QB365-Question Bank Software
 12th Standard

Physics(theory)
SQP Marking Scheme 2020-21

QB365-Question Bank Software
16. (i) Real, magnified and inverted image.
(ii) The image produced by the objective lens should either be formed at focus of eyepiece or between focus and eyepiece.
(iii) If image formed by the object is placed between focus of eyepiece and an eyepiece; then magnifying power is $m_{1}=\frac{v_{0}}{-u_{0}} \cdot\left(1+\frac{D}{f_{e}}\right)$ which
the case of first microscope. But in case of second microscope, if image formed by objective is formed at the focus of eyepiece, then final image is seen at infinity and angular magnification produced will be $m_{2}=\frac{v_{0}}{-u_{0}} \cdot \frac{D}{f_{e}}$;

$$
\left[\therefore m_{2}<m_{1}\right]
$$

17. (a) $c=2+3+4=9 p F=9 \times 10^{-12} \mathrm{~F}$
(b) $Q_{1}=C_{1} V=2 \times 10^{-12} \times 100=2 \times 10^{-10} \mathrm{C}$

$$
\text { Similarly } \begin{align*}
Q_{2} & =3 \times 10^{-10} \mathrm{C} \tag{1/2}\\
Q_{3} & =4 \times 10^{-10} \mathrm{C} \tag{1/2}
\end{align*}
$$

18. Resistance of shunt $\gamma_{S}=\frac{I_{g} R_{G}}{I-I_{g}}=\frac{1.0 \times 0.80}{5.0-1.0}=0.20 \Omega$

Net resistance of ammeter and shunt

$$
R=\frac{R_{G} \times \gamma_{S}}{}=0.16 \Omega
$$

QB365-QRestipn Bank Software

$$
\begin{aligned}
& B L I=m g=\lambda L g \\
& B==\lambda g / I \quad\left(1 \frac{1}{2}\right)
\end{aligned}
$$

From Fleming left hand rule, magnetic field must act horizontally in a direction perpendicular to the wire carrying current.
19. Magnetic declination (1)

Correct figure for horizontal compoent
Correct relation

$$
B_{H}=B_{E} \cos \delta(1 / 2)
$$

OR

$$
B_{H}=\frac{1}{\sqrt{3}} B_{V} \text { or } \frac{B_{V}}{B_{H}}=-\sqrt{3}
$$

Also $\frac{B_{V}}{B_{H}}=\operatorname{Tan} \delta$

$$
\therefore \quad \operatorname{Tan} \delta=\sqrt{3}
$$

$$
\begin{equation*}
\text { or } S=60^{\circ} \tag{1}
\end{equation*}
$$

(b)

$$
\begin{align*}
B_{H}=B_{E} \cos \delta & =B_{E} \cos 60^{\circ}=\frac{B_{E}}{2} \\
\therefore \quad \frac{B_{H}}{B_{E}} & =\frac{1}{2} \tag{1}
\end{align*}
$$

20. (a)

$$
M=\frac{\Phi_{2}}{I_{1}}=\frac{0.5 \times 10^{-3} \mathrm{~Wb}}{0.5 \mathrm{~A}}=10^{-3} \mathrm{H}=1 \mathrm{mH}
$$

QB365-Question Bank Software

QB365-Question Bank Software
(a) An instantaneous emf is produced in the larger coil on account of mutual inductance. (1)
21. $\lambda=589 \mathrm{~nm}=589 \times 10^{-9} \mathrm{~m}$

$$
c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

(a): Frequency of light $2=\frac{C}{\lambda}=\frac{3 \times 10^{8}}{589 \times 10^{-9}}$

$$
=5.09 \times 10^{14} \mathrm{~Hz}
$$

\therefore Frequency of refracted light $2(\approx 2)$

$$
=5.09 \times 10^{14} \mathrm{~Hz}(1)
$$

(b) Wavelength of refracted light $\lambda^{\prime}=\frac{\lambda}{n}$

$$
\begin{align*}
& =\frac{589}{1.33} \\
& =442.8 \mathrm{~nm} \tag{1}
\end{align*}
$$

