रोल नं.
Roll No.

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।
Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 12 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें ।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं ।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें ।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे क
- Please check that this question paper contains 12 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains $\mathbf{3 0}$ questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)
 CHEMISTRY (Theory)

QB365-Question Bank Software

सामान्य निर्देश:
(i) सभी प्रश्न अनिवार्य हैं ।
(ii) प्रश्न-संख्या 1 से 8 तक अति लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 1 अंक है।
(iii) प्रश्न-संख्या 9 से 18 तक लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 2 अंक हैं ।
(iv) प्रश्न-संख्या 19 से 27 तक भी लघु-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 3 अंक हैं।
(v) प्रश्न-संख्या 28 से 30 तक दीर्घ-उत्तरीय प्रश्न हैं । प्रत्येक प्रश्न के लिए 5 अंक हैं।
(vi) आवश्यकतनुसार लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमति नहीं है।

General Instructions:

(i) All questions are compulsory.
(ii) Questions number 1 to 8 are very short-answer questions and carry 1 mark each.
(iii) Questions number 9 to 18 are short-answer questions and carry 2 marks each.
(iv) Questions number 19 to 27 are also short-answer questions and carry 3 marks each.
(v) Questions number 28 to $\mathbf{3 0}$ are long-answer questions and carry 5 marks each.
(vi) Use Log Tables, if necessary. Use of calculators is not allowed.

1. 'प्रतिलोहचुम्बकत्व' का क्या तात्पर्य है ?

What is meant by 'antiferromagnetism'?
2. अपोहन (डायलिसिस) को परिभाषित कीजिए ।

Define dialysis.
3. इसके अयस्क से ऐलुलमिनियम निष्कर्षण धातुकर्म मे CO_{2} की क्या भूमिका होती है ?

What is the role of CO_{2} in the extractive metallurgy of aluminium from its ore?
4. नाइट्रोजन गैस बहुत निष्क्रिय क्यों है ?

Why is nitrogen gas very unreactive?
5. प्रोपैन-2-ओन और पेंटैन-3-ओन के बीच अंतर करने के लिए एक जाँच लिखिए ।

Give a test to distinguish between propan-2-one and pentan-3-one.
6. उस ऐल्कोहॉल का नाम लिखिए जिसका निम्न एस्टर को बनाने में उपयोग किया जाता है :

Name the alcohol that is used to make the following ester :

7. 'पेप्टाइड लिंकेज' को परिभाषित कीजिए ।

Define a 'Peptide linkage'.
8. 'होमोपॉलीमर', 'कोपॉलीमर' से कैसे भिन्न होता है ?

How does a homopolymer differ from a copolymer?
9. एक विद्युत्-अपघट्य के विलयन के लिए चालकता और मोलर चालकता को परिभाषित कीजिए । तापमान में परिवर्तन के साथ उनके विचरण की चर्चा कीजिए ।

Define conductivity and molar conductivity for the solution of an electrolyte. Discuss their variation with change in temperature.

QB365-Question Bank Software

10. निम्नलिखित प्रत्येक को परिभाषित कीजिए :
(i) विशिष्ट अभिक्रिया दर
(ii) अभिक्रिया की सक्रियण ऊर्जा

Define each of the following :
(i) Specific rate of a reaction
(ii) Energy of activation of a reaction
11. निम्न प्रक्रमों में प्रत्येक के आधारमूल सिद्धान्त का वर्णन कीजिए :
(i) NaCN विलयन के साथ सिल्वर अयस्क को निक्षालित करने से प्राप्त हुए विलयन से सिल्वर की पुनःप्राप्ति
(ii) एक अशुद्ध धातु का विद्युत्-अपघटनी परिष्करण

अथवा

निम्न प्रक्रमों में प्रत्येक के पीछे जो कार्यकारी सिद्धान्त है उसका वर्णन कीजिए :
(i) धातु का ज़ोन (मंडल) परिष्करण
(ii) धातुओं की वाष्प प्रावस्था का परिष्करण

Describe the underlying principle of each of the following processes :
(i) Recovery of silver from the solution obtained by leaching silver ore with a solution of NaCN
(ii) Electrolytic refining of a crude metal

OR

Describe the principle involved in each of the following processes :
(i) Zone refining of a metal
(ii) Vapour phase refining of metals
12. निम्न रासायनिक अभिक्रिया समीकरणों को पूर्ण करके लिखिए :
(i) $\mathrm{KClO}_{3} \xrightarrow[\mathrm{MnO}_{2}]{\text { ऊष्मा }}$
(ii) $\mathrm{XeF}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow$

