QB365-Question Bank Software

12th Standard Chemistry

ANSWER OF PRACTICE PAPER 4

1. I- A, II- B or A, III- C, IV-D
2. V-B, VI- A or A, VII-B, VIII- B
3. B
4. D
5. B
6. B or A
7. D
8. C
9. A
10. B
11. A or C
12. C
13. C
14. A
15. D or A

QB365-Question Bank Software

16. A
17. Presence of nitro group at ortho position withdraws electron density from the benzene ring and thus facilitates the attack of nucleophile on haloarene.

18. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times \mathrm{m}$

Where molality $=\frac{\text { no. of moles of glucose }}{\text { Weight of solvent }(\text { in } \mathrm{kg})}=\frac{18 / 180 \text { moles }}{1 \mathrm{k} \cdot \mathrm{g}}=0.1 \mathrm{molal}$
$\Delta \mathrm{T}_{\mathrm{b}}=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times 0.1 \mathrm{~mol} \mathrm{~kg}^{-1}$
$\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}=0.052$
$\mathrm{T}_{\mathrm{f}}-373.15=0.052$
$\mathrm{T}_{\mathrm{f}}=373.202 \mathrm{~K}$
19. (i) The oxidation state of Ni in $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is +2 and the oxidation state of Ni in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is 0 . The presence of strong field ligand CO in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ pairs all the electrons of Ni to give d^{10} configuration in which no unpaired electron is available and hence $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is diamagnetic in nature whereas the presence of weak field ligand Cl^{-}have d^{8} configuration in which 2 unpaired electron is available and hence $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic.

QB365-Question Bank Software

(ii) In $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$, Co is in +3 state and has d^{6} configuration. In the presence of $\mathrm{NH}_{3}, 3 \mathrm{~d}$ electrons pair up leaving 2 d-orbitals empty. Hence, the hybridization is $\mathrm{d}^{2} \mathrm{sp}^{3}$ forming an inner orbital complex whereas Ni has +2 oxidation state in $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ and d^{8} configuration which do not pair up. Hence, the hybridization is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ forming an outer orbital complex.

OR

20. (a) Rate of reaction $=\frac{-1 \Delta(\mathrm{~N} 2 \mathrm{O} 5)}{2 \Delta t}=\frac{-(0.289-0.4) \mathrm{M}}{2(20-0) \mathrm{min}}=\frac{0.111 \mathrm{M}}{40 \mathrm{~min}}$

$$
=2.775 \times 10^{-3} \mathrm{M} \mathrm{~min}^{-1}
$$

(b) For the $1^{\text {st }}$ order kinetics,

$$
\begin{gathered}
\log \left[\mathrm{R}_{0} / \mathrm{R}\right]=\mathrm{kt} / 2.303 \\
\log [0.4 / 0.289]=\mathrm{k}(20 \mathrm{~min}) / 2.303 \\
\mathrm{k}=1.625 \times 10^{-2} \mathrm{~min}^{-1}
\end{gathered}
$$

OR

21. For the $1^{\text {st }}$ order kinetics,

$$
\begin{aligned}
& \log \left[\mathrm{R}_{0} / \mathrm{R}\right]=\mathrm{kt} / 2.303 \\
& \log [100 / 75]=\mathrm{k}(20 \mathrm{~min}) / 2.303 \\
& \mathrm{k}=1.4 \times 10^{-2} \mathrm{~min}^{-1}
\end{aligned}
$$

Substituting for 75% completion of reaction-

```
log[\mp@subsup{R}{o}{}/R]=kt/2.303
log}[100/25]=1.4\times1\mp@subsup{0}{}{-2}\mp@subsup{\textrm{min}}{}{-1}(\textrm{t})/2.30
    t=99 min
```

22. Mechanism for the conversion of ethanol to ethoxy ethane in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 413 K .

Step 1

Step 2

Step 3

OR

Step-1: Protonation of alcohol

Step-2: Formation of carbocation by loss of water.

Step-3: Formation of ethene by loss of proton.