22. Correct understanding of Wavefront

Correct depiction diagrammatically (1)
23. Since $\beta=\frac{\lambda D}{d}$, we can write $\frac{\beta^{\prime}}{\beta}=\frac{\lambda^{\prime}}{\lambda}$

Here $\beta=8.1 \mathrm{~mm} ; \beta=7.2 \mathrm{~mm}, \lambda=630 \mathrm{~nm}$

$$
\begin{equation*}
\therefore \quad \lambda^{\prime}=560 \mathrm{~nm} \tag{2}
\end{equation*}
$$

24. Correct biasing (1)

Two advantages (1)
Or
Circuit diagram (1)
Characteristic curve (1)
25. Correct labelled diagram (1)

Correct input Output waveforms (1)
Section C
26. Derivation of resistivity $\rho=\frac{m}{n e^{2} \tau}$
27. Labelled diagram (1)

Principle
Working
Sinusoidal nature (1/2)
Or

Mutual inductance definition
(1)

Derivation of

$$
\begin{equation*}
M_{21}=M_{12}=M=\frac{\mu_{0} N_{1} N_{2} \pi r_{1}^{2}}{l} \tag{2}
\end{equation*}
$$

28. (a) Momentum of electron $=$ Momentum of Photon

$$
\begin{aligned}
& \mathrm{Kgmss}^{-1}
\end{aligned}
$$

(c) $K \cdot E$ of electron $K=\frac{P^{2}}{2 m}=\frac{\left(6.63 \times 10^{-25}\right)^{2}}{2 \times 9.11 \times 10^{-31}}=2.41 \times 10^{-19} \mathrm{~J}$

OR
Here $\nu_{0}=3.3 \times 10^{14} \mathrm{H}_{2}$ and $\nu=8.2 \times 10^{14} \mathrm{~Hz}$

$$
\left.\because h(2-2)_{0}\right)=e V_{0}
$$

\therefore Cut off voltage $\left.\left.V_{0}=\frac{h}{e}(2)-2\right)_{0}\right)$

$$
\begin{align*}
0 V_{0} & =\frac{6.63 \times 10^{-34} \times\left(8.2 \times 10^{4}-3.3 \times 10^{14}\right)}{1.6 \times 10^{-19}} \\
& =2.0 \mathrm{~V} \tag{3}
\end{align*}
$$

29. According to de-Broglie's hypothesis Total path length of orbit $=n \lambda$

$$
\begin{align*}
\text { or } 2 \pi r_{n} & =n \lambda \\
\text { also } 1=\frac{h}{p} & =\frac{h}{m v_{n}} \\
\therefore e^{n}(1) \quad 2 \pi r_{n} & =n \cdot \frac{h}{m v_{n}} \\
\text { or } m v_{n} r_{n} & =\frac{n h}{2 \pi}
\end{align*}
$$

hehich is Bohr's quantum Condition. (1)
(b)

$$
\begin{align*}
\text { (b) } & E_{c}-Q_{B}=\frac{Q B 365-\text { Question Bank Software }}{\lambda_{1}}-\text { (i) } \\
& E_{B}-E_{A}=\frac{h c}{\lambda_{2}}-\text { (ii) } \tag{i}\\
\& & E_{C}-E_{A}=\frac{h c}{\lambda_{3}} \quad \text { (iii) } \tag{ii}
\end{align*}
$$

On adding epis
(i) + (ii)
$E_{c}-E_{A}=\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{2}}$
or $\frac{h c}{\lambda_{3}}=\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{2}}$ from e^{h} (iii)
or $\frac{1}{\lambda_{3}}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}$
30. (a) $\frac{R_{1}}{R_{2}}=\frac{R_{0} A_{1}^{1 / 3}}{R_{0} A_{2}^{1 / 3}}=\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3}=\left(\frac{1}{8}\right)^{1 / 3} \quad\left(1 \frac{1}{2}\right)$
(b) $\frac{S_{1}}{S_{2}}=\frac{4 \pi R_{1}^{2}}{4 \pi R_{2}^{2}}=\frac{\left(R_{0} A_{1}^{1 / 3}\right)^{2}}{\left(R_{0} A_{2}^{1 / 3}\right)^{2}}=\left(\frac{A_{1}}{A_{2}}\right)^{2 / 3}$
31.(a) Proof of $\vec{E}=\frac{2 \vec{p}}{4 \pi \epsilon_{0} r^{3}}$
(b) As $\vec{E}=2 x \hat{\imath}$