Complete the following chemical reaction equations:
(i)

$$
\mathrm{KClO}_{3} \xrightarrow[\mathrm{MnO}_{2}]{\text { Heat }}
$$

(ii) $\mathrm{XeF}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow$

QB365-Question Bank Software

13. निम्नलिखित के कारण लिखिए :
(i) कॉपर(I) आयन का जलीय विलयनों में होना नहीं जाना जाता है ।
(ii) O_{2} और F_{2} दोनों ही संक्रमण धातुओं की उच्च उपचयन अवस्थाओं को स्थिरता देती हैं परन्तु उच्च उपचयन अवस्था को स्थिरता देने में ऑक्सीजन की क्षमता फ्लुओरीन से अधिक होती है।

Assign reasons for the following :
(i) Copper(I) ion is not known to exist in aqueous solutions.
(ii) Both O_{2} and F_{2} stabilize high oxidation states of transition metals but the ability of oxygen to do so exceeds that of fluorine.
14. निम्न आर्गैनिक हैलोजन यौगिकों की संरचनाएँ लिखिए :
(i) 4-टर्ट-ब्यूटिल-3-आयडोहेप्टेन
(ii) 4-ब्रोमो-3-मेथिलपेंट-2-ईन

Write the structures of the following organic halogen compounds:
(i) 4-tert-Butyl-3-iodoheptane
(ii) 4-Bromo-3-methylpent-2-ene
15. (i) निम्न यौगिकों को क्षारक सामर्थ्य के बढ़ते क्रम में व्यवस्थित कीजिए :
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ और $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(ii) निम्न यौगिकों को pK_{b} मानों के घटते क्रम में व्यवस्थित कीजिए :
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCH}_{3},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ और $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(i) Arrange the following compounds in an increasing order of basic strength :
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ and $\mathrm{CH}_{3} \mathrm{NH}_{2}$
(ii) Arrange the following compounds in a decreasing order of pK_{b} values:
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCH}_{3},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
16. उभयकारणी नाभिकस्नेही (ऐम्बिडेण्ट न्यूक्लिओफाइल्स) क्या होते हैं ? एक उदाहरण के साथ स्पष्ट कीजिए।
What are ambident nucleophiles ? Explain with an example.
17. निम्न बहुलकों को प्राप्त करने के लिए जो एकलक उपयोग में लाए जाते हैं उनके नाम और उनकी संरचनाएँ लिखिए :
(i) बूना-S
(ii) नाइलॉन-6, 6

Write the names and structures of monomers used for getting the following polymers:
(i) Buna-S
(ii) Nylon-6, 6
18. यौगिकों के निम्न युग्मों के बीच अंतर करने के लिए एक-एक रासायनिक जाँच दीजिए :
(i) एथिलऐमीन और ऐनिलीन
(ii) ऐनिलीन और बेन्ज़िलऐमीन

Give a chemical test to distinguish between each of the following pairs of compounds :
(i) Ethylamine and Aniline
(ii) Aniline and Benzylamine
19. दो भिन्न-भिन्न तापमानों पर विघटन अभिक्रिया के लिए k के मान नीचे दिए गए हैं :
$\mathrm{k}_{1}=2.15 \times 10^{-8} \mathrm{~L} /(\mathrm{mol} . \mathrm{s}), 650 \mathrm{~K}$ पर
$\mathrm{k}_{2}=2.39 \times 10^{-7} \mathrm{~L} /(\mathrm{mol} . \mathrm{s}), 700 \mathrm{~K}$ पर
अभिक्रिया के लिए E_{a} का मान परिकलित कीजिए ।
$(\log 11 \cdot 11=1 \cdot 046)\left(\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
For a decomposition reaction, the values of k at two different temperatures are given below :
$\mathrm{k}_{1}=2.15 \times 10^{-8} \mathrm{~L} /(\mathrm{mol} . \mathrm{s})$ at 650 K
$\mathrm{k}_{2}=2.39 \times 10^{-7} \mathrm{~L} /(\mathrm{mol} . \mathrm{s})$ at 700 K
Calculate the value of E_{a} for the reaction.
$(\log 11 \cdot 11=1 \cdot 046)\left(\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$

