रोल नं.
Roll No.

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।
Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 19 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 19 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 26 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक) PHYSICS (Theory)

सामान्य निर्देश:

(i) सभी प्रश्न अनिवार्य हैं । इस प्रश्न-पत्र में कुल 26 प्रश्न हैं ।
(ii) इस प्रश्न-पत्र के पाँच भाग हैं : खण्ड अ, खण्ड ब, खण्ड स, खण्ड द और खण्ड य ।
(iii) खण्ड अ में पाँच प्रश्न हैं, प्रत्येक का एक अंक है । खण्ड ब में पाँच प्रश्न हैं, प्रत्येक के दो अंक हैं । खण्ड स में बारह प्रश्न हैं, प्रत्येक के तीन अंक हैं । खण्ड द में चार अंक का एक मूल्याधारित प्रश्न है और खण्ड य में तीन प्रश्न हैं, प्रत्येक के पाँच अंक हैं।
(iv) प्रश्न-पत्न में समग्र पर कोई विकल्प नहीं है । तथापि, दो अंकों वाले एक प्रश्न में, तीन अंकों वाले एक प्रश्न में और पाँच अंकों वाले तीनों प्रश्नों में आन्तरिक चयन प्रदान किया गया है। ऐसे प्रश्नों में आपको दिए गए चयन में से केवल एक प्रश्न ही करना है।
(v) जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$
\begin{aligned}
& \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js} \\
& \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1} \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}
\end{aligned}
$$

इलेक्ट्रॉन का द्रव्यमान $=9.1 \times 10^{-31} \mathrm{~kg}$
न्यूट्रॉन का द्रव्यमान $=1.675 \times 10^{-27} \mathrm{~kg}$
प्रोटॉन का द्रव्यमान $=1.673 \times 10^{-27} \mathrm{~kg}$
आवोगाद्रो संख्या $=6.023 \times 10^{23}$ प्रति ग्राम मोल
बोल्ट्ज़मान नियतांक $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$

General Instructions :

(i) All questions are compulsory. There are $\mathbf{2 6}$ questions in all.
(ii) This question paper has five sections : Section A, Section B, Section C, Section D and Section E.
(iii) Section A contains five questions of one mark each, Section B contains five questions of two marks each, Section C contains twelve questions of three marks each, Section D contains one value based question of four marks and Section E contains three questions of five marks each.
(iv) There is no overall choice. However, an internal choice has been provided in one question of two marks, one question of three marks and all the three questions of five marks weightage. You have to attempt only one of the choices in such questions.
(v) You may use the following values of physical constants wherever necessary:

$$
\begin{aligned}
& \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \mathrm{~h}=6.63 \times 10^{-34} \mathrm{Js} \\
& \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1} \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}
\end{aligned}
$$

Mass of electron $=9 \cdot 1 \times 10^{-31} \mathrm{~kg}$
Mass of neutron $=1.675 \times 10^{-27} \mathrm{~kg}$
Mass of proton $=1.673 \times 10^{-27} \mathrm{~kg}$
Avogadro's number $=6.023 \times 10^{23}$ per gram mole
Boltzmann constant $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$

खण्ड अ

SECTION A

1. यदि बैंगनी रंग के आपतित प्रकाश को लाल प्रकाश से प्रतिस्थापित कर दिया जाए, तो काँच के प्रिज़्म का न्यूनतम विचलन कोण किस प्रकार परिवर्तित होगा ? कारण दीजिए ।
How does the angle of minimum deviation of a glass prism vary, if the incident violet light is replaced by red light ? Give reason.
2. उस परिघटना का नाम लिखिए जो विद्युत्-चुम्बकीय विकिरणों की क्वान्टम प्रकृति को दर्शाती है।
Name the phenomenon which shows the quantum nature of electromagnetic radiation.
3. जब तार में प्रवाहित धारा I में नियमित रूप से वृद्धि हो रही है, तो धातु के वलयों 1 और 2 में प्रेरित धाराओं की दिशा क्या है ?

What is the direction of induced currents in metal rings 1 and 2 when current I in the wire is increasing steadily?

4. x -अक्ष के अनुदिश संचरण करने वाली किसी विद्युत्-चुम्बकीय तरंग के विद्युत् और चुम्बकीय क्षेत्र सदिश किन दिशाओं में दोलन करते हैं ?

In which directions do the electric and magnetic field vectors oscillate in an electromagnetic wave propagating along the x -axis?
5. समान लम्बाई और समान त्रिज्या के निक्रोम और ताँबे के तार श्रेणीक्रम में संयोजित हैं । इनमें से धारा I प्रवाहित कराई गई है । कौन-सा तार अधिक तप्त होगा ? अपने उत्तर की पुष्टि कीजिए।
Nichrome and copper wires of same length and same radius are connected in series. Current I is passed through them. Which wire gets heated up more? Justify your answer.

