8th Standard-Maths

Understanding Quadrilaterals

- Polygons
- A simple closed curve made up of line segments only is called a polygon.
- Polygons can be classified according to their number of sides (or vertices).

Number of side/vertices	Classification
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
.	.
.	.
n	$n-$ gon

- The line segment connecting two non-consecutive vertices of a polygon are called diagonals.

For polygon $A B C D, A C$ and $B D$ are diagonals and for polygon $P Q R S, Q S$ and $P R$ are diagonals.

- The polygon, none of whose diagonals lie in its exterior, is called a convex polygon. In the given figure, ABCD is a convex polygon.

The polygon whose atleast one of the diagonals lie in its exterior is called a concave polygon. PQRS is a concave polygon.

- A polygon, which is both equiangular and equilateral, is called a regular polygon. Otherwise, it is an irregular polygon.

Example: Square is a regular polygon but rectangle is an irregular polygon.

- The sum of all the interior angles of an n-sided polygon is given by, $(n-2) \times 180^{\circ}$.

Example: What is the number of sides of a polygon whose sum of all interior angles is 720° ?

Solution: It is known that,
$(n-2) 180^{\circ}=720^{\circ}$
$\Rightarrow(n-2)=\frac{720^{\circ}}{180^{\circ}}=4$
$\Rightarrow n=6$

Thus, the required polygon is six-sided.

- The sum of measures of all exterior angles of a polygon is 360°.

For example, in the quadrilateral given below,
$\angle \mathrm{XAB}+\angle \mathrm{YBC}+\angle \mathrm{ZCD}+\angle \mathrm{WDA}=360^{\circ}$

- Trapezium

- A quadrilateral with a pair of parallel sides is called a trapezium.
- A trapezium whose non-parallel sides are equal is called an isosceles trapezium.

Isosceles trapezium

- Kite

A kite is a quadrilateral with exactly two distinct consecutive pairs of sides of equal lengths.

$A B C D$ is a kite with $A B=A D$ and $B C=C D$.

- Parallelogram

1. A parallelogram is a quadrilateral whose opposite sides are parallel and equal.
2. Its opposite angles are of equal measure.
3. The adjacent angles in a parallelogram are supplementary.
4. The diagonals of a parallelogram are not equal. However, they bisect each other.

- Opposite sides in a parallelogram are equal. Conversely, in a quadrilateral, if each pair of opposite sides are equal then the quadrilateral is a parallelogram.

Example:

In the following figure, ABCD is a parallelogram. Find the length of each sides.

Solution: We know, the opposite sides of a parallelogram are equal in length.
Therefore, $\mathrm{AB}=\mathrm{CD}$
$3 x=2 x+5$
$\Rightarrow 3 x-2 x=5$
$\therefore x=5$
Thus, $\mathrm{AB}=3 x=3 \times 5=15 \mathrm{~cm}$
BC $=4 x-3=4 \times 5-3=17 \mathrm{~cm}$
$\mathrm{CD}=2 x+5=2 \times 5+5=15 \mathrm{~cm}$
Also, $\mathrm{BC}=\mathrm{AD}$ [opposite sides of parallelogram]
$\therefore \mathrm{AD}=17 \mathrm{~cm}$

- In a parallelogram, opposite angles are equal. Conversely in a quadrilateral, if pair of opposite angles is equal, then the quadrilateral is a parallelogram.

If in the quadrilateral $P Q R S, \angle P=\angle R$ and $\angle Q=\angle S$ as shown in the above figure, then the quadrilateral is a parallelogram.

- The diagonals of a parallelogram bisect each other. Conversely, if the diagonals of a quadrilateral bisect each other, then it is a parallelogram.
Suppose $A B C D$ is a quadrilateral. The diagonals of the quadrilateral intersect at 0 such that $A O=O C$ and $D O=O B$

Therefore, $A B C D$ is a parallelogram.
Example: In the given figure, ABCD is a parallelogram. If $\mathrm{OD}=(3 x-2) \mathrm{cm}$ and $\mathrm{OB}=(2 x+3)$ cm , then find x and length of diagonal BD.

Solution: We know that the diagonals of a parallelogram bisect each other.
\therefore OD = OB
$\Rightarrow 3 x-2=2 x+3$
$\Rightarrow 3 x-2 x=3+2$
$\Rightarrow x=5$
Thus, the value of x is 5 .
Length of $\mathrm{BD}=\mathrm{OD}+\mathrm{OB}$
$=(3 x-2)+(2 x+3)$
$=(3 \times 5-2)+(2 \times 5+3)$
$=13+13$
$=26 \mathrm{~cm}$

- Rhombus: A quadrilateral whose opposite sides are parallel and all sides are of equal lengths.
- Its opposite angles are of equal measure.
- Its diagonals are perpendicular bisectors of one another.

In rhombus $\mathrm{ABCD}, \mathrm{OA}=\mathrm{OC}$ and $\mathrm{OB}=\mathrm{OD}$. Also, $\mathrm{AC} \perp \mathrm{BD}$.

- A quadrilateral is a rhombus if its diagonals bisect each other at right angles.
- Rectangle: A parallelogram whose each interior angle is a right angle.
- Its diagonals are equal and bisect each other.

In rectangle $\mathrm{ABCD}, \mathrm{AC}=\mathrm{BD}$. Also, $\mathrm{OA}=\mathrm{OC}$ and $\mathrm{OB}=\mathrm{OD}$

- A parallelogram is a rectangle if its diagonals are equal.
- Square: A square is a rectangle with equal sides.
- Its diagonals are equal and are perpendicular bisectors of each other.

In square $\mathrm{ABCD}, \mathrm{AC}=\mathrm{BD}$ and $\mathrm{AC} \perp \mathrm{BD}$. Also, $\mathrm{OA}=\mathrm{OC}$ and $\mathrm{OB}=\overline{\mathrm{OD}}$.

- A quadrilateral is a square, if its diagonals are equal and bisect each other at right angles.