QB365-Question Bank Software

20. 286.65 pm किनारे (सेल) के विस्तार के साथ आयरन का काय केन्द्रित घनीय यूनिट सेल है। आयरन का घनत्व $7.874 \mathrm{~g} \mathrm{~cm}^{-3}$ है । इस सूचना का उपयोग करते हुए ऐवोगैद्रो संख्या का परिकलन कीजिए । (Fe का ग्राम परमाण्विक द्रव्यमान $=55.84 \mathrm{~g} \mathrm{~mol}^{-1}$)
Iron has a body centred cubic unit cell with a cell dimension of 286.65 pm . The density of iron is $7.874 \mathrm{~g} \mathrm{~cm}^{-3}$. Use this information to calculate Avogadro's number (Gram atomic mass of $\mathrm{Fe}=55 \cdot 84 \mathrm{~g} \mathrm{~mol}^{-1}$).
21. $25^{\circ} \mathrm{C}$ पर 0.01 M NaCl विलयन का प्रतिरोध 200Ω है । प्रयुक्त चालकता-सेल का सेल स्थिरांक एक है । विलयन की मोलर चालकता परिकलित कीजिए ।

The resistance of 0.01 M NaCl solution at $25^{\circ} \mathrm{C}$ is 200Ω. The cell constant of the conductivity cell used is unity. Calculate the molar conductivity of the solution.
22. उपयुक्त उदाहरण देते हुए व्याख्या कीजिए कि अधिशोषण के दो प्रकार के प्रक्रम (भौतिक व रासायनिक अधिशोषण) किस प्रकार तापमान, अधिशोषक के पृष्ठीय क्षेत्रफल और सक्रियण ऊर्जा के मान से प्रभावित होते हैं ?

अथवा

स्पष्ट रूप से व्याख्या कीजिए कि अधिशोषण की परिघटना निम्न में कैसे अनुत्रयोग पाती है :
(i) एक बर्तन में निर्वात पैदा करने में
(ii) विषमांगी उत्प्रेरण में
(iii) धातुकर्म में फेन प्लवन प्रक्रम में

Giving appropriate examples, explain how the two types of processes of adsorption (physisorption and chemisorption) are influenced by the prevailing temperature, the surface area of adsorbent and the activation energy of the process ?

OR

Explain clearly how the phenomenon of adsorption finds application in
(i) production of vacuum in a vessel
(ii) heterogeneous catalysis
(iii) froth floatation process in metallurgy

QB365-Question Bank Software

23. निम्नलिखित के कारण बतलाइए :
(i) $\mathrm{Cu}(\mathrm{I})$ आयन का जलीय विलयनों में होना नहीं जाना जाता है ।
(ii) क्षार (ऐल्कैली) धातुओं की अपेक्षा संक्रमण धातुएँ अधिक कठोर होती हैं ।
(iii) तत्त्व प्रति तत्त्व ऐक्टिनोयड संकुचन, लैन्थैनोयड संकुचन से अपेक्षाकृत अधिक होता है।

Assign reasons for the following :
(i) $\quad \mathrm{Cu}(\mathrm{I})$ ion is not known to exist in aqueous solutions.
(ii) Transition metals are much harder than the alkali metals.
(iii) From element to element actinoid contraction is greater than the lanthanoid contraction.
24. निम्नलिखित प्रत्येक अवस्था में एक उदाहरण के साथ उपसहसंयोजन यौगिकों की भूमिका की संक्षेप में चर्चा कीजिए :
(i) धातुओं के निष्कर्षण धातुकर्म में
(ii) विश्लेषणात्मक रसायन में

Giving one example in each of the following cases, discuss briefly the role of coordination compounds in
(i) extraction metallurgy of metals
(ii) analytical chemistry
25. आवश्यक और अनावश्यक ऐमीनो अम्ल क्या होते हैं ? प्रत्येक के दो-दो उदाहरण दीजिए ।

What are essential and non-essential amino acids? Give two examples of each.
26. प्रत्येक के लिए एक-एक उदाहरण के साथ निम्न की व्याख्या कीजिए :
(i) कोल्बे की अभिक्रिया
(ii) रीमर-टीमान अभिक्रिया
(iii) विलियम्सन ईथर संश्लेषण 3

Explain the following with an example for each :
(i) Kolbe's reaction
(ii) Reimer-Tiemann reaction
(iii) Williamson ether synthesis
7. Qिम्नित प्रों
27. निम्नलिखित प्रश्नों के उत्तर लिखिए :
(i) डॉक्टर के परामर्श के बिना औषधियों को क्यों नहीं लेना चाहिए ?
(ii) 'ब्रॉड स्पेक्ट्रम ऐन्टिबायोटिक्स' का क्या तात्पर्य होता है ?
(iii) डिटाल (Dettol) के मुख्य घटक क्या हैं ?