खण्ड ब

SECTION B

6. (a) स्थायी चुम्बक, और (b) विद्युत्-चुम्बक बनाने के लिए उपयुक्त पदार्थ के दो गुण लिखिए । Write two properties of a material suitable for making (a) a permanent magnet, and (b) an electromagnet.
7. एकल झिरी विवर्तन और द्वि झिरी व्यतिकरण के लिए तीव्रता पैटर्न खींचिए । अतः इस प्रकार व्यतिकरण और विवर्तन पैटन्नों के बीच दो अन्तरों का उल्लेख कीजिए ।

अथवा

अध्रुवित प्रकाश किसी पोलेरॉइड P_{1} से गुज़रता है, 1 जब यह ध्रुवित प्रकाश पुंज किसी अन्य पोलेरॉइड P_{2} से गुज़रता है तथा यदि P_{2} का पास-अक्ष P_{1} के पास-अक्ष से θ कोण बनाता है, तब P_{2} से गुज़रने वाले ध्रुवित प्रकाश पुंज के लिए व्यंजक लिखिए । जब θ का मान 0 से 2π के बीच विचरण करता है, तो तीव्रता में विचरण को दर्शाने के लिए ग्राफ़ खींचिए ।
Draw the intensity pattern for single slit diffraction and double slit interference. Hence, state two differences between interference and diffraction patterns.

OR

Unpolarised light is passed through a polaroid P_{1}. When this polarised beam passes through another polaroid P_{2} and if the pass axis of P_{2} makes angle θ with the pass axis of P_{1}, then write the expression for the polarised beam passing through P_{2}. Draw a plot showing the variation of intensity when θ varies from 0 to 2π.
8. किसी बैटरी के सिरों से संयोजित किसी संधारित्र से स्थायी अवस्था में कोई धारा क्यों प्रवाहित नहीं होती ? यद्यपि उसी संधारित्र को आवेशित करते अथवा निरावेशित करते समय क्षणिक धारा प्रवाहित होती है। व्याख्या कीजिए।
Why does current in a steady state not flow in a capacitor connected across a battery ? However momentary current does flow during charging or discharging of the capacitor. Explain.
9. हाइड्रोजन परमाणु की न्यूनतम अवस्था ऊर्जा -13.6 eV है। यदि कोई इलेक्ट्रॉन ऊर्जा स्तर -1.51 eV से -3.4 eV पर संक्रमण करता है, तो उत्सर्जित स्पेक्ट्रमी रेखा की तरंगदैर्घ्य परिकलित कीजिए और हाइड्रोजन स्पेक्ट्रम की उस श्रेणी का नाम लिखिए जिससे यह सम्बन्धित है।

The ground state energy of hydrogen atom is -13.6 eV . If an electron makes a transition from an energy level -1.51 eV to $-3 \cdot 4 \mathrm{eV}$, calculate the wavelength of the spectral line emitted and name the series of hydrogen spectrum to which it belongs.
10. उस स्थिति को ज्ञात कीजिए जिनमें विद्युत् और चुम्बकीय क्षेत्र संदिशों की उपस्थिति में विभिन्न चालों से गतिमान आवेशित कणों का उपयोग किसी विशेष चाल से गतिमान आवेशित कणों के चयन के लिए किया जाता है ।
Find the condition under which the charged particles moving with different speeds in the presence of electric and magnetic field vectors can be used to select charged particles of a particular speed.

खण्ड स

SECTION C

11. (a) 589 nm तरंगदैर्र्य का कोई एकवर्णी प्रकाश वायु से किसी जल के पृष्ठ पर आपतित होता है । यदि जल का $\mu=1.33$ है, तो परावर्तित प्रकाश की तरंगदैर्घ्य, आवृत्ति और चाल ज्ञात कीजिए।
(b) 1.55 अपवर्तनांक के काँच से कोई उभयोत्तल लेंस बनाया गया है जिसके दोनों फलकों की वक्रता त्रिज्या समान हैं । यदि इस लेंस की फोकस दूरी 20 cm है, तो आवश्यक वक्रता त्रिज्या ज्ञात कीजिए।
(a) Monochromatic light of wavelength 589 nm is incident from air on a water surface. If μ for water is 1.33 , find the wavelength, frequency and speed of the refracted light.
(b) A double convex lens is made of a glass of refractive index 1.55 , with both faces of the same radius of curvature. Find the radius of curvature required, if the focal length is 20 cm .
12. कुण्डलियों के युगल के बीच अन्योन्य प्रेरकत्व की परिभाषा लिखिए । एक-दूसरे पर लिपटी हुई दो लम्बी समाक्ष परिनालिकाओं, जिनकी लम्बाइयाँ समान हैं, के अन्योन्य प्रेरकत्व के लिए व्यंजक व्युत्पन्न कीजिए ।

अथवा

किसी कुण्डली के स्वप्रेरकत्व की परिभाषा लिखिए । किसी विद्युत्-वाहक बल (emf) के स्रोत से संयोजित प्रेरक L में संचित ऊर्जा के लिए व्यंजक प्राप्त कीजिए।

Define mutual inductance between a pair of coils. Derive an expression for the mutual inductance of two long coaxial solenoids of same length wound one over the other.

OR

Define self-inductance of a coil. Obtain the expression for the energy stored in an inductor L connected across a source of emf.
13. (a) किसी मीटर सेतु का कार्यकारी सिद्धान्त लिखिए ।
(b) किसी मीटर सेतु में, आरेख में दर्शाए अनुसार, प्रतिरोध R और S के साथ दूरी l_{1} पर संतुलन बिन्दु प्राप्त होता है ।

प्रतिरोध S के पार्श्व में किसी अज्ञात प्रतिरोध X को संयोजित करने पर अब संतुलन बिन्दु दूरी l_{2} पर प्राप्त होता है । l_{1}, l_{2} और S के पदों में X के लिए सूत्र प्राप्त कीजिए।
(a) Write the principle of working of a metre bridge.
(b) In a metre bridge, the balance point is found at a distance l_{1} with resistances R and S as shown in the figure.

