Class- X
 Mathematics-Basic (241)
 Marking Scheme SQP-2020-21

Max. Marks: 80
Duration:3hrs

1	$156=2^{2} \times 3 \times 13$	1
2	Quadratic polynomial is given by $x^{2}-(a+b) x+a b$ $x^{2}-2 x-8$	1
3	HCF X LCM =product of two numbers $\begin{aligned} & \operatorname{LCM}(96,404)=\frac{96 \times 404}{H C F(96,404)}=\frac{96 \times 404}{4} \\ & \operatorname{LCM}=9696 \end{aligned}$ OR Every composite number can be expressed (factorized) as a product of primes, and this factorization is unique, apart from the order in which the factors occur.	$1 / 2$ $1 / 2$ 1
4	$\begin{aligned} & x-2 y=0 \\ & 3 x+4 y-20=0 \\ & \frac{1}{3} \neq \frac{-2}{4} \end{aligned}$ As, $\frac{a 1}{a 2} \neq \frac{b 1}{b 2}$ is one condition for consistency. Therefore, the pair of equations is consistent.	$1 / 2$ $1 / 2$
5	1	1
6		$1 / 2$ $1 / 2$

QB365-Question Bank Software

QB365-Question Bank Software

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
OR \\
Another method- \\
Horse can graze in the field which is a circle of radius 28 cm . \\
So, required perimeter \(=2 \Pi r=2 . \Pi(28) \mathrm{cm}\)
\[
\begin{aligned}
\& =2 \times \frac{22}{7} \times(28) \mathrm{cm} \\
\& =176 \mathrm{~cm}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\) \\
\hline 7 \& \begin{tabular}{l}
By converse of Thale's theorem DE II BC
\[
\angle A D E=\angle A B C=70^{\circ}
\] \\
Given \(\left\llcorner B A C=50^{\circ}\right.\) \\
\(\left\llcorner A B C+\angle B A C+\angle B C A=180^{\circ}\right.\) (Angle sum prop of triangles)
\[
70^{\circ}+50^{\circ}+\left\llcorner B C A=180^{\circ}\right.
\]
\[
\angle B C A=180^{\circ}-120^{\circ}=60^{\circ}
\] \\
OR \\
\(\mathrm{EC}=\mathrm{AC}-\mathrm{AE}=(7-3.5) \mathrm{cm}=3.5 \mathrm{~cm}\) \\
\(\frac{A D}{B D}=\frac{2}{3}\) and \(\frac{A E}{E C}=\frac{3.5}{3.5}=\frac{1}{1}\) \\
So, \(\frac{A D}{B D} \neq \frac{A E}{E C}\) \\
Hence, By converse of Thale's Theorem, DE is not Parallel to BC.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$

\hline 8 \& | $\begin{aligned} \text { Length of the fence } & =\frac{\text { Total cost }}{\text { Rate }} \\ & =\frac{\text { Rs. } 5280}{\text { Rs } 24 / \text { metre }}=220 \mathrm{~m} \end{aligned}$ |
| :--- |
| So, length of fence $=$ Circumference of the field $\therefore 220 m=2 \Pi r=2 \times \frac{22}{7} \times r$ |
| So, $r=\frac{220 \times 7}{2 \times 22} \mathrm{~m}=35 \mathrm{~m}$ | \& 1/2

\hline 9 \& | Sol: $\tan 30^{\circ}=\frac{A B}{B C}$ $\begin{aligned} & 1 / \sqrt{ } 3=\frac{A B}{8} \\ & \mathrm{AB}=8 / \sqrt{ } 3 \text { metres } \end{aligned}$ |
| :--- |
| Height from where it is broken is $8 / \sqrt{ } 3$ metres | \& $1 / 2$