Answer the following questions:
(i) Why should medicines not be taken without consulting a doctor?
(ii) What is meant by 'broad spectrum antibiotics'?
(iii) What are the main constituents of Dettol?
28. (a) निम्न यौगिकों के IUPAC नाम लिखिए :
(i) $\quad \mathrm{CH}_{3} \mathrm{CO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
(ii) $\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$
(b) निम्न रूपांतरणों का वर्णन आप दो चरणों से अधिक नहीं में कैसे करेंगे :
(i) एथैनॉल को 3 -हाइड्रॉक्सीब्यूटैनैल में
(ii) बेन्ज़ोइक अम्ल को m-नाइट्रोबेन्ज़िल ऐल्कोहॉल में
(iii) प्रोपैनोन को प्रोपीन में

अथवा
(a) निम्न यौगिकों की संरचनाएँ आरेखित कीजिए :
(i) 4-क्लोरोपेंटैन-2-ओन
(ii) p -नाइट्रोप्रोपिओफीनोन
(b) यौगिकों के निम्न युग्मों में भिन्नता करने के लिए जाँचों को दीजिए :
(i) एथैनैल और प्रोपैनैल में
(ii) फीनॉल और बेन्ज़ोइक अम्ल में
(iii) बेन्ज़ैल्डिहाइड और ऐसीटोफीनोन में
(a) Write the IUPAC names of the following compounds :
(i) $\mathrm{CH}_{3} \mathrm{CO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
(ii) $\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$
(b) Describe the following conversions in not more than two steps :
(i) Ethanol to 3-Hydroxybutanal
(ii) Benzoic acid to m-Nitrobenzyl alcohol
(iii) Propanone to Propene

OR

(a) Draw the structures of the following compounds:
(i) 4-Chloropentan-2-one
(ii) p -Nitropropiophenone
(b) Give tests to distinguish between the following pairs of compounds :
(i) Ethanal and Propanal
(ii) Phenol and Benzoic acid
(iii) Benzaldehyde and Acetophenone
29. (a) वैण्ट हॉफ कारक क्या होता है ? इसके मान किस प्रकार के होते हैं यदि विलयन के बनने में विलेय के अणु
(i) विघटित होते हैं ?
(ii) संगठित होते हैं ?
(b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ और NaHCO_{3} के 1 g मिश्रण में दोनों पदार्थों की समान मोलर मात्राएँ मिली हुई हैं । इस मिश्रण के साथ पूर्ण रूप से अभिक्रिया करने के लिए 0.1 M HCl विलयन के कितने mL की आवश्यकता होगी ?
(मोलर द्रव्यमान : $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g}, \mathrm{NaHCO}_{3}=84 \mathrm{~g}$)
अथवा
(a) परिभाषा लिखिए :
(i) मोल प्रभांश
(ii) मोललता
(iii) राउल्ट का नियम
 कीजिए जो 0.100 kg जल में ग्लॉबर लवण (सज्जी), $\mathrm{Na}_{2} \mathrm{SO}_{4} .10 \mathrm{H}_{2} \mathrm{O}$ के 6.00 g को घुलाने से बनाया गया हो ।
(जल के लिए $\mathrm{K}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, परमाणु द्रव्यमान : $\mathrm{Na}=23, \mathrm{~S}=32$, $\mathrm{O}=16, \mathrm{H}=1$)
(a) What is van't Hoff factor? What types of values can it have if in forming the solution the solute molecules undergo
(i) Dissociation?
(ii) Association?
(b) How many mL of a $0 \cdot 1 \mathrm{M} \mathrm{HCl}$ solution are required to react completely with 1 g of a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} containing equimolar amounts of both ?
(Molar mass : $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g}, \mathrm{NaHCO}_{3}=84 \mathrm{~g}$)