An unknown resistance X is now connected in parallel to the resistance S and the balance point is found at a distance l_{2}. Obtain a formula for X in terms of l_{1}, l_{2} and S .
14. (a) उभयनिष्ठ उत्सर्जक विन्यास में n - p-n ट्रांज़िस्टर प्रवर्धक का परिपथ आरेख खींचिए।
(b) इस प्रवर्धक की वोल्टता लब्धि के लिए व्यंजक व्युत्पन्न कीजिए और अतः यह दर्शाइए कि निर्गत वोल्टता की कला निवेश वोल्टता के विपरीत है।
(a) Draw the circuit diagram of an $n-p-n$ transistor amplifier in common emitter configuration.
(b) Derive an expression for voltage gain of the amplifier and hence show that the output voltage is in opposite phase with the input voltage.
15. (a) दिए गए प्रतिरोधक के सिरों पर अनुप्रुय्त विभवान्तर को परिवर्तित करने पर प्रति सेकण्ड उत्पन्न ऊष्मा 9 गुनी हो गई । अनुप्रुय्त विभवान्तर में किस गुणक द्वारा परिवर्तन किया गया ?
(b) दर्शाए गए आरेख में, किसी स्रोत के टर्मिनलों से एक ऐमीटर A और 4Ω का एक प्रतिरोधक संयोजित किया गया है । स्रोत का आंतरिक प्रतिरोध 2Ω और विद्युत्-वाहक बल (emf) 12 V है । वोल्टमीटर और ऐमीटर के पाठ्यांक परिकलित कीजिए ।

(a) The potential difference applied across a given resistor is altered so that the heat produced per second increases by a factor of 9 . By what factor does the applied potential difference change?
(b) In the figure shown, an ammeter A and a resistor of 4Ω are connected to the terminals of the source. The emf of the source is 12 V having an internal resistance of 2Ω. Calculate the voltmeter and ammeter readings.

16. किसी व्यापकीकृत संचार व्यवस्था का ब्लॉक आरेख खींचिए । निम्नलिखित में प्रत्येक के कार्य लिखिए :
(a) प्रेषित्र
(b) चैनल
(c) अभिग्राही

Draw a block diagram of a generalized communication system. Write the functions of each of the following :
(a) Transmitter
(b) Channel
(c) Receiver
17. (a) किसी संयुक्त सूक्ष्मदर्शी द्वारा प्रतिबिम्ब बनना दर्शाने के लिए किरण आरेख खींचिए।
(b) आपको निम्नलिखित तीन लेंस दिए गए हैं । किसी संयुक्त सूक्ष्मदर्शी की रचना के लिए आप इनमें से किन दो लेंसों का उपयोग नेत्रिका और अभिदृश्यक के रूप में करेंगे ?

लेंस	क्षमता (D)	द्वारक (सेमी)
L_{1}	3	8
$\mathrm{~L}_{2}$	6	1
$\mathrm{~L}_{3}$	10	1

(c) किसी सूक्ष्मदर्शी की विभेदन क्षमता को परिभाषित कीजिए तथा एक कारक लिखिए जिस पर यह निर्भर करता है।
(a) Draw a ray diagram for the formation of image by a compound microscope.
(b) You are given the following three lenses. Which two lenses will you use as an eyepiece and as an objective to construct a compound microscope?

Lenses	Power (D)	Aperture (cm)
L_{1}	3	8
$\mathrm{~L}_{2}$	6	1
$\mathrm{~L}_{3}$	10	1

(c) Define resolving power of a microscope and write one factor on which it depends.
18. निम्नलिखित ग्राफ़ किसी प्रकाश-सुग्राही धातु के लिए प्रकाश-विद्युत् धारा का विचरण दर्शाता है :

(a) क्षैतिज अक्ष पर चर X को पहचानिए ।
(b) क्षैतिज अक्ष पर बिन्दु A क्या निरूपित करता है ?
(c) समान तीव्रता और आपतित विकिरणों की तीन विभिन्न आवृत्तियों v_{1}, v_{2} और v_{3} $\left(v_{1}>v_{2}>v_{3}\right)$ के मानों के लिए इस ग्राफ़ को खींचिए ।
(d) समान आवृत्ति और आपतित विकिरणों की तीन विभिन्न तीव्रताओं $\mathrm{I}_{1}, \mathrm{I}_{2}$ और I_{3} $\left(\mathrm{I}_{1}>\mathrm{I}_{2}>\mathrm{I}_{3}\right)$ के मानों के लिए इस ग्राफ़ को खींचिए ।

The following graph shows the variation of photocurrent for a photosensitive metal :

(a) Identify the variable X on the horizontal axis.
(b) What does the point A on the horizontal axis represent?
(c) Draw this graph for three different values of frequencies of incident radiation v_{1}, v_{2} and $v_{3}\left(v_{1}>v_{2}>v_{3}\right)$ for same intensity.
(d) Draw this graph for three different values of intensities of incident radiation I_{1}, I_{2} and $I_{3}\left(I_{1}>I_{2}>I_{3}\right)$ having same frequency.
19. दो सर्वसम समान्तर पट्टिका संधारित्र A और B किसी V वोल्ट की बैटरी से संयोजित हैं और स्विच S बन्द है । स्विच को अब खोल दिया जाता है और इन संधारित्रों की पट्टिकाओं के रिक्त स्थान के बीच परावैद्युतांक K का कोई परावैद्युत भर दिया जाता है। इन दोनों संधारित्रों में परावैद्युत भरने से पूर्व और परावैद्युत भरने के पश्चात् संचित कुल स्थिर-वैद्युत ऊर्जा का अनुपात ज्ञात कीजिए।

Two identical parallel plate capacitors A and B are connected to a battery of V volts with the switch S closed. The switch is now opened and the free space between the plates of the capacitors is filled with a dielectric of dielectric constant K. Find the ratio of the total electrostatic energy stored in both capacitors before and after the introduction of the dielectric.

