MARKING SCHEME

PRACTICE PAPER 5

SECTION A


```
SECTION B, C, D
```

Q.No.	VALUE POINTS	MARKS
	SECTION B	
17	The ortho and para isomers can be easily separated due to large difference in their melting points. OR (i) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{Fe} / \mathrm{HCl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ (ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{SO}_{2} \mathrm{Cl} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{AgF} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~F}$	1
18	$X_{(\text {Nitrogen })}=P_{\text {(nitrogen) }} / K_{\mathrm{H}}=0.987 \mathrm{bar} / 76,480 \mathrm{bar}=1.29 \times 10^{-5}$ As 1 litre of water contains $55.5 \mathrm{~mol}\left(1000 \mathrm{~g} / 18 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ of it, therefore if n represents number of moles of N_{2} in solution, $\begin{aligned} & X_{\text {(Nitrogen })}=\frac{\mathrm{n} \mathrm{~mol}}{\mathrm{n}+55.5} \text { if } 55.5 \gg \mathrm{n} \\ & X_{(\text {(Nitrogen })}=n / 55.5 . \\ & \text { Thus } n=1.29 \times 10^{-5} \times 55.5 \mathrm{~mol}=7.16 \times 10^{-4} \mathrm{~mol} \\ & =7.16 \times 10^{-4} \mathrm{~mol} \times 1000 \mathrm{~m} \mathrm{~mol}=0.716 \mathrm{~m} \mathrm{~mol} . \end{aligned}$	
19	Complexes in which a metal is bound to only one kind of donor groups, e.g., $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ are known as homoleptic. Complexes in which a metal is bound to more than one kind of donor groups, e.g., $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$are known as heteroleptic. OR (i) In coordination compounds metals show two types of linkages (valences)-primary and secondary. (ii) The primary valences are normally ionisable and are satisfied by negative ions.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
20	$\begin{aligned} & \text { Rate }=\mathrm{k}[\mathrm{X}]^{2} \\ & \text { Rate }=\mathrm{k}[3 \mathrm{X}]^{2} \\ & \text { Rate }=9 \mathrm{k}[\mathrm{X}]^{2} \\ & \quad \text { QB365 - Question Bank Software } \end{aligned}$	1

QB365-Question Bank Software

QB365-Question Bank Software

24.	Sterically, the presence of two relatively large substituents in ketones hinders the approach of nucleophile to carbonyl carbon than in aldehydes having only one such substituent. Electronically, aldehydes are more reactive than ketones because two alkyl groups reduce the electrophilicity of the carbonyl carbon more effectively than in former.	
25	$\begin{aligned} & \text { (i) } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}<\mathrm{NH}_{3}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}<\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH} \\ & \text { (ii) } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \end{aligned}$	
SECTION C		
26	(i) As transition metals have a large number of unpaired electrons in the d-orbitals of their atoms. (ii)As transition metals have a large number of unpaired electrons in the d-orbitals of their atoms they have strong interatomic attraction or metallic bonds. (ii) This activity is ascribed to their ability to adopt multiple oxidation states, ability to adsorb the reactant(s) and ability to form complexes. OR (i) Lowest oxidation compounds of transition metals are basic due to their ability to get oxidised to higher oxidation states. Whereas the higher oxidation state of metal and compounds gets reduced to lower ones and hence acts as acidic in nature. (ii) Due to presence of unpair electrons in d-orbitals and its d - d transitions, compounds of the transition metals are generally coloured. (iii)As manganese has maximum number of unpaired electrons (5) in $3 d$ subshell in addition to 2 electrons in the $4 s$ subshell, it can use the 7 electronsfor bonding purpose.	1 1 1 1 1 1
27	(i) Ethylamine is soluble in water due to formation of intermolecular hydrogen bonds with water molecules. However, in aniline due to large hydrophobic aryl group the extent of hydrogen bonding decreases considerably. (ii) In Friedel - Crafts reaction, AlCl_{3} is added as a catalyst which is a Lewis acid. It forms a salt with aniline due to which the nitrogen of aniline acquires positive charge. _is positively charged nitrogen actsas a strong deactivating group. (iii) Due to resonance stabalisation. OR $\begin{aligned} & {[\mathrm{A}]=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}} \\ & {[\mathrm{~B}]=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CONH}_{2}} \\ & {[\mathrm{C}]=\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}} \end{aligned}$	1 1 1 1 1 1 1
28	Moles of glucose $=18 \mathrm{~g} / 180 \mathrm{~g} \mathrm{~mol}^{-1}=0.1 \mathrm{~mol}$ Number of kilograms of solvent $=1 \mathrm{~kg}$ Thus molality of glucose solution $=0.1 \mathrm{~mol} \mathrm{~kg}{ }^{-1}$ For water, change in boiling point $\Delta T_{b}=K_{b} \times m=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times 0.1 \mathrm{~mol} \mathrm{~kg}^{-1}=0.052 \mathrm{~K}$ Since water boils at 373.15 K at 1.013 bar pressure, therefore, the boiling point of solution will be $373.15+0.052=373.202 \mathrm{~K}$.	$\begin{aligned} & \hline 1 / 2 \\ & 1 \\ & 1 \\ & 1 / 2 \end{aligned}$
29	Refer to NCERT Chapter 11 QB365-Question Bank Software	3

QB365-Question Bank Software

30	The difference of energy between two states of splitted d-orbitals is called crystal field splitting energy. It is denoted by Δ_{o} or 10 Dq. For octahedral Δo, for tetrahedral it is Δt. For CFSE diagram refer to NCERT Chapter 9 When $\Delta \mathrm{o}>\mathrm{P}, \mathrm{t}_{2 \mathrm{~g}} 4$ eg0 When $\Delta \mathrm{o}<\mathrm{P}, \mathrm{t}_{2 \mathrm{~g}} 3$ eg 1	1

QB365-Question Bank Software