OR

(a) Define
(i) Mole fraction
(ii) Molality
(iii) Raoult's law
(b) Assuming complete dissociation, calculate the expected freezing point of a solution prepared by dissolving 6.00 g of Glauber's salt, $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ in 0.100 kg of water.
$\left(\mathrm{K}_{\mathrm{f}}\right.$ for water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Atomic masses $: \mathrm{Na}=23, \mathrm{~S}=32$, $\mathrm{O}=16, \mathrm{H}=1$)
30. (a) उस उत्कृष्ट गैस स्पीशीज का सूत्र लिखिए और उसकी संरचना का वर्णन कीजिए जो निम्न के साथ समसंरचनात्मक हो :
(i) $\mathrm{IBr}_{2}{ }^{-}$
(ii) $\mathrm{BrO}_{3}{ }^{-}$
(b) निम्न के कारण लिखिए :
(i) SF_{6} गतिकतः निष्क्रिय होता है ।
(ii) NF_{3} एक ऊष्माक्षेपी यौगिक है जबकि NCl_{3} ऐसा नहीं है ।
(iii) HF की अपेक्षा HCl प्रबलतर अम्ल है यद्यपि फ्लुओरीन क्लोरीन की अपेक्षा अधिक विद्युत्-ऋणात्मक है ।
(a) बड़े पैमाने पर अम.6.नया कैस बनाइ जाती है? उस प्रक्रम का नाम दीजिए और इस प्रक्रम द्वारा अमोनिया के उत्पादन के लिए अनुकूलतम परिस्थितियों का उल्लेख कीजिए।
(b) निम्न के लिए कारण लिखिए :
(i) $\mathrm{H}_{2} \mathrm{O}$ की अपेक्षा $\mathrm{H}_{2} \mathrm{~S}$ अधिक अम्लीय है ।
(ii) PH_{3} की अपेक्षा NH_{3} अधिक क्षारीय है ।
(iii) ऑक्सीजन की अपेक्षा सल्फर में शृंखलन की प्रवृत्ति अधिक है ।
(a) Write the formula and describe the structure of a noble gas species which is isostructural with
(i) $\mathrm{IBr}_{2}{ }^{-}$
(ii) $\mathrm{BrO}_{3}{ }^{-}$
(b) Assign reasons for the following :
(i) SF_{6} is kinetically inert.
(ii) NF_{3} is an exothermic compound whereas NCl_{3} is not.
(iii) HCl is a stronger acid than HF though fluorine is more electronegative than chlorine.

OR

(a) How is ammonia prepared on a large scale? Name the process and mention the optimum conditions for the production of ammonia by this process.
(b) Assign reasons for the following :
(i) $\mathrm{H}_{2} \mathrm{~S}$ is more acidic than $\mathrm{H}_{2} \mathrm{O}$.
(ii) NH_{3} is more basic than PH_{3}.
(iii) Sulphur has a greater tendency for catenation than oxygen.

QB365-Question Bank Software

CHEMISTRY MARKING SCHEME
 OUTSIDE DELHI -2014
 SET -56/2

Qn	Answers	Marks
1	Domains are oppositely oriented and cancel out each other's magnetic moment.	1
2	It is a process of removing dissolved substance from a colloidal solution by means of diffusion through a suitable membrane.	1
3	The aluminate in solution is neutralized by CO_{2} gas and hydrated $\mathrm{Al}_{2} \mathrm{O}_{3}$ is precipitated	1
4	Because of $\mathrm{N} \equiv \mathrm{N}$ triple bond / high bond dissociation enthalpy.	1
5	On heating with $\mathrm{NaOH}+\mathrm{I}_{2}$, propan - 2-one forms yellow ppt of iodoform whereas pentan-3-one does not.	1
6	2-propanol / propan-2-ol	1
7	The linkage between two amino acids i.e. - CO-NH - is known as peptide linkage.	1
8	Homopolymer is fomed by repeating the same monomer unit whereas copolymer is formed by repeating two different monomers.	1
9	Conductivity of solution is inverse of resistivity ${ }^{\mathrm{k}}=\mathrm{G} 1 / \mathrm{A}$ Limiting molar conductivity - when concentration approches zero the conductivity is known as limiting molar conductivity	1
10	a) Rate of change in concentration of reactants / products per unit time under specified conditions. b) The energy required to form an intermediate, called as activated complex, is known as energy of activation.	1
11	a) Ag with dil NaCN forms a complex i.e. $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$which dissolves and is subsequently reduced by Zn to give sliver b) Electrolytic refining - in this method impure metal is made to act as an anode and the pure metal as cathode in a suitable electrolytic bath containing soluble salt of the same matel Pure metal is deposited at cathode.	1 1
	OR	