20. (a) आयाम मॉडुलन किस प्रकार किया जाता है ?
(b) किसी आयाम मॉडुलित तरंग के दो पार्श्व बैण्डों की आवृत्तियाँ क्रमश: 640 kHz और 660 kHz हैं । वाहक और मॉडुलक सिग्नल की आवृत्तियाँ ज्ञात कीजिए । आयाम मॉडुलन के लिए आवश्यक बैण्ड चौड़ाई क्या है ?
(a) How is amplitude modulation achieved?
(b) The frequencies of two side bands in an AM wave are 640 kHz and 660 kHz respectively. Find the frequencies of carrier and modulating signal. What is the bandwidth required for amplitude modulation?
21. (a) निम्नलिखित आरेख में ' S ' कोई अर्धचालक है । जब S को तप्त किया जा रहा है, तो ऐमीटर A के पाठ्यांक को नियत रखने के लिए आप R के मान को बढ़ाएँगे अथवा घटाएँगे ? अपने उत्तर के लिए कारण दीजिए ।

(b) किसी प्रकाश-विद्युत् डायोड का परिपथ आरेख खींचिए और इसकी क्रियाविधि की व्याख्या कीजिए । इसका $\mathrm{I}-\mathrm{V}$ अभिल़ाक्षणिक खींचिए ।
(a) In the following diagram ' S ' is a semiconductor. Would you increase or decrease the value of R to keep the reading of the ammeter A constant when S is heated ? Give reason for your answer.

(b) Draw the circuit diagram of a photodiode and explain its working. Draw its I - V characteristics.
22. (a) बायो - सावर्ट नियम लिखिए और इस नियम को सदिश रूप में व्यक्त कीजिए।
(b) त्रिज्या R की दो सर्वसम वृत्ताकार कुण्डलियाँ P और Q , जिनसे क्रमश: 1 A और $\sqrt{3} \mathrm{~A}$ धाराएँ प्रवाहित हो रही हैं, XY और YZ तलों में एक-दूसरे के लम्बवत् और संकेन्द्री रखी हैं । इन कुण्डलियों के केन्द्र पर नेट चुम्बकीय क्षेत्र का परिमाण और दिशा ज्ञात कीजिए।
(a) State Biot - Savart law and express this law in the vector form.
(b) Two identical circular coils, P and Q each of radius R, carrying currents 1 A and $\sqrt{3} \mathrm{~A}$ respectively, are placed concentrically and perpendicular to each other lying in the XY and YZ planes. Find the magnitude and direction of the net magneticffield at the centre of the coils.

खण्ड द

SECTION D

23. आशा की माताजी ने चेर्नोबिल में हुई दुर्घटना के विषय में एक लेख समाचार-पत्र में पढ़ा। वह इस लेख के विषय में कुछ अधिक नहीं समझ पायीं और इस लेख से सम्बन्धित कुछ प्रश्न आशा से पूछे । उसने जो कुछ कक्षा XII में भौतिकी में सीखा था, उसी के आधार पर अपनी माताजी के प्रश्नों के उत्तर देने का प्रयास किया ।
(a) चेर्नोबिल में जहाँ दुर्घटना हुई वहाँ पर क्या प्रतिष्ठापित था ? आपके विचार से इस दुर्घटना का क्या कारण था ?
(b) चेर्नोबिल पर प्रतिष्ठापन में ऊर्जा मुक्त होने की प्रक्रिया की व्याख्या कीजिए ।
(c) आपके विचार से आशा और उसकी माताजी द्वारा प्रदर्शित मूल्य क्या थे ?

Asha's mother read an article in the newspaper about a disaster that took place at Chernobyl. She could not understand much from the article and asked a few questions from Asha regarding the article. Asha tried to answer her mother's questions based on what she learnt in Class XII Physics.
(a) What was the installation at Chernobyl where the disaster took place? What, according to you, was the cause of this disaster ?
(b) Explain the process of release of energy in the installation at Chernobyl.
(c) What, according to you, were the values displayed by Asha and her mother ?

खण्ड य

SECTION E

24. किसी युक्ति ' X ' को किसी ac स्रोत $\mathrm{V}=\mathrm{V}_{0} \sin \omega \mathrm{t}$ से संयोजित किया गया है। निम्नलिखित ग्राफ़ में दिखाए गए एक चक्र में वोल्टता, धारा और शक्ति के विचरण को दर्शाया गया है :

