MARKING SCHEME

PRACTICE PAPER 5

SECTION A

Q.No.	Value Point	Marks
1(i)	А	1
(ii)	D	1
	OR	
	A	
(iii)	С	1
(iv)	В	1
2 (i)	С	1
(ii)	В	1
(iii)	А	1
(iv)	А	
	OR	
	D	
3	D	1
4	D	
	OR	
	С	P.
5	D	1
6	D	7
	OR	1
	D	Ś
7	C	
	OR	1
	В	<u> </u>
8	С	
	OR	1
	D	1
9	D	1
10	D	1
	A	1
12	C	1
13	A	1
14	B	
	OR	1
15	B	1
15	D	1
16	A	1

SECTION B, C, D

Q.No.	VALUE POINTS	MARKS
	SECTION B	
17	$\begin{array}{c} \begin{array}{c} CH_3 \\ \end{array} \\ \hline \\ \mathbf{Fe} \end{array} \end{array} \xrightarrow{\mathbf{Fe}} \begin{array}{c} CH_3 \\ \end{array} \\ \begin{array}{c} Br \\ Fe \end{array} \end{array} \xrightarrow{\mathbf{CH}_3 \\ Fe \end{array} \xrightarrow{\mathbf{CH}_3 \\ Fr \xrightarrow{\mathbf{CH}_3 \\ Fr \end{array} \xrightarrow{\mathbf{CH}_3 \\ Fr \mathbf{C$	1
	Toluene <i>o</i> -Bromotoluene <i>p</i> -Bromotoluene	
	The ortho and para isomers can be easily separated due to large difference in their melting points.	1
	OR K	
	(i) $C_6H_6 + HNO_3 + H_2SO_4 \rightarrow C_6H_5NO_2 + Fe/HCl \rightarrow C_6H_5NH_2$ (ii) $C_1H_0H_1 + SO_1CH_2 \rightarrow C_1H_2CH_2 + A_2F_2 \rightarrow C_1H_F$	1
		1
18		
	$X_{(Nitrogen)} = \frac{P_{(nitrogen)}}{K_{\rm H}} = 0.987 \text{bar}/76,480 \text{ bar} = 1.29 \times 10^{-5}$ As 1 litre of water contains 55.5 mol(1000 g/18 g mol ⁻¹) of it, therefore if <i>n</i> represents number of moles of N ₂ in solution, $X_{(Nitrogen)} = \frac{n \text{ mol}}{n + 55.5}$ $Y_{\text{var}} = \frac{n}{2} \frac{(55.5)}{55} = 0$	1
	Thus $n = 1.29 \times 10^{-5} \times 55.5 \text{ mol} = 7.16 \times 10^{-4} \text{ mol}$ =7.16×10 ⁻⁴ mol × 1000m mol= 0.716 m mol.	1
10	Completes in which a metal is bound to only one bind of denomenations $a = [C_{2}(NU)]^{3+1}$	1
19	are known as homoleptic. Complexes in which a metal is bound to only one kind of donor groups, <i>e.g.</i> , $[Co(NH_3)_6]^{+}$ are known as heteroleptic.	1
	OR	1
	 (1) In coordination compounds metals show two types of linkages (valences)-primary and secondary. (ii) The primary valences are normally ionisable and are satisfied by negative ions. 	1
20	$Rate = k[X]^2$	1
	$Rate = k[3X]^2$ $Rate = 9k[X]^2$	1
	QB365 - Question Bank Software	

	OR	
	$t_{1/2} = 0.069$	1
	$\begin{array}{rcl} t_{1/2} &= \underline{0.069} \\ & 5.5 \times 10^{-14} \ \mathrm{s}^{-1} \\ t_{1/2} &= 1.26 \ \times \ 10^{13} \ \mathrm{s}^{-1} \end{array}$	1
21	(i) Chloromethane < Bromomethane < Dibromomethane < Bromoform,	1
	(ii) Isopropyl chloride < 1-Chloropropane < 1-Chlorobutane	1
	1,1,30	
22	(i)The dehydration of secondary and tertiary alcohols to give corresponding ethers is unsuccessful as elimination competes over substitution and as a consequence, alkenes are easily formed.	1
	(ii) Primary amine can act as a nucleophile and combine with alkyl halide (if available) to give secondary amine and the reaction continues in the same way to form tertiary amine and finally quaternary ammonium salt. Thus, a mixture of products is formed and it is not possible to separate individual amines from the mixture.	1
23	F being the most electronegative element.	1
	Atomicity of S_8 is greater than O_2 , hence stronger intermolecular forces of attraction.	1