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 10 \& \[
\begin{gathered}
\text { Perimeter = Area } \\
2 \Pi r=\Pi r^{2} \\
r=2 \text { units }
\end{gathered}
\] \& 1 \\
\hline 11 \& 3 median \(=\) mode +2 mean \& 1 \\
\hline 12 \& 8 \& 1 \\
\hline 13 \& \begin{tabular}{l}
\(\frac{a 1}{a 2} \neq \frac{b 1}{b 2}\) is the condition for the given pair of equations to have unique solution.
\[
\begin{aligned}
\& \frac{4}{2} \neq \frac{p}{2} \\
\& p \neq 4
\end{aligned}
\] \\
Therefore, for all real values of \(p\) except 4 , the given pair of equations will have a unique solution. \\
OR \\
Here, \(\frac{a 1}{a 2}=\frac{2}{4}=\frac{1}{2}\) \\
\(\frac{b 1}{b 2}=\frac{3}{6}=\frac{1}{2}\) and \(\frac{c 1}{c 2}=\frac{5}{7}\) \\
\(\frac{1}{2}=\frac{1}{2} \neq \frac{5}{7}\) \\
\(\frac{a 1}{a 2}=\frac{b 1}{b 2} \neq \frac{c 1}{c 2}\) is the condition for which the given system of equations will represent parallel lines. \\
So, the given system of linear equations will represent a pair of parallel lines.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

1
$1 / 2$

$1 / 2$

\hline 14 \& | No. of red balls $=3$, No.black balls $=5$ |
| :--- |
| Total number of balls $=5+3=8$ |
| Probability of red balls $=\frac{3}{8}$ |
| OR |
| Total no of possible outcomes $=6$ |
| There are 3 Prime numbers, 2,3,5. |
| So, Probability of getting a prime number is $\frac{3}{6}=\frac{1}{2}$ | \& $1 / 2$

$1 / 2$

$1 / 2$
$1 / 2$

\hline
\end{tabular}

QB365-Question Bank Software

QB365-Question Bank Software

\begin{tabular}{|c|c|c|}
\hline 15 \& $$
\begin{aligned}
\tan 60^{\circ} & =\frac{h}{15} \\
\sqrt{ } 3 & =\frac{h}{15} \\
h & =15 \sqrt{ } 3 \mathrm{~m}
\end{aligned}
$$ \& $1 / 2$

$1 / 2$

\hline 16 \& 1 人 \& 1

\hline 17 i) \& | Ans: b) |
| :--- |
| Cloth material required $=2 \mathrm{XS}$ A of hemispherical dome $\begin{aligned} & =2 \times 2 \Pi \mathrm{r}^{2} \\ & =2 \times 2 \times \frac{22}{7} \times(2.5)^{2} \mathrm{~m}^{2} \\ & =78.57 \mathrm{~m}^{2} \end{aligned}$ | \& 1

\hline ii) \& a) Volume of a cylindrical pillar $=\Pi \mathrm{r}^{2} \mathrm{~b}$ \& 1

\hline iii) \& $$
\text { b) } \begin{aligned}
\text { Lateral surface area } & =2 \times 2 \Pi \mathrm{rh} \\
& =4 \times \frac{22}{7} \times 1.4 \times 7 \mathrm{~m}^{2} \\
& =123.2 \mathrm{~m}^{2}
\end{aligned}
$$ \& 1

\hline iv) \& $$
\text { d) } \begin{aligned}
& \text { Volume of hemisphere }=\frac{2}{3} \Pi \mathrm{r}^{3} \\
&=\frac{2}{3} \frac{22}{7}(3.5)^{3} \mathrm{~m}^{3} \\
&=89.83 \mathrm{~m}^{3}
\end{aligned}
$$ \& 1

\hline v) \& | b) |
| :--- |
| Sum of the volumes of two hemispheres of radius 1 cm each $=2 \times \frac{2}{3} \Pi 1^{3}$ Volume of sphere of radius $2 \mathrm{~cm}=\frac{4}{3} \Pi 2^{3}$ |
| So, required ratio is $\frac{2 x \frac{2}{3} \Pi 1^{3}}{\frac{4}{3} \Pi 2^{3}}=1: 8$ | \& $1 / 2$

$1 / 2$

\hline
\end{tabular}

QB365-Question Bank Software

18 i)	c) $(0,0)$	1
ii)	a) $(4,6)$	1
iii)	a) $(6,5)$	1
iv)	a) $(16,0)$	1
v)	b) $(-12,6)$	1
19 i)	c) 90°	1
ii)	b) SAS ${ }^{\text {c }}$	1
iii)	b) $4: 9$	1
iv)	d) Converse of Pythagoras theorem -	1
v)	a) $48 \mathrm{~cm}^{2}$	1
20 i)	d) parabola	1
ii)	a) 2	1
iii)	b) -1, 3	1
iv)	c) $x^{2}-2 x-3$	1
v)	d) 0	1
21	Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the required point. Using section formula $\begin{array}{ll} \left\{\frac{m 1 x 2+m 2 x 1}{m 1+m 2}, \frac{m 1 y 2+m 2 y 1}{m 1+m 2}\right\} & =(x, y) \\ x=\frac{3(8)+1(4)}{3+1} & , \\ x=7 & y=\frac{3(5)+1(-3)}{3+1} \\ x=3 \end{array}$ $(7,3)$ is the required point	1 1

