Class- X

Mathematics-Basic (241)

Marking Scheme SQP-2020-21

Max. Marks: 80

Duration:3hrs

		1
1	$156 = 2^2 \times 3 \times 13$	1
2	Quadratic polynomial is given by x ² - (a +b) x +ab	1
	$x^2 - 2x - 8$	
	XX	
3	HCF X LCM =product of two numbers	1/2
	LCM (96,404) = $\frac{96 X 404}{HCF(96,404)} = \frac{96 X 404}{4}$	1/2
	LCM = 9696	
	OR Contraction	
	Every composite number can be expressed (factorized) as a product	1
	of primes, and this factorization is unique, apart from the order in	
	which the factors occur.	
4	x - 2y =0	
	3x + 4y -20 =0	
	<u>A</u>	
	$\frac{1}{3} \neq \frac{-2}{4}$	1⁄2
	As, $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ is one condition for consistency.	
	Therefore, the pair of equations is consistent.	1⁄2
5	1	1
6	$\Theta = 60^{\circ}$	
	Area of sector $=\frac{\theta}{360^{\circ}} \Pi r^2$	1/2
	$A = \frac{60^{\circ}}{360^{\circ}} X \frac{22}{7} X (6)^2 \text{ cm}^2$	12
	$A = \frac{1}{6} X \frac{22}{7} X36 \text{ cm}^2$	
	$= 18.86 \text{ cm}^2$	1/2

	OR	
	Another method- Horse can graze in the field which is a circle of radius 28 cm. So, required perimeter = $2\Pi r$ = $2.\Pi(28)$ cm = $2 \times \frac{22}{7} X$ (28)cm = 176 cm	1/2 1/2
7	By converse of Thale's theorem DE II BC $\bot ADE = \bot ABC = 70^{\circ}$ Given $\bot BAC = 50^{\circ}$ $\bot ABC + \bot BAC + \bot BCA = 180^{\circ}$ (Angle sum prop of triangles)	1/2
	$70^{\circ} + 50^{\circ} + \Box BCA = 180^{\circ}$ $\Box BCA = 180^{\circ} - 120^{\circ} = 60^{\circ}$	1⁄2
	EC = AC - AE = (7 - 3.5) cm = 3.5 cm $\frac{AD}{BD} = \frac{2}{3} \text{ and } \frac{AE}{EC} = \frac{3.5}{3.5} = \frac{1}{1}$ So, $\frac{AD}{BD} \neq \frac{AE}{EC}$	1⁄2
	Hence, By converse of Thale's Theorem, DE is not Parallel to BC.	1⁄2
8	Length of the fence = $\frac{Total cost}{Rate}$ = $\frac{Rs.5280}{Rs 24/metre}$ = 220 m So, length of fence = Circumference of the field $\therefore 220m= 2 \ \Pi r=2 \ X \frac{22}{7} \ x \ r$	1⁄2
	So, $r = \frac{220 x 7}{2 x 22} m = 35 m$	1⁄2
9	A B B B B B C	
	Sol: tan 30 ° = $\frac{AB}{BC}$ 1/ $\sqrt{3} = \frac{AB}{B}$	1⁄2
	AB = 8 / $\sqrt{3}$ metres Height from where it is broken is 8/ $\sqrt{3}$ metres	1⁄2

10	Perimeter = Area	1
	$2\Pi r = \Pi r^2$	
	r = 2 units	
11	3 median = mode + 2 mean	1
11	S median = mode + 2 mean	1
12	8	1
13	$\frac{a1}{a2} \neq \frac{b1}{b2}$ is the condition for the given pair of equations to have unique solution.	1/2
	$\frac{4}{2} \neq \frac{p}{2}$	
	p ≠4	1/2
	Therefore, for all real values of p except 4, the given pair of equations will have a unique solution.	
	Here, $\frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2}$	
	$\overline{b2} = \overline{6} = \overline{2}$ and $\overline{c2} = \overline{7}$	
	$\frac{1}{2} = \frac{1}{2} \neq \frac{5}{7}$ $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ is the condition for which the given system of equations will represent parallel lines.	1⁄2
	So, the given system of linear equations will represent a pair of parallel lines.	1⁄2
14	No. of red balls = 3, No.black balls =5	1/2
	Total number of balls = 5 + 3 =8 Probability of red balls $=\frac{3}{8}$	1/2
	OR	
	Total no of possible outcomes = 6	
	There are 3 Prime numbers, 2,3,5.	1/2 1/
	So, Probability of getting a prime number is $\frac{3}{6} = \frac{1}{2}$	1/2
L		1

c) (0,0)	1
a) (4,6)	1
a) (6,5)	1
a) (16,0)	1
b) (-12,6)	1
c) 90°	1
b) SAS	1
b) 4:9	1
d) Converse of Pythagoras theorem	1
a) 48 cm ²	1
d) parabola	1
a) 2	1
b) -1, 3	1
c) $x^2 - 2x - 3$	1
d) 0	1
Let P(x,y) be the required point. Using section formula	
$\{\frac{m 1x2 + m2x1}{m1 + m2}, \frac{m1y2 + m2y1}{m1 + m2}\} = (X, y)$ $X = \frac{3(8) + 1(4)}{m1 + m2} \qquad Y = \frac{3(5) + 1(-3)}{m1 + m2}$	1
x = 3 + 1 x = 7 (7,3) is the required point y = 3 y = 3	1
	a) (4,6) a) (6,5) a) (16,0) b) (-12,6) c) 90° b) SAS b) 4 : 9 d) Converse of Pythagoras theorem a) 48 cm ² d) parabola a) 2 b) -1, 3 c) $x^2 - 2x - 3$ d) 0 Let P(x,y) be the required point. Using section formula $\{\frac{m1x2+m2x1}{m1+m2}, \frac{m1y2+m2y1}{m1+m2}\} = (x, y)$ $x = 3(8)+1(4)$, $y = \frac{3(5)+1(-3)}{3+1}$ $x = 7$ $y = 3$