Electric flux is finite only for surfaces 1 and 2 shown in fig. and for all remaining surfaces flux is zero.
Area of each surface is a^{2}; For face (1) $x=0 \therefore E_{11}=0 \therefore \phi_{10}=0$
\therefore 宛 $=\vec{E}=\vec{E} \cdot \vec{S}=(2 a \hat{\imath}) \cdot\left(a^{2} \hat{\imath}\right)=2 a^{3}$
 (1+1)

OR
(a) Statement Gauss's law

Derivation of electric field due to long straight conductor
(b)

Charge on element MN

$$
\begin{aligned}
d q & =\lambda d x \\
& =k x d x
\end{aligned}
$$

Total charge on wire $A B=q_{2} \int d q$

$$
\begin{aligned}
& =\int_{0}^{5} K x d x \\
& =\frac{1}{2} K L^{2}
\end{aligned}
$$

\therefore Total electric flux through enclosed Gaussian hollow surface
32. (a) Labelled diagram of Transformer
(1)
(b)Principle
(1)
(c)

$$
\begin{equation*}
\frac{V_{s}}{V_{p}}=\frac{I_{p}}{I_{s}}=\frac{N_{s}}{N_{p}}=k \tag{1}
\end{equation*}
$$

(b) Here $V_{p}=220 \mathrm{~V} ; V_{s}=110 \mathrm{~V}$ and $P_{\text {out }}=550$
\because Input Prover $=$ Out put Power

$$
\therefore P_{\text {in }}=P_{\text {out }}=P(\text { say })=V_{P} I_{P}=550 \mathrm{~W}
$$

\therefore current drawer $I_{p}=\frac{P_{p}}{V_{p}}=\frac{530}{220}$

$$
=2.5 \mathrm{~A}
$$

(2)

OR
Correct derivation of impedance $\quad Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$
(3)

Correct graph

Correct explanation : We vary the capacitance of a capacitor in the turning circuit so that the resonant frequency of the circuit becomes almost equal to the frequency of radio signal of a particular station.
33. (a) The observed phenomenon is diffraction of light.
(1)
(b) There is significant fall in intensity of the secondary maxima in compared to central maxima because in central maxima only constructive interference is taking place while in secondary maxima constructive as well as destructive interferences are taking place.
(c) When width of the slit ' a ' (say) is doubled angular width θ ' (consequently linear width too) of central maxima given by $\theta= \pm \frac{\lambda}{a}$ is reduced to one half of its previous value means size of central maxima will be reduced to half of its previous value.
(2)

OR

(a) Brief description of diffraction at a single slit, clear figure with condition for the angular width of secondary maxima and secondary minima. (3)
(b) Given $\lambda_{1}=590 \mathrm{~nm}=590 \times 10^{-9} \mathrm{~m}$

$$
r_{2}=596 \mathrm{um}=596 \times 10^{-9} \mathrm{~m}
$$

Slit width $a=2 \times 10^{-6}$
QB365-Quē̄̄tidn' Bunksoftware
 such that

$$
\begin{aligned}
a \sin \theta & =\frac{a x}{D}=\frac{31}{2} \\
\Rightarrow \quad x & =\frac{3+D}{2 a}
\end{aligned}
$$

\therefore Sepration between the positions of first maximas

$$
\begin{align*}
\Delta x & =x_{2}-x_{1} \\
& =\frac{3 D}{2 a}\left(\lambda_{2}-\lambda_{1}\right) \\
& =\frac{3 \times 1.5}{2 \times 2 \times 10^{-6}}\left(596 \times 10^{-9}-590 \times 10^{-9}\right) \\
& =6.75 \times 10^{-3} \mathrm{~m} \text { or } 6.75 \mathrm{~mm} \tag{2}
\end{align*}
$$