	OR Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be equidistant from the points $\mathrm{A}(7,1)$ and $\mathrm{B}(3,5)$ Given $A P=B P$. So, $A P^{2}=B P^{2}$ $\begin{aligned} & \quad(x-7)^{2}+(y-1)^{2}=(x-3)^{2}+(y-5)^{2} \\ & x^{2}-14 x+49+y^{2}-2 y+1=x^{2}-6 x+9+y^{2}-10 y+25 \\ & \\ & x-y=2 \end{aligned}$	1
22	By BPT, $\begin{equation*} \frac{A M}{M B}=\frac{A L}{L C} \tag{1} \end{equation*}$ \qquad Also, $\frac{A N}{N D}=\frac{A L}{L C}$ \qquad (2) By Equating ($\text { (1) and (2) } \frac{A M}{M B}=\frac{A N}{N D}$	1/2
23	To prove: $A B+C D=A D+B C$. Proof: AS = AP (Length of tangents from an external point to a circle are equal) $\begin{aligned} & B Q=B P \\ & C Q=C R \\ & D S=D R \\ & A S+B Q+C Q+D S=A P+B P+C R+D R \\ & (A S+D S)+(B Q+C Q)=(A P+B P)+(C R+D R) \\ & A D+B C=A B+C D \end{aligned}$	1
24	For the correct construction	2

\begin{tabular}{|c|c|c|}
\hline 25 \& \begin{tabular}{l}
\(15 \cot A=8\), find \(\sin A\) and \(\sec A\). \\
Cot \(A=8 / 15\)
\[
\frac{A d j}{O p p o}=8 / 15
\] \\
By Pythagoras Theorem
\[
\begin{aligned}
\& \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
\& \mathrm{AC}=\sqrt{(8 x)^{2}+(15 x)^{2}} \\
\& \mathrm{AC}=17 \mathrm{x}
\end{aligned}
\] \\
\(\operatorname{Sin} A=15 / 17\) \\
\(\operatorname{Cos} A=8 / 17\) \\
By Pythagoras Theorem \\
\(\mathrm{QR}=\sqrt{(13)^{2}-(12)^{2}} \mathrm{~cm}\) \\
\(Q R=5 \mathrm{~cm}\) \\
Tan \(P=5 / 12\) \\
Cot \(R=5 / 12\) \\
Tan P - Cot R =5/12-5/12 \(=0\)
\end{tabular} \& \\
\hline 26 \& \[
\begin{aligned}
\& 9,17,25, \ldots \ldots . . \\
\& S_{n}=636 \\
\& a=9 \\
\& d=a_{2} \cdot a_{1} \\
\& =17-9=8 \\
\& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
\& S n=\frac{n}{2}[2 a+(n-1) d]
\end{aligned}
\] \& \(1 / 2\)

$1 / 2$

\hline
\end{tabular}

QB365-Question Bank Software

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& 636=\frac{n}{2}[2 \times 9+(n-1) 8] \\
\& 1272=n[18+8 n-8] \\
\& 1272=n[10+8 n] \\
\& 8 n^{2}+10 n-1272=0 \\
\& 4 n^{2}+5 n-636=0
\end{aligned}
\]
\[
\begin{aligned}
\& \mathrm{n}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\& \mathrm{n}=\frac{-5 \pm \sqrt{5^{2}-4 x 4 x(-636)}}{2 x 4} \\
\& \mathrm{n}=-\frac{-5 \pm 101}{8} \\
\& \mathrm{n}=\frac{96}{8} \\
\& \mathrm{n}=12
\end{aligned}
\] \\
\(\mathrm{n}=12\) (since n cannot be negative)
\end{tabular} \& \(1 / 2\)