(a) युक्ति ' X ' को पहचानिए ।
(b) इन वक्रों A, B और C में कौन वोल्टता, धारा और उपभुक्त शक्ति को परिपथ में निरूपित करते हैं ? अपने उत्तर की पुष्टि कीजिए ।
(c) ac स्रोत की आवृत्ति के साथ इसकी प्रतिबाधा किस प्रकार विचरण करती है ? ग्राफ़ द्वारा दर्शाइए ।
(d) परिपथ में धारा और ac वोल्टता से इसके कला-सम्बन्ध के लिए व्यंजक प्राप्त कीजिए।
(a) ac जनित्र का नामांकित आरेख खींचिए। चुम्बकीय क्षेत्र $\overrightarrow{\mathrm{B}}$ की उपस्थिति में घूर्णन करती हुई N फेरों की किसी कुण्डली, जिसमें प्रत्येक की अनुप्रस्थ-काट का क्षेत्रफल A है, में प्रेरित विद्युत्-वाहक बल (emf) के लिए व्यंजक प्राप्त कीजिए।
(b) पूर्व से पश्चिम की ओर विस्तारित 10 m लम्बी कोई क्षैतिज चालक छड़, $5.0 \mathrm{~ms}^{-1}$ की चाल से, $0.3 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$ के पृथ्वी के चुम्बकीय क्षेत्र के क्षैतिज घटक के समकोण पर गिर रही है । इस छड़ में प्रेरित विद्युत्-वाहक बल (emf) का तात्क्षणिक मान ज्ञात कीजिए।

A device ' X ' is connected to an ac source $\mathrm{V}=\mathrm{V}_{0} \sin \omega \mathrm{t}$. The variation of voltage, current and power in one cycle is shown in the following graph :

(a) Identify the device ' X '.
(b) Which of the curves A, B and C represent the voltage, current and the power consumed in the circuit? Justify your answer.
(c) How does its impedance vary with frequency of the ac source ? Show graphically.
(d) Obtain an expression for the current in the circuit and its phase relation with ac voltage.
(a) Draw a labelled diagram of an ac generator. Obtain the expression for the emf induced in the rotating coil of N turns each of cross-sectional area A, in the presence of a magnetic field \vec{B}.
(b) A horizontal conducting rod 10 m long extending from east to west is falling with a speed $5.0 \mathrm{~ms}^{-1}$ at right angles to the horizontal component of the Earth's magnetic field, $0.3 \times 10^{-4} \mathrm{~Wb} \mathrm{~m}^{-2}$. Find the instantaneous value of the emf induced in the rod.
25. (a) तरंगाग्र की परिभाषा लिखिए । हाइगेन्स सिद्धान्त का उपयोग करके अपवर्तन के नियम सत्यापित कीजिए।
(b) प्रकाश के प्रकीर्णन की प्रक्रिया द्वारा रैखिकतः ध्रुवित प्रकाश किस प्रकार प्राप्त किया जाता है ? जब काँच का अपवर्तनांक $=1.5$ है, तो वायु - काँच अंतरापृष्ठ के लिए ब्रूस्टर कोण ज्ञात कीजिए ।

अथवा
(a) सम्पर्क में रखे दो पतले उत्तल लेंसों के संयोजन द्वारा प्रतिबिम्ब बनना दर्शाने के लिए किरण आरेख खींचिए । लेंसों की फोकस दूरी के पदों में इस संयोजन की क्षमता के लिए व्यंजक प्राप्त कीजिए।
(b) वायु से काँच के समबाहु प्रिज़्म से गुज़रती हुई कोई प्रकाश किरण उस समय न्यूनतम विचलित होती है, जब आपतन कोण का मान प्रिज़्म कोण के मान का $\frac{3}{4}$ होता है । प्रिज़्म में प्रकाश की चाल परिकलित कीजिए।
(a) Define wavefront. Use Huygens' principle to verify the laws of refraction.
(b) How is linearly polarised light obtained by the process of scattering of light? Find the Brewster angle for air - glass interface, when the refractive index of glass $=1.5$.
(a) Draw a ray diagram to show the image formation by a combination of two thin convex lenses in contact. Obtain the expression for the power of this combination in terms of the focal lengths of the lenses.
(b) A ray of light passing from air through an equilateral glass prism undergoes minimum deviation when the angle of incidence is $\frac{3}{4}$ th of the angle of prism. Calculate the speed of light in the prism.
26. (a) लम्बाई ' $2 a$ ' के किसी द्विध्रुव के कारण उसकी अक्षीय रेखा पर द्विध्रुव के केन्द्र से r दूरी पर स्थित किसी बिन्दु पर विद्युत्-क्षेत्र E के लिए व्यंजक व्युत्पन्न कीजिए ।
(b) $\mathrm{r} \gg \mathrm{a}$ के लिए E और r के बीच ग्राफ़ खींचिए ।
(c) यदि यह द्विध्रुव किसी एकसमान बाह्य विद्युत्-क्षेत्र E_{0} में स्थित हो, तो इस द्विध्रुव की स्थायी और अस्थायी साम्य की स्थिति का आरेखीय निरूपण कीजिए और दोनों ही प्रकरणों में इस द्विध्रुव पर कार्यरत बल-आघूर्णों के लिए व्यंजक लिखिए ।

अथवा
(a) गाउस प्रमेय का उपयोग करके पृष्ठीय आवेश घनत्व σ की किसी एकसमान आवेशित अनन्तः बड़ी समतल पतली शीट के कारण विद्युत्-क्षेत्र ज्ञात कीजिए ।
(b) किसी अनन्तः बड़ी समतल पतली शीट का एकसमान पृष्ठीय आवेश घनत्व $+\sigma$ है । किसी बिन्दु आवेश q को अनन्त से इस आवेशित समतल शीट के सम्मुख दूरी r पर स्थित किसी बिन्दु तक लाने में किए गए कार्य के लिए व्यंजक प्राप्त कीजिए ।
(a) Derive an expression for the electric field E due to a dipole of length ' $2 a$ ' at a point distant r from the centre of the dipole on the axial line.
(b) Draw a graph of E versus r for $\mathrm{r} \gg \mathrm{a}$.
(c) If this dipole were kept in a uniform external electric field E_{0}, diagrammatically represent the position of the dipole in stable and unstable equilibrium and write the expressions for the torque acting on the dipole in both the cases.