23. (i)

(ii)

24. Total no. of tetrahedral voids $=2 \times$ Total no. of octahedral voids $=2 \times$ Total no. of particles Total no. of tetrahedral voids $=2 \times 0.5 \mathrm{~mol}=1 \mathrm{~mol}=6.022 \times 10^{23}$ voids Total no. of octahedral voids $=0.5 \mathrm{~mol}=0.5 \times 6.022 \times 10^{23}=3.011 \times 10^{23}$ voids

QB365-Question Bank Software

Total no. of voids $=$ Total no. of octahedral voids + Total no. of tetrahedral voids

$$
=9.033 \times 10^{23} \text { voids }
$$

25. (i)

(ii)

26. (i) There are vacant spaces in the lattice of transition metals which can be filled by small atoms like H, C, N etc
(ii) Cr^{2+} has $3 \mathrm{~d}^{4}$ configuration \& It loses electron to form $3 \mathrm{~d}^{3}$ which has stable half -filled $\mathrm{t}_{2 \mathrm{~g}}$ level whereas Mn^{3+} also has $3 \mathrm{~d}^{4}$ configuration but it gains electron to form Mn^{2+} which has stable half - filled $3 \mathrm{~d}^{5}$ configuration.
(iii) They have large number of valence electron to form strong metallic bonds.
27. i) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}>\mathrm{CH}_{3} \mathrm{NH}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}>\mathrm{NH}_{3}$
ii)

QB365-Question Bank Software

28.

$$
\begin{aligned}
& d \\
& =\frac{Z \times M}{a^{3} \times N_{\mathrm{A}}} \\
\Rightarrow \quad 8 & =\frac{2 \times M}{\left(250 \times 10^{-10}\right)^{3} \times\left(6.022 \times 10^{23}\right)} \\
\Rightarrow \quad M & =\frac{\left(250 \times 10^{-10}\right)^{3} \times\left(6.022 \times 10^{23}\right)}{2} \times 8 \\
\Rightarrow \quad M & =\frac{9.409 \times 8}{2}=37.64 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

For bcc unit cell,

$$
\begin{aligned}
4 r & =\sqrt{3} a \\
r & =\frac{\sqrt{3} a}{4}=\frac{1.732 \times 250}{4} \\
& =108.25 \mathrm{pm} \\
& \text { OR }
\end{aligned}
$$

radius,
(i) $\quad r=125 \times 10^{-12} \mathrm{~m}$,

$$
4 r=\sqrt{2} a
$$

$\Rightarrow \quad a=\frac{4 r}{\sqrt{2}}=r \times 2 \sqrt{2}=125 \times 10^{-12} \times 2 \sqrt{2}=354 \mathrm{pm}$
(ii) $\quad a^{3}=(354)^{3} \times\left(10^{-12}\right)^{3} \mathrm{~m}^{3}=44.36 \times 10^{-30} \mathrm{~m}^{3}$

Number of unit cells in $1 \mathrm{~cm}^{3}$,

$$
\begin{aligned}
& =\frac{\text { Total volume }}{\text { Volume of one unit cell }} \\
& =\frac{10^{-6} \mathrm{~m}^{3}}{44.36 \times 10^{-30} \mathrm{~m}^{3}}=2.254 \times 10^{22} \text { unit cells. }
\end{aligned}
$$

29. (i) Due to the formation of zwitter ion

QB365-Question Bank Software

(ii) During denaturation, hydrogen bonds are disturbed due to this globules unfold and helix gets uncoiled and protein losses its biological activity.
(iii)

30. (i). SF_{6} is sterically protected by 6 F -atoms.
(ii) Bleaching action of chlorine is based on oxidation while that of sulphur is based on reduction. Chlorine reacts with water to produce nascent oxygen. This oxygen combines with coloured substance and makes it colourless
(iii)

31. (a) (i) $\mathrm{XeF}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Xe}+\mathrm{HF}+\mathrm{XeO}_{3}+\mathrm{O}_{2}$
(ii)

$$
3 \mathrm{Cl}_{2}+\underset{\substack{\text { (hot \& conc.) }}}{6 \mathrm{NaOH}} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

(b) ' X ' is Helium.