$1 / 2$

\hline 27 \& | Let $\sqrt{3}$ be a rational number. |
| :--- |
| Then $\sqrt{3}=p / q \quad \operatorname{HCF}(p, q)=1$ |
| Squaring both sides |
| $(\sqrt{ } 3)^{2}=(p / q)^{2}$ $3=p^{2} / q^{2}$ $3 q^{2}=p^{2}$ |
| 3 divides $p^{2}>3$ divides p |
| 3 is a factor of p |
| Take $p=3 C$ $3 q^{2}=(3 c)^{2}$ $3 q^{2}=9 C^{2}$ |
| 3 divides q^{2} » 3 divides q |
| 3 is a factor of q |
| Therefore 3 is a common factor of p and q |
| It is a contradiction to our assumption that p / q is rational. |
| Hence $\sqrt{ } 3$ is an irrational number. | \& 1

\hline 28 \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \& 1
\(1 / 2\)
\(1 / 2\) \\
\hline 29 \& \begin{tabular}{l}
Let Meena has received x no. of 50 re notes and y no. of 100 re notes.So,
\[
\begin{aligned}
\& 50 x+100 y=2000 \\
\& x+y=25
\end{aligned}
\] \\
multiply by 50
\[
\begin{gathered}
50 x+100 y=2000 \\
50 x+50 y=1250 \\
-\quad-\quad- \\
\hline 50 y=750 \\
Y=15
\end{gathered}
\] \\
Putting value of \(y=15\) in equation (2)
\[
\begin{aligned}
\& x+15=25 \\
\& x=10
\end{aligned}
\] \\
Meena has received 10 pieces 50 re notes and 15 pieces of 100 re notes
\end{tabular} \& 1

1

\hline 30 \& | (i) $10,11,12 \ldots 90$ are two digit numbers. There are 81 numbers. So, Probability of getting a two-digit number $=81 / 90=9 / 10$ |
| :--- |
| (ii) 1, 4, 9, 16, 25,36,49,64,81 are perfect squares. So, Probability of getting a perfect square number. $=9 / 90=1 / 10$ |
| (iii) $5,10,15 \ldots . .90$ are divisible by 5 . There are 18 outcomes.. So,Probability of getting a number divisible by 5 . $=18 / 90=1 / 5$ | \& 1

\hline
\end{tabular}

QB365-Question Bank Software

	(i) Probability of getting A king of red colour. $P(\text { King of red colour })=2 / 52=1 / 26$ (ii) Probability of getting A spade $P(\text { a spade })=13 / 52=1 / 4$ (iii) Probability of getting The queen of diamonds $P($ a the queen of diamonds $)=1 / 52$	1 1
31	$\begin{aligned} & r_{1}=6 \mathrm{~cm} \\ & r_{2}=8 \mathrm{~cm} \\ & r_{3}=10 \mathrm{~cm} \end{aligned}$ Volume of sphere $=4 / 3 \Pi r^{3}$ Volume of the resulting sphere $=$ Sum of the volumes of the smaller spheres. $\begin{aligned} 4 / 3 \Pi r^{3} & =4 / 3 \Pi r_{1}{ }^{3}+{ }^{4 / 3} \Pi r_{2}{ }^{3}+4 / 3 \Pi r_{3}{ }^{3} \\ 4 / 3 \Pi r^{3} & \left.=4 / 3 \Pi\left(r_{1}{ }^{3}+r_{2}{ }^{3}+r_{3}\right)^{3}\right) \\ r^{3} & =6^{3}+8^{3}+10^{3} \\ r^{3} & =1728 \\ r & =\sqrt[3]{1728} \\ r & =12 \mathrm{~cm} \end{aligned}$ Therefore, the radius of the resulting sphere is 12 cm .	1 1 1 1
32	$(\sin A-\cos A+1) /(\sin A+\cos A-1)=1 /(\sec A-\tan A)$ L.H.S. divide numerator and denominator by $\cos \mathrm{A}$ $\begin{aligned} & =(\tan A-1+\sec A) /(\tan A+1-\sec A) \\ & =(\tan A-1+\sec A) /(1-\sec A+\tan A) \end{aligned}$ We know that $1+\tan ^{2} A=\sec ^{2} A$ $\begin{aligned} & \text { Or } 1=\sec ^{2} A-\tan ^{2} A=(\sec A+\tan A)(\sec A-\tan A) \\ & =(\sec A+\tan A-1) /[(\sec A+\tan A)(\sec A-\tan A)-(\sec A-\tan A)] \\ & =(\sec A+\tan A-1) /(\sec A-\tan A)(\sec A+\tan A-1) \end{aligned}$	1 1