OR

(a) Use Gauss's theorem to find the electric field due to a uniformly charged infinitely large plane thin sheet with surface charge density σ.
(b) An infinitely large thin plane sheet has a uniform surface charge density $+\sigma$. Obtain the expression for the amount of work done in bringing a point charge q from infinity to a point, distant r, in front of the charged plane sheet.

MARKING SCHEME

Q. No.	Expected Answer/ Value Points	Marks	Total Marks
Section A			
Q1	i. Decreases ii. $\quad n_{\text {Violet }}>n_{\text {Red }}$ (Also accept if the student writes $\lambda_{V}<\lambda_{R}$)	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
Q2	Photoelectric Effect (/Raman Effect/ Compton Effect)	1	1
Q3	Clockwise in loop 1 Anticlockwise in loop 2	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
Q4	\vec{E} along y- axis and \vec{B} along z-axis (Alternatively : \vec{E} along z -axis and \vec{B} along y-axis)	$1 / 2+1 / 2$	1
Q5	i. Nichrome ii. $\quad R_{\mathrm{Ni}}>\mathrm{R}_{\mathrm{Cu}}$ (or Resistivity $\mathrm{Ni}_{\mathrm{Ni}}>$ Resistivity Gu_{u})	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
SECTION B			
Q6	a) Two properties for making permanent $1 / 2+1 / 2$ magnet b) Two properties for making an $1 / 2+1 / 2$ electromagnet a) For making permanent magnet: (i) High retentivity (ii) High coercitivity (iii) High permeability (Any two)	$1 / 2+1 / 2$	

	b) For making electromagnet: (i) High permeability (ii) Low retentivity (iii) Low coercivity (Any two)	$1 / 2+1 / 2$	2
Q7	Interference pattern $1 / 2$ Diffraction pattern $1 / 2$ Two Differences $1 / 2+1 / 2$	$1 / 2$ $1 / 2$	

	Differences		$1 / 2+1 / 2$	
	Interference	Diffractio		
	All maxima have equal intensity	Maxima have dif (/rapidly decreas intensity		
	All fringes have equal width.	Different (/chang width.		
	$\begin{array}{\|l} \hline \begin{array}{l} \text { Superposition of two } \\ \text { wavefronts } \end{array} \\ \hline \end{array}$	Superposition of from the same		
		Any two)		2
		OR		
	Expression for intensit Plot of intensity variat	f polarized beam with angle		
	Intensity is $\frac{\mathrm{I}_{0}}{2} \cos ^{2} \theta$ (if Intensity is $\mathrm{I} \cos ^{2} \theta$ (if I	the intensity of u e intensity of pola	1	
			1	
		θ		2
Q8	a) Reason for b) Reason for	flow of current omentary current		
	In the steady state, the di conduction current, is zer constant .	cement current an $\|\vec{E}\|$, between the	1	
	During charging / discha hence the conduction cur plates, is changing with	g, the displaceme is non zero as $\|\vec{E}\|$,	1	

	$\begin{aligned} & \text { Energy difference }=3.4 \mathrm{eV}-1.51 \mathrm{eV}=1.89 \mathrm{eV}=3.024 \times 10^{-19} \mathrm{~J} \\ & \text { Energy }=\frac{h c}{\lambda}=3.024 \times 10^{-19} \mathrm{~J} \end{aligned}$ Wavelength $=6.57 \times 10^{-7} \mathrm{~m}$ Series is Balmer series	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
Q10	Condition i. For directions of $\vec{E}, \vec{B}, \vec{v}$ ii. For magnitudes of $\vec{E}, \vec{B}, \vec{v}$ (i) The velocity \vec{v}, of the charged particles, and the \vec{E} and \vec{B} vectors, should be mutually perpendicular. Also the forces on q, due to \vec{E} and \vec{B}, must be oppositely directed. (Also accept if the student draws a diagram to show the directions.) (ii) $\begin{aligned} & q E=q v B \\ & \text { or } v=\frac{E}{B} \end{aligned}$ [Alternatively, The student may write: Force due to electric field $=q \vec{E}$ Force due to magnetic field $=q(\vec{v} \times \vec{B})$ The required condition is $\begin{gathered} q \vec{E}=-q(\vec{v} \times \vec{B}) \\ {[\operatorname{or} \vec{E}=-(\vec{v} \times \vec{B})=(\vec{B} \times \vec{v})]} \end{gathered}$ (Note: Award 1 mark only if the student just writes: "The forces, on the charged particle, due to the electric and magnetic fields, must be equal and opposite to each other")]		

SECTION C			
Q11	a. Calculation of wavelength, frequency and speed $1 / 2+1 / 2+1 / 2$ b. Lens Maker's Formula Calculation of R a) $\lambda=\frac{589 \mathrm{~nm}}{1.33}=442.8 \mathrm{~nm}$ Frequency $v=\frac{3 \times 10^{8} \mathrm{~ms}^{-1}}{589 \mathrm{~nm}}=5.09 \times 10^{12} \mathrm{~Hz}$ Speed $v=\frac{3 \times 10^{8}}{1.33} \mathrm{~m} / \mathrm{s}=2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$	$1 / 2$ $11 / 2$ $1 / 2$ $11 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
Q12	Definition of mutual inductance Derivation of mutual inductance for two long solenoids 1 (i) Mutual inductance is numerically equal to the induced emf in the secondary coil when the current in the primary coil changes by unity. Alternatively: Mutual inductance is numerically equal to the magnetic flux linked with one coil/secondary coil when unit current flows through the other coil /primary coil.	1	