QB365-Question Bank Software

\begin{tabular}{|c|c|c|}
\hline 11 \& \begin{tabular}{l}
a) It is based on the principle that the impurities are more soluble in the melt than in the solid state of the metal. \\
b) In this, the metal is converted into its volatile compound which is then decomposed to give pure metal.
\end{tabular} \& \\
\hline 12 \& \begin{tabular}{l}
a) \(2 \mathrm{KClO}_{3} \frac{\Delta}{\mathrm{MnO2}} 2 \mathrm{KCl}+3 \mathrm{O}_{2}\) \\
b) \(6 \mathrm{XeF}_{4}+12 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Xe}+2 \mathrm{XeO}_{3}+24 \mathrm{HF}+3 \mathrm{O}_{2}\) \\
(Note: balancing is not necessary)
\end{tabular} \& \\
\hline 13 \& \begin{tabular}{l}
a) Because it undergoes disproportionation reaction \(/ 2 \mathrm{Cu}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq})\) \\
b) Because of the ability of oxygen to form muliple bonds
\end{tabular} \& 1
1 \\
\hline 14 \& \begin{tabular}{l}
i) \(\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{I}) \mathrm{CH}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\) \\
ii) \(\quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}\)
\end{tabular} \& \\
\hline 15 \& \begin{tabular}{l}
a) \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}\) \\
b) \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCH}_{3}>\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}>\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}\)
\end{tabular} \& \\
\hline 16 \& \begin{tabular}{l}
An ambidient nucleophile it that which possesses two nucleophilic centres \\
For e.g. \(\mathrm{CN}^{-}\)(it forms cyanides and isocyanides) \\
(or any other correct example)
\end{tabular} \& \\
\hline 17 \& \begin{tabular}{l}
 \\
a) 1,3 - Butadiene and styrene \\
1.3-Butadiene \\
Styrene \\
b) Hexamethylenediamine and adipic acid / \\
n \(\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}+\mathrm{n} \mathrm{H} \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}\)
\end{tabular} \& \(1 / 2+1 / 2\)

$1 / 2+1 / 2$

\hline 18 \& | a) On adding benzene diazonium chloride, aniline forms azo dye whereas ethylamine does not. |
| :--- |
| b) On adding benzene diazonium chloride, aniline forms azo dye whereas benzylamine does not. | \& 1

1

\hline
\end{tabular}

QB365-Question Bank Software

19	$\begin{aligned} & \log \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{Ea}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right] \\ & \log \frac{2.39 \times 10^{-7} \mathrm{~L} /(\mathrm{mol} . \mathrm{s})}{2.15 \times 10^{-8} \mathrm{~L} /(\mathrm{mol} . \mathrm{s})}=\frac{\mathrm{Ea}}{2.303 \times 8.314 \times 10^{-3} \mathrm{~kJ} / \mathrm{Kmol}}\left[\frac{1}{650 \mathrm{~K}}-\frac{1}{700 \mathrm{~K}}\right] \\ & \log 11.12=\frac{\mathrm{Ea}}{2.303 \times 8.314 \times 10^{-3} \mathrm{~kJ}} \times \frac{700-650}{4.5 \times 10^{5}} \\ & 1.046=\frac{\mathrm{Ea}}{2.303 \times 8.314 \times 10^{-3} \mathrm{~kJ}} \times \frac{700-650}{4.5 \times 10^{5}} \\ & \mathrm{Ea}=\frac{1.046 \times 2.303 \times 8.314 \times 10^{2} \times 4.5}{50}=180.16 \mathrm{~kJ} \end{aligned}$	1 1 1 1
20	$\begin{aligned} \mathrm{N}_{\mathrm{A}} & =\frac{\mathrm{Z} \mathrm{\times M}}{\mathrm{a}^{3} \times \mathrm{xd}} \\ & =\frac{2 \times 56 \mathrm{~g} \mathrm{~mol}^{-1}}{\left(2.866 \times 10^{-8}\right)^{3} \mathrm{~cm}^{7} 7.874 \mathrm{~g} \mathrm{~cm}^{-3}} \\ & =6.04 \times 10^{23} \mathrm{~mol}^{-1} \end{aligned}$ Or $286.65 \times 10^{-10} \mathrm{~cm}=2.866 \times 10^{-8} \mathrm{~cm}$ Mass of Fe atom $=\left(2.866 \times 10^{-8} \mathrm{~cm}\right)^{3} \times 7.874 \mathrm{~g} \mathrm{~cm}^{-3} \times 1 / 2=23.54 \times 10^{-24} \times 3.94 \mathrm{~g}=92.59 \times 10^{-24} \mathrm{~g}$ $\begin{aligned} \mathrm{N}_{\mathrm{A}} & =56 \mathrm{~g} \mathrm{~mol}^{-1} / 92.59 \times 10^{-24} \mathrm{~g} \\ & =6.04 \times 10^{23} \mathrm{~mol}^{-1} \end{aligned}$	1 1 1 $11 / 2$ $11 / 2$
21	$\mathrm{R}=200 \Omega$ $\text { Cell constant }=\frac{1}{a}=1 \mathrm{~cm}^{-1}$ Conductivity, $\mathrm{k}=\frac{1}{\mathrm{R}} \mathrm{x} \frac{1}{\mathrm{a}}=\frac{1}{200 \Omega} \mathrm{xcm}^{-1}$ $=5.0 \times 10^{-3} \Omega^{-1} \mathrm{~cm}^{-1}$ $\begin{aligned} & \wedge=\frac{\mathrm{K}\left(\mathrm{Scm}^{-1}\right) \times\left(1000 \mathrm{~cm}^{3} \mathrm{~L}-1\right)}{\mathrm{C}\left(\mathrm{~mol}^{-1}\right)} \\ & =\frac{\left(5.0 \times 10^{-3} \mathrm{Scm}^{-1}\right)\left(1000 \mathrm{~cm}^{3} \mathrm{~L}^{-1}\right)}{0.01 \mathrm{~mol} \mathrm{~L}^{-1}} \\ & =500 \mathrm{Scm}^{2} \mathrm{~mol}^{-1} \end{aligned}$	1 1