34	 Let AB and CD be the multi-storeyed building and the building respectively. Let the height of the multi-storeyed building $=h \mathrm{~m}$ and the distance between the two buildings $=x \mathrm{~m}$. $\begin{aligned} & \mathrm{AE}=\mathrm{CD}=8 \mathrm{~m} \text { [Given] } \\ & \mathrm{BE}=\mathrm{AB}-\mathrm{AE}=(h-8) \mathrm{m} \end{aligned}$ and $\mathrm{AC}=\mathrm{DE}=x \mathrm{~m} \text { [Given] }$ Also, $\angle \mathrm{FBD}=\angle \mathrm{BDE}=30^{\circ}$ (Alternate angles) $\angle \mathrm{FBC}=\angle \mathrm{BCA}=45^{\circ}$ (Alternate angles) Now, In \triangle ACB, $\begin{align*} & \Rightarrow \tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{AC}}\left[\because \tan \theta=\frac{\text { Perpendicular }}{\text { Base }}\right] \\ & \Rightarrow 1=\frac{h}{x} \\ & \Rightarrow x=h \ldots \ldots(i) \tag{i} \end{align*}$ In \triangle BDE,	$1{ }^{1}$

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Let \(A D=x \mathrm{~m}\) and \(A B=y \mathrm{~m}\). \\
Then in right \(\triangle \mathrm{ADE}, \tan 60^{\circ}=\frac{D E}{A D}\)
\[
\begin{align*}
\& \sqrt{ } 3=\frac{87}{X} \\
\& X=\frac{87}{\sqrt{3}} \tag{i}
\end{align*}
\] \\
In right \(\triangle A B C, \tan 30^{\circ}=\frac{B C}{A B}\)
\[
\begin{align*}
\& \frac{1}{\sqrt{3}}=\frac{87}{y} \\
\& Y=87 \sqrt{ } 3 . \tag{ii}
\end{align*}
\] \\
Subtracting(i) and (ii)
\[
y-x=87 \sqrt{ } 3 \quad--\frac{87}{\sqrt{3}}
\]
\[
y-x=\frac{87 \cdot 2 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}}
\]
\[
y-x=58 \sqrt{ } 3 m
\] \\
Hence, the distance travelled by the balloon is equal to BD
\[
y-x=58 \sqrt{ } 3 \mathrm{~m}
\]
\end{tabular} \& 1

1
1
1
1
1

\hline 35 \& | Let A be the first term and D the common difference of A.P. $\begin{align*} & T p=a=A+(p-1) D=(A-D)+p D \tag{1}\\ & T q=b=A+(q-1) D=(A-D)+q D \tag{2}\\ & T r=c=A+(r-1) D=(A-D)+r D \tag{3} \end{align*}$ |
| :--- |
| Here we have got two unknowns A and D which are to be eliminated. |
| We multiply (1),(2) and (3) by $q-r, r-p$ and $p-q$ respectively and add: $\begin{aligned} & \mathrm{a}(q-r)=(\mathrm{A}-\mathrm{D})(q-r)+\mathrm{D} p(q-r) \\ & \mathrm{b}(r-p)=(\mathrm{A}-\mathrm{D})(r-p)+\operatorname{Dq}(r-p) \\ & \mathrm{c}(\mathrm{p}-\mathrm{q})=(\mathrm{A}-\mathrm{D})(\mathrm{p}-\mathrm{q})+\operatorname{Dr}(\mathrm{p}-\mathrm{q}) \\ & a(q-r)+b(r-p)+c(p-q) \\ & =(A-D)[q-r+r-p+p-q]+D[p(q-r)+q(r-p)+r(p-q)] \\ & =(\mathrm{A}-\mathrm{D})(0)+D[p q-p r+q r-p q+r p-r q) \\ & =0 \end{aligned}$ | \& $1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
1
1

\hline
\end{tabular}

QB365-Question Bank Software