	$\begin{aligned} & \text { Voltmeter Reading } V=E-I r \\ & \qquad \begin{array}{r} =[12-(2 \times 2)] \mathrm{V}=8 \mathrm{~V} \\ \text { (Alternatively, } \mathrm{V}=\mathrm{iR}=2 \times 4 \mathrm{~V}=8 \mathrm{~V}) \end{array} \end{aligned}$	$1 / 2$ $1 / 2$	3
Q16	Diagram of generalized communication system Function of (a) transmitter (b) channel (c) receiver $1 / 2+1 / 2+1 / 2$ [Also accept the following diagram (a) Transmitter: A transmitter processes the incoming message signal so as to make it suitable for transmission through a channel and subsequent reception. (b) Channel: It carries the message signal from a transmitter to a receiver. (c) Receiver: A receiver extracts the desired message signals from the received signals at the channel output.	$11 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Q19} \& \begin{tabular}{lc}
Formula for energy stored \& \(1 / 2\) \\
Energy stored before \& 1 \\
Energy stored after \& 1 \\
Ratio \& \(1 / 2\) \\
\hline
\end{tabular} \& \& \\
\hline \& \begin{tabular}{l}
Energy stored \(=\frac{1}{2} C V^{2}\left(=\frac{1}{2} \frac{Q^{2}}{C}\right)\) \\
Net capacitance with switch S closed \(=C+C=2 C\)
\[
\therefore \text { Energy stored }=\frac{1}{2} \times 2 C \times V^{2}=C V^{2}
\] \\
After the switch S is opened, capacitance of each capacitor= \(K C\) \\
\(\therefore\) Energy stored in capacitor \(\mathrm{A}=\frac{1}{2} K C V^{2}\) \\
For capacitor B, \\
Energy stored \(=\frac{1}{2} \frac{Q^{2}}{K C}=\frac{1}{2} \frac{C^{2} V^{2}}{K C}=\frac{1}{2} \frac{C V^{2}}{K}\) \\
\(\therefore\) Total Energy stored \(=\frac{1}{2} K C V^{2}+\frac{1}{2} \frac{C V^{2}}{K}=\frac{1}{2} C V^{2}\left(K+\frac{1}{K}\right)\)
\[
\begin{aligned}
\&=\frac{1}{2} C V^{2}\left(\frac{K^{2}+1}{K}\right) \\
\& \therefore \text { Required ratio }=\frac{2 C V^{2} \cdot K}{C V^{2}\left(K^{2}+1\right)}=\frac{2 K}{\left(K^{2}+1\right)}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

1 \& 3

\hline Q20 \& | Formula for energy stored | $1 / 2$ |
| :--- | :---: |
| Energy stored before | 1 |
| Energy stored after | 1 |
| Ratio | $1 / 2$ |
| Energy stored $=\frac{1}{2} C V^{2}\left(=\frac{1}{2} \frac{Q^{2}}{C}\right)$ | |
| Net capacitance with switch S closed $=C+C=2 C$ | |
| \therefore Energy stored $=\frac{1}{2} \times 2 C \times V^{2}=C V^{2}$ | |
| After the switch S is opened, capacitance of each capacitor= $K C$ | | \& $1 / 2$

$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\(\therefore\) Energy stored in capacitor \(\mathrm{A}=\frac{1}{2} K C V^{2}\) \\
For capacitor B,
\[
\begin{aligned}
\& \text { Energy stored }=\frac{1}{2} \frac{Q^{2}}{K C}=\frac{1}{2} \frac{C V^{2}}{K C}=\frac{1}{2} \frac{C V^{2}}{K} \\
\& \begin{aligned}
\therefore \text { Total Energy stored } \& =\frac{1}{2} K C V^{2}+\frac{1}{2} \frac{C V^{2}}{K}=\frac{1}{2} C V^{2}\left(K+\frac{1}{K}\right) \\
\& =\frac{1}{2} C V^{2}\left(\frac{K^{2}+1}{K}\right) \\
\therefore \text { Required ratio } \& =\frac{2 C V^{2} . K}{C V^{2}\left(K^{2}+1\right)}=\frac{2 K}{\left(K^{2}+1\right)}
\end{aligned}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$

$1 / 2$ \& 3

\hline Q21 \& | a) Correct Choice of R Reason |
| :--- |
| b) Circuit Diagram Working |
| a) R would be increased. |
| Resistance of S (a semi conductor) decreases on heating. |
| b) Photodiode diagram |
| When the photodiode is illuminated with light (photons) (with energy $(h v)$ greater than the energy gap $\left(E_{g}\right)$ of the semiconductor), then electron-hole pairs are generated due to the | \& $1 / 2$

$1 / 2$

1 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
absorption of photons. Due to junction field, electrons and holes are separated before they recombine. Electrons are collected on n -side and holes are collected on p -side giving rise to an emf. \\
When an external load is connected, current flows. \\
V-I Characteristics of the diode
\end{tabular} \& \(1 / 2\)