QB365-Question Bank Software

\begin{tabular}{|c|c|c|}
\hline 22 \& \begin{tabular}{l}
Effect of temperature- physisorption decreases with increase of temperature and chemisorption first increases then decreases with increase of temperature \\
Surface area - greater the surface area greater is the physisorption and chemisorption \\
In physisorption, no appreciable activation energy is needed. In chemisorption, sometimes high activation energy is needed.
\end{tabular} \& 1
1
1
1 \\
\hline \& OR \& \\
\hline 22 \& \begin{tabular}{l}
(i) Production of high vacuum: The remaining traces of air can be adsorbed by charcoal from a vessel evacuated by a vacuum pump to give a very high vacuum. \\
(ii) Heterogeneous catalysis: Adsorption of reactants on the solid surface of the catalysts increases the rate of reaction. \\
(iii) Froth floatation process: A low grade sulphide ore is concentrated by separating it from silica and other earthy matter by this method using pine oiland frothing agent
\end{tabular} \& 1
1
1
1 \\
\hline 23 \& \begin{tabular}{l}
a) Because it undergoes disproportionation reaction \(/ 2 \mathrm{Cu}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq})\) \\
b) Because of the involvement of greater number of electrons from (\(\mathrm{n}-1\)) d in addition to ns electrons in the interatomic metallic bonding \\
c) The 5 f electrons provide poor shielding from elements to elements in the actinoid series.
\end{tabular} \& 1
1

1

\hline 24 \& | i) Some important extraction processes of metals, like those of silver and gold, make use of complex formation. Gold, for example, combines with cyanide in the presence of oxygen and water to form the coordination entity $[\mathrm{Au}(\mathrm{CN}) 2]-$ in aqueous solution. Gold can be separated in metallic form from this solution by the addition of zinc. |
| :--- |
| ii) The familiar colour reactions given by metal ions with a number of ligands (especially chelating ligands), as a result of formation of coordination entities, form the basis for their detection and estimation by classical and instrumental methods of analysis. Examples of such reagents include EDTA, DMG (dimethylglyoxime) | \& $11 / 2$

$11 / 2$

\hline 25 \& | The amino acids, which can be synthesised in the body, are known as nonessential amino acids. for example : glycine, alanine (or any other) |
| :--- |
| The amino acids which cannot be synthesised in the body and must be obtained through diet, are known as essential amino acids for example : valine, leucine (or any other) | \& $1+1 / 2$

$1+1 / 2$

\hline
\end{tabular}

26	i) ii)	1
27	i) Because of the harmful side effects / if taken in more than the required dose, it acts as a poison. ii) Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria are said to be broad spectrum antibiotics. iii) It is a mixture of chloroxylenol and terpileol	1 1
28	a) i) Heptan - 2-one ii) 3-phenylpropan-2ene-1-al b) i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}^{[\mathrm{O}]} \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{OH}^{-}} \mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\mathrm{CHO}$ ii) iii) $\mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow{\text { LiAlH }_{4}} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \xrightarrow{\text { Conc. } \mathrm{H}_{2} \text { SO }_{4}} \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$	1 1 1 1

\begin{tabular}{|c|c|c|}
\hline \& OR \& \\
\hline 28 \& \begin{tabular}{l}
a) i) \(\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{Cl})-\mathrm{CH}_{3}\) \\
ii) \\
b) i) On heating with \(\mathrm{NaOH}+\mathrm{I}_{2}\), ethanal forms yellow ppt of iodoform whereas propanal does not. \\
ii) Phenol gives neutral \(\mathrm{FeCl}_{3}\) test / \(\mathrm{NaHCO}_{3}\) test \\
iii)Acetophenone- On heating with \(\mathrm{NaOH}+\mathrm{I}_{2}\), forms yellow ppt of iodoform Benzaldehyde- gives tollen's test / Schiff Test
\end{tabular} \& 1
1
1

