

Negative rational numbers are marked to the left of 0 while positive rational numbers are marked to the right of 0 .

Example: Represent $-\frac{2}{5}$ n number line.
Solution: The given rational number is negative. Therefore, it will lie to the left of 0 .
The space between -1 and 0 is divided into 5 equal parts. Therefore, each part represents $-\frac{1}{5}$.

Marking $-\frac{2}{5}$ at 2 units to the left of 0 , we obtain the number line as shbwn below.

- To find rational numbers between any two given ratí@nal numbers, firstly we have to make their denominators same and then find the respective rational numbers.

Example: Find some rational numbers between $\frac{1}{6}$ and $\frac{7}{8}$.
Solution: The L.C.M. of 6 and 8 is 24 .
Now, we can write

$$
\begin{aligned}
& \frac{1}{6}=\frac{1 \times 4}{6 \times 4}=\frac{4}{24} \\
& \frac{7}{8}=\frac{7 \times 3}{8 \times 3}=\frac{21}{24}
\end{aligned}
$$

Therefore, some of the rational numbers between $\frac{4}{24}\left(\frac{1}{6}\right)$ and $\frac{21}{24}\left(\frac{7}{8}\right)$ are

$$
\frac{5}{24}, \frac{6}{24}, \frac{7}{24}, \frac{8}{24}, \frac{9}{24}, \frac{10}{24}, \frac{11}{24}, \frac{12}{24}, \frac{13}{24}, \frac{14}{24}, \frac{15}{24}, \frac{16}{24}, \frac{17}{24}, \frac{18}{24}, \frac{19}{24}, \frac{20}{24}
$$

- Natural numbers are a collection of all positive numbers starting from 1.
- Whole numbers are a collection of all natural numbers including 0 .
- Integers are the set of numbers comprising of all the natural numbers 1, 2, 3 ... and their negatives $-1,-2,-3 \ldots$, and the number 0 .
- Rational numbers are the numbers that can be written in $\frac{p}{q}$ form, where p and q are integers and $q \neq 0$

- Closure property

- Whole numbers are closed under addition and multiplication. However, they are not closed under subtraction and division.
- Integers are also closed under addition, subtraction and multiplication. However, they are not closed under division.
- Rational numbers:

1. Rational numbers are closed under addition.

Example: $\frac{2}{5}+\frac{3}{2}=\frac{19}{10}$ is a rational number.
2. Rational numbers are closed under subtraction.

Example: $\frac{1}{5}-\frac{3}{4}=\frac{-11}{20}$ is rational number.
3. Rational numbers are closed under multiplication.

Example: $\frac{2}{3} \times\left(\frac{-3}{5}\right)=\frac{-2}{5}$ is a rational number.
4. Rational numbers are not closed under division.

Example: $2 \div 0$ is not defined.

- Commutativity

- Whole numbers are commutative under addition and multiplication. However, they are not commutative under subtraction and division.
- Integers are commutative under addition and multiplication. However, they are not commutative under subtraction and division.
- Rational numbers:

1. Rational numbers are commutative under addition.

Example:
$\frac{2}{3}+\left(\frac{-3}{2}\right)=\left(\frac{-3}{2}\right)+\left(\frac{2}{3}\right)=\frac{-5}{6}$
2. Rational numbers are not commutative under subtraction.

Example:
$\left(\frac{3}{4}\right)-\left(\frac{5}{2}\right)=\left(\frac{-7}{4}\right)$ and $\frac{5}{2}-\frac{3}{4}=\frac{7}{4}$
$\therefore\left(\frac{3}{4}\right)-\left(\frac{5}{2}\right) \neq\left(\frac{5}{2}\right)-\left(\frac{3}{4}\right)$
3. Rational numbers are commutative under multiplication.

Example:
$\left(\frac{3}{4}\right) \times\left(\frac{-2}{6}\right)=\left(\frac{-2}{6}\right) \times\left(\frac{3}{4}\right)=\frac{-1}{4}$
4. Rational numbers are not commutative under division.
$2 \div 5 \neq 5 \div 2$

- Associativity
- Whole numbers are associative under addition and multiplication. However, they are not associative under subtraction and division.
- Integers are associative under addition and multiplication. However, they are not associative under subtraction and division.
- Rational numbers:

1. Rational numbers are associative under addition.

Example:
$\left(\frac{2}{3}+\frac{1}{3}\right)+1=\frac{2}{3}+\left(\frac{1}{3}+1\right)=2$
2. Rational numbers are not associative under subtraction.

Example:
$\left(\frac{2}{3}-\frac{1}{3}\right)-1=\frac{-2}{3}$
$\frac{2}{3}-\left(\frac{1}{3}-1\right)=\frac{4}{3}$
$\therefore\left(\frac{2}{3}-\frac{1}{3}\right)-1 \neq \frac{2}{3}-\left(\frac{1}{3}-1\right)$
3. Rational numbers are associative under multiplication.

Example:
$\left(\frac{2}{3} \times \frac{1}{3}\right) \times 1=\frac{2}{3} \times\left(\frac{1}{3} \times 1\right)=\frac{2}{9}$
4. Rational numbers are not associative under division.

Example:
$\left\{\frac{2}{7} \div\left(\frac{-1}{14}\right)\right\} \div \frac{3}{7}=\frac{-28}{3}$
$\frac{2}{7} \div\left\{\left(\frac{-1}{14}\right) \div \frac{3}{7}\right\}=\frac{-12}{7}$
$\therefore \frac{2}{7} \div\left\{\left(\frac{-1}{14}\right)\right\} \div \frac{3}{7} \neq \frac{2}{7} \div\left\{\left(\frac{-1}{14}\right) \div \frac{3}{7}\right\}$

- 0 is the additive identity of whole numbers, integers, and rational numbers.
$\therefore 0+a=a+0=a$, where a is a rational number
- 1 is the multiplicative identity of whole numbers, integers, and rational numbers.
$a \times 1=1 \times a=a$
- Rational numbers are distributive over addition and subtraction.
i.e., for any rational numbers a, b, and $c, a(b+c)=a b+a c, a(b-c)=a b-a c$
- Additive inverse of a number is the number, which when added to a number, gives 0 . It is also called the negative of a number.
$a+(-a)=(-a)+=0$
\therefore Additive inverse of ${ }^{\frac{2}{5}}$ is $\left(\frac{-2}{5}\right)$
- Reciprocal or multiplicative inverse of a number is the number, which when multiplied by the number, gives 1. Therefore, the reciprocal of a is $\frac{1}{a} . \quad\left[a \times \frac{1}{a}=1\right]$
\therefore Reciprocal of $\frac{-2}{3}$ is $\frac{-3}{2}$