$11 / 2$ \& 3

\hline Q22 \& | (a) Statement of Biot Savart law 1
 Expression in vector form $1 / 2$
 (b) Magnitude of magnetic field at centre 1
 Direction of magnetic field $1 / 2$ |
| :--- |
| (a) It states that magnetic field strength, $d \overrightarrow{\boldsymbol{B}}$, due to a current element, $I d \overrightarrow{\boldsymbol{l}}$, at a point, having a position vector \mathbf{r} relative to the current element, is found to depend (i) directly on the current element, (ii) inversely on the square of the distance $\|\mathbf{r}\|$, (iii) directly on the sine of angle between the current element and the position vector \mathbf{r}. |
| In vector notation, $\overrightarrow{d \boldsymbol{B}}=\frac{\mu_{0}}{4 \pi} \frac{I \overrightarrow{d \boldsymbol{l}} \times \overrightarrow{\boldsymbol{r}}}{\|\overrightarrow{\boldsymbol{r}}\|^{3}}$ |
| Alternatively, $\left(d \overrightarrow{\boldsymbol{B}}=\frac{\mu_{0}}{4 \pi} \frac{I \overrightarrow{d \boldsymbol{l}} \times \hat{r}}{\|\overrightarrow{\boldsymbol{r}}\|^{2}}\right)$ | \& 1

$1 / 2$ \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(b) \(B_{p}=\frac{\mu_{0} \times 1}{2 R}=\frac{\mu_{0}}{2 R} \quad(\) along \(\mathrm{z}-\) direction \()\)
\[
\begin{gathered}
B_{Q}=\frac{\mu_{0} \times \sqrt{3}}{2 R}=\frac{\mu_{0} \sqrt{3}}{2 R}(\text { along } \mathrm{x}-\text { direction }) \\
\therefore B=\sqrt{{B_{p}^{2}}^{2}+B_{Q}^{2}}=\frac{\mu_{0}}{R}
\end{gathered}
\] \\
This net magnetic field \(\mathbf{B}\), is inclined to the field \(\mathbf{B}_{\mathbf{p}}\), at an angle \(\Theta\), where
\[
\begin{gathered}
\tan \theta=\sqrt{3} \\
\left(/ \theta=\tan ^{-1} \sqrt{3}=60^{\circ}\right)
\end{gathered}
\] \\
(in XZ plane)
\end{tabular} \& \(1 / 2\)

$1 / 2$

$1 / 2$ \& 3

\hline \multicolumn{4}{|c|}{SECTION D}

\hline Q23 \& | a) Name of the installation, the cause of disaster |
| :--- |
| b) Energy release process |
| c) Values shown by Asha and mother |
| a) (i) Nuclear Power Plant:/'Set-up' for releasing Nuclear Energy/Energy Plant |
| (Also accept any other such term) |
| (ii)Leakage in the cooling unit/ Some defect in the set up. |
| b) Nuclear Fission/Nuclear Energy |
| Break up (/ Fission) of Uranium nucleus into fragments |
| c) Asha: Helpful, Considerate, Keen to Learn, Modest Mother: Curious, Sensitive, Eager to Learn, Has no airs (Any one such value in each case) | \& $1 / 2$

$1 / 2$
1
1
1 \& 4

\hline \multicolumn{4}{|c|}{SECTION E}

\hline Q24 \& | |
| :--- |
| a) The device X is a capacitor | \& 1/2 \&

\hline
\end{tabular}

	b) Curve $\mathrm{B} \longrightarrow$ voltage Curve $\mathrm{C} \longrightarrow$ current Curve $\mathrm{A} \longrightarrow$ power Reason: The current leads the voltage in phase, by $\pi / 2$, for a capacitor. c) $X_{c}=\frac{1}{\omega c} \quad\left(/ X_{C} \quad \propto \frac{1}{\omega}\right)$ Current leads the voltage, in phase, by $\pi / 2$ (Note : If the student identifies the device X as an Inductor but writes correct answers to parts (c) and (d) (in terms of an inductor), the student be given full marks for (only) these two parts) OR	$1 / 2$ $1 / 2$ $1 / 2$ 1	5

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
b) At minimum deviation
\[
r=A / 2=30^{\circ}
\] \\
We are given that
\[
\begin{aligned}
i \& =\frac{3}{4} A=45^{\circ} \\
\therefore \mu \& =\frac{\sin 45^{\circ}}{\sin 30^{\circ}}=\sqrt{2}
\end{aligned}
\] \\
\(\therefore\) Speed of light in the prism \(=\frac{c}{\sqrt{2}}\)
\[
\left(\cong 2.1 \times 10^{8} \mathrm{~ms}^{-1}\right)
\] \\
[Award \(1 / 2\) mark if the student writes the formula:
\[
\mu=\frac{\sin \left(A+D_{m}\right) / 2}{\sin (A / 2)}
\] \\
but does not do any calculations.]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$ \& 5

\hline Q26 \& | (a) Derivation of E along the axial line of dipole |
| :--- |
| (b) Graph between E vs r |
| (c) (i) Diagrams for stable and unstable $1 / 2+1 / 2$ equilibrium of dipole |
| (ii) Torque on the dipole in the two cases $1 / 2+1 / 2$ |
| (a) |
| Electric field at P due to charge $(+q)=E_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r-a)^{2}}$ |
| Electric field at P due to charge $(-q)=E_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r+a)^{2}}$ |
| Net electric Field at $\mathrm{P}=E_{1}-E_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r-a)^{2}}-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{(r+a)^{2}}$ $=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 p r}{\left(r^{2}-a^{2}\right)^{2}} \quad(p=q \cdot 2 a)$ |
| Its direction is parallel to \vec{p}. | \& $1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$ \&

\hline
\end{tabular}