1
1
1

\hline 29 \& | a) $\begin{aligned} & i=\frac{\text { Normal molar mass }}{\text { Abnormal molar mass }} \\ & \quad=\frac{\text { Observed colligative property }}{\text { Calculated colligative property }} \\ & i=\frac{\text { Total number of moles of particles after association/dissociation }}{\text { Number of moles of particles before association/dissociation }} \\ & \text { i) } \quad \text { For dissociation, } \mathrm{i}>1 \\ & \text { ii) For association, } \mathrm{i}<1 \\ & \text { b) } \mathrm{Reaction} \\ & \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\ & 106 \mathrm{~g} \\ & \mathrm{NaHCO} \\ & 84 \mathrm{~g} \end{aligned}$ |
| :--- |
| A mixture of $1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $1 \mathrm{~mol} \mathrm{NaHCO}_{3}$ reacts with 3 mol of HCl $1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $1 \mathrm{~mol} \mathrm{NaHCO}_{3}=106+84=190 \mathrm{~g}$ |
| 190 g mixture reacts completely with 3 mol HCl |
| Mol of HCl that will reacts with $1 \mathrm{~g}=$ $\frac{3 \mathrm{~mol}}{190 \mathrm{~g}} \times 1 \mathrm{~g}=\frac{3}{190} \mathrm{~mol}=3 \times \frac{3 \times 10^{3}}{190} \mathrm{~m} \mathrm{~mol}$ |
| We know that |
| Morality x volume $(\mathrm{ml})=$ no. of m mole | \& 1

$1 / 2$
$1 / 2$

1112

\hline
\end{tabular}

	$\begin{aligned} & 0.1 \times \mathrm{V}_{\mathrm{HCl}}=\frac{3 \times 10^{3}}{190} \\ & \mathrm{~V}_{\mathrm{HCl}}=\frac{3 \times 10^{3}}{190 \times 0.1}=157.9 \mathrm{~mL} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 \end{aligned}$
	OR	
29	a) i) It is defined as the number of moles of the component to the total number of moles of all the components / Mole fraction of a component $=$ \qquad Total number of moles of all the components ii) It is defined as the number of moles of the solute per kg of the solvent. / $\text { Molality }(\mathrm{m})=\frac{\text { Moles of solute }}{\text { Mass of solvent in } \mathrm{kg}}$ iii) According to Raoult's law, the partial pressure of a volatile component or gas is directly proportional to its mole fraction in solution b) Molar mass $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}=2 \times 23+32+16 \times 4+20 \times 1+16 \times 10=322 \mathrm{~g} \mathrm{~mol}^{-1}$ No. of $\mathrm{mol} \mathrm{Na}_{2} \mathrm{SO}_{4} .10 \mathrm{H}_{2} \mathrm{O}$ dissolved in 01.10 kg of water $=\frac{6.00 \mathrm{~g}}{322 \mathrm{gmol}^{-1}}=\frac{6}{322} \mathrm{~mol}$ Since there is complete dissociation, van't Hoff factor, $\mathrm{i}=3$ $\begin{aligned} & \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{~K} \mathrm{~K}_{\mathrm{f}}=\mathrm{i} \mathrm{x} \mathrm{~K}_{\mathrm{f}} \times \mathrm{n}_{\mathrm{b}} / \mathrm{w}_{\mathrm{A}} \\ & =\frac{3 \mathrm{x}(1.86 \mathrm{Kg} \mathrm{kgol}) \mathrm{x}_{322} \mathrm{~mol}}{0.10 \mathrm{~kg}}=1.04 \mathrm{~K} \end{aligned}$ Freezing point $273.15 \mathrm{~K}-1.04 \mathrm{~K}=272.1 \mathrm{~K}$	1 1 1 $1 / 2$ 1 $1 / 2$
30	a) i) XeF_{2} - linear ii) XeO_{3} - pyramidal b) i) Because sulphur is sterically protected by six F atoms ii) Bond dissociation enthalpy of F_{2} is lower than that of Cl_{2} involved in the process. iii) Bond dissociation enthalpy of HCl is lower than that of HF	$1 / 2+1 / 2$ $1 / 2+1 / 2$ 1 1 1
	OR	

QB365-Question Bank Software

Sr. No.	Name		Sr. No.	Name	
1	Dr. (Mrs.) Sangeeta Bhatia		4	Sh. S.K. Munjal	
2	Dr. K.N. Uppadhya		5	Sh. Rakesh Dhawan	
3	Sh. D.A. Mishra			6	Ms. Garima Bhutani