It is used as a diluent for oxygen in modern diving apparatus because of its very low solubility in blood.

QB365-Question Bank Software

It is monoatomic having no interatomic forces except weak dispersion forces and has second lowest mass therefore lowest boiling point.

OR
(a) (i)

Square planar structure
Noble gas compound isostructural with $\mathrm{ICl}_{4}{ }^{\ominus}$ is XeF_{4}.

(ii)

Linear structure
Noble gas compound isostructural with $\mathrm{IBr}_{2}{ }^{\ominus}$ is XeF_{2}

(iii)

Noble gas compound isostructural with $\mathrm{BrO}_{3}{ }^{\ominus}$ is XeO_{3}.

(b)
(i) XeO_{3} can be prepared in two ways as shown.

$$
\begin{aligned}
& 6 \mathrm{XeF}_{4}+12 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{Xe}+2 \mathrm{XeO}_{3}+24 \mathrm{HF}+3 \mathrm{O}_{2} \\
& \mathrm{XeF}_{6}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeO}_{3}+6 \mathrm{HF}
\end{aligned}
$$

(ii) XeOF_{4} can be prepared using XeF_{6}.

$$
\mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeOF}_{4}+2 \mathrm{HF}
$$

32. (a)

(b) $\mathrm{CH}_{3}-\mathrm{CHO}<\mathrm{CH}_{3} \mathrm{COCH}_{3}<\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
(c)

Caroboxylic acids do not give characteristic reaction of carbonyl compounds. This is because the Ione pairs on oxygen atoms attached to hydrogen atom in the -COOH group are involved in resonance there by making carbon atom less available.

(d)

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CN} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{(\mathrm{Ci}-\mathrm{Bu})_{2} \mathrm{AlH}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CHO}
$$

(e)

QB365-Question Bank Software

Reaction involved:

OR

QB365-Question Bank Software

$$
\begin{aligned}
& \alpha=210 \mathrm{Scm}^{2} \mathrm{~mol}^{-1} / 400 \mathrm{Scm}^{2} \mathrm{~mol}^{-1} \\
& \alpha=0.525
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& A l^{+3}+3 e^{-} \rightarrow A l \\
& E_{0}=-1.66 V \\
& N i^{2+}+2 e^{-} \rightarrow N i \\
& E_{0}=-0.25 V \\
& E_{\text {cell }}^{o}=-0.25-(-1.66)=1.41 \mathrm{~V}
\end{aligned}
$$

Thus, aluminium electrode is anode and nickel electrode is cathode reaction.

$$
\begin{aligned}
& 3 N i^{+2}+2 A l \rightarrow 3 N i+2 A l^{+3} \\
& E^{o}=E_{\text {cell }}^{o}-\frac{0.0591}{6} \log \frac{\left(1 \times 10^{-3}\right)^{2}}{\left(5 \times 10^{-1}\right)^{3}} \\
& =1.41+0.005319=1.415 \mathrm{~V}
\end{aligned}
$$

OR
(i) Here conductivity $(\mathrm{K})=0.146 \times 10^{-3} \mathrm{Scm}^{-1}$

Resistance (R) $=1500 \Omega$
Cell constant $=$ Conductivity \times Resistance

Therefore, Cell constant $=0.146 \times 10^{-3} \times 1500$

$$
=0.219 \mathrm{~cm}^{-1}
$$

(ii) $\Delta \mathrm{G}=-\mathrm{nFE}$ 。

$$
=-2 \times 96500 \times 0.236=-45.548 \mathrm{~kJ}
$$

$$
\log \mathrm{K}=\mathrm{nFE} / 2.303 \mathrm{RT}
$$

$$
=2 \times 0.236 / 0.059
$$

$$
=7.986
$$

$$
\begin{aligned}
\mathrm{K} & =\operatorname{antilog}(7.986) \\
& =9.68 \mathrm{X} 10^{7}
\end{aligned}
$$