24.	Sterically, the presence of two relatively large substituents in ketones hinders the	
	approach of nucleophile to carbonyl carbon than in aldehydes having only one such	
	substituent. Electronically, aldehydes are more reactive than ketones because two alkyl	
	groups reduce the electrophilicity of the carbonyl carbon more effectively than in	1
	former.	
25	(i) $C_6H_5NH_2 < NH_3 < C_2H_5NH_2 < (C_2H_5)_2NH$	1
	(ii) $C_6H_5NH_2 < (CH_3)_3N < CH_3NH_2 < (CH_3)_2NH C_6H_5NH_2$	1
	SECTION C	
26	(i) As transition metals have a large number of unpaired electrons in the d -orbitals of their	1
	atoms. (i) A structure module have a large number of unrealed electrons in the <i>d</i> arbitrals of their structure.	1
	(11)As transition metals have a large number of unpaired electrons in the <i>a</i> -orbitals of their atoms,	1
	(ii) This activity is ascribed to their ability to adopt multiple oxidation states, ability to adsorb the	1
	reactant(s) and ability to form complexes.	1
	OR	
	(i) Lowest oxidation compounds of transition metals are basic due to their ability to get oxidised	1
	to higher oxidation states. Whereas the higher oxidation state of metal and compounds gets	-
	reduced to lower ones and hence acts as acidic in nature.	1
	(ii) Due to presence of unpair electrons in d -orbitals and its d - d transitions, compounds of the	
	transition metals are generally coloured. (iii) As man gapases has maximum number of unpaired electrons (5) in $3d$ subshall in addition to	1
	2 electrons in the 4s subshell it can use the 7 electrons for bonding nurpose	1
	2 creet ons in the 4s subsition, it can use the 7 creet onsion bonding purpose.	
27	(i) Ethylamina is soluble in water due to formation of intermolecular hydrogen bonds with water	1
21	molecules. However, in aniline due to large hydrophobic and group the extent of hydrogen	1
	bonding decreases considerably.	
	(ii) In Friedel – Crafts reaction, AlCl ₃ is added as a catalyst which is a Lewis acid. It forms a salt	1
	with aniline due to which the nitrogen of aniline acquires positive chargeis positively charged	-
	nitrogen actsas a strong deactivating group.	1
	(iii) Due to resonance stabalisation.	
	OR 🗸	
	$[A] = C_{a}H_{c}CN$	1
	$\begin{bmatrix} \mathbf{R} \end{bmatrix} = \mathbf{C}_2 \mathbf{H}_5 \mathbf{C} \mathbf{N}$ $\begin{bmatrix} \mathbf{B} \end{bmatrix} = \mathbf{C}_2 \mathbf{H}_5 \mathbf{C} \mathbf{O} \mathbf{N} \mathbf{H}_2$	1
	$[C] = C_2 H_5 N H_2$	1
28	Moles of glucose = $18 \text{ g} / 180 \text{ g mol}^{-1} = 0.1 \text{ mol}$	1/2
	Number of kilograms of solvent = 1 kg	
	Thus molality of glucose solution = 0.1 mol kg^{-1} For water, change in boiling point	1
	$\Delta T_b = K_b \times m = 0.52 \ K \ kg \ mol^{-1} \times 0.1 \ mol \ kg^{-1} = 0.052 \ K$	1
	Since water boils at 373.15 K at 1.013 bar pressure, therefore, the boiling point of	1
	solution will be $3/3.15 + 0.052 = 3/3.202$ K.	1/2
20	Refer to	3
2)	NCERT	
	Chapter	
	11	
	OB365 - Ouestion Bank Software	
1	<u> </u>	1 1

30	The difference of energy between two states of splitted d -orbitals is called crystal field	1
	splitting energy. It is denoted by Δ_0 or 10 Dq. For octahedral Δ_0 for tetrahedral it is Δt	
	For CFSE diagram refer to NCERT Chapter 9	1
	When $\Delta o > P$, $t_{2g} 4 eg0$	
	When $\Delta o < P$, $t_{2g} 3 eg1$	1