	OR	
	Let P(x, y) be equidistant from the points A(7,1) and B(3,5) Given AP =BP. So, $AP^2 = BP^2$	1
	$(x-7)^{2} + (y-1)^{2} = (x-3)^{2} + (y-5)^{2}$ x ² -14x+49 +y ² -2y +1 = x ² -6x +9+y ² -10y+25 x - y =2	1
22	By BPT, $\frac{AM}{MB} = \frac{AL}{LC} \dots $	1/2
	Also, $\frac{AN}{ND} = \frac{AL}{LC}$ (2)	1⁄2
	By Equating (1) and (2) $\frac{AM}{MB} = \frac{AN}{ND}$	1
23	To prove: $AB + CD = AD + BC$.	1
24	For the correct construction	2

	$636 = \frac{n}{2} [2x 9 + (n-1) 8]$ $1272 = n [18 + 8n - 8]$ $1272 = n [10 + 8n]$ $8n^{2} + 10n - 1272 = 0$ $4n^{2} + 5n - 636 = 0$ $n = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $n = \frac{-5 \pm \sqrt{5^{2} - 4x 4x(-636)}}{2x4}$	1/2
	$n = -\frac{-5 \pm 101}{8}$ $n = \frac{96}{8}$ $n = 12$ $n = -\frac{-53}{4}$ $n = 12 \text{ (since n cannot be negative)}$	1/2
27	Let $\sqrt{3}$ be a rational number. Then $\sqrt{3} = p/q$ HCF (p,q) =1 Squaring both sides $(\sqrt{3})^2 = (p/q)^2$ $3 = p^2/q^2$ $3q^2 = p^2$ 3 divides $p^2 \gg 3$ divides p 3 is a factor of p Take p = 3C $3q^2 = (3c)^2$ $3q^2 = 9C^2$	1
	$3q^2 = (3c)^2$ $3q^2 = 9C^2$ 3 divides $q^2 \gg 3$ divides q 3 is a factor of q Therefore 3 is a common factor of p and q It is a contradiction to our assumption that p/q is rational. Hence $\sqrt{3}$ is an irrational number.	1⁄2 1
28		

	Required to prove -: $\Box PTQ = 2 \Box OPQ$	1
	Sol :- Let ∟PTQ = e	
	Now by the theorem TP = TQ. So, TPQ is an isosceles triangle	
	∟TPQ = ∟TQP = ½ (180° -θ)	1
	$=90^{\circ}-\frac{1}{2}\Theta$	
	∟ OPT = 90°	1/2
	∟OPQ =∟OPT -∟TPQ =90° -(90° - ½ θ)	
	$= \frac{1}{2} \Theta$	
	= ½ ∟ PTQ	1/2
	$\Box PTQ = 2 \Box OPQ$	
29	Let Meena has received x no. of 50 re notes and y no. of 100 re	1
	notes.So,	
	50 x + 100 y =2000	
	x + y =25	
	multiply by 50	
		1
	50x + 100y =2000	
	50 x + 50 y = 1250	
	50x + 100y = 2000 50 x + 50 y = 1250 	
	50y =750	
	Y= 15	
		1
	Putting value of y=15 in equation (2)	
	x+ 15 =25	
	x = 10	
	G	
	Meena has received 10 pieces 50 re notes and 15 pieces of 100 re	
	notes	
30	(i) 10,11,1290 are two digit numbers. There are 81	
	numbers.So,Probability of getting a two-digit number	1
	= 81/90 = 9/10	
	(ii) 1, 4, 9,16,25,36,49,64,81 are perfect squares. So,	1
	Probability of getting a perfect square number.	
	= 9/90 = 1/10	
	(iii) 5, 10,1590 are divisible by 5. There are 18 outcomes	1
	So, Probability of getting a number divisible by 5.	
	= 18/90 = 1/5	
	- 10/50 - 1/5	

	OR	
	(i) Probability of getting A king of red colour.	1
	 P (King of red colour) = 2/52 =1/26 (ii) Probability of getting A spade P (a spade) = 13/52 = 1/4 	1
	(iii) Probability of getting The queen of diamonds P (a the queen of diamonds) = 1/52	1
31	$r_{1} = 6 \text{cm}$ $r_{2} = 8 \text{cm}$ $r_{3} = 10 \text{cm}$ Volume of sphere = $\frac{4}{3} \Pi r^{3}$ Volume of the resulting sphere = Sum of the volumes of the smaller spheres	1
	spheres. $ \begin{array}{rcl} & & 4'_{3} \prod r^{3} &= 4'_{3} \prod r_{1}^{3} &+ 4'_{3} \prod r_{2}^{3} &+ 4'_{3} \prod r_{3}^{3} \\ & & 4'_{3} \prod r^{3} &= 4'_{3} \prod (r_{1}^{3} &+ r_{2}^{3} &+ r_{3}^{3}) \\ & & r^{3} = 6^{3} + 8^{3} &+ 10^{3} \\ & & r^{3} &= 1728 \\ & & r &= \sqrt[3]{1728} \\ & & r &= 12 \text{ cm} \end{array} $ Therefore, the radius of the resulting ephane is 12 cm	1
22	Therefore, the radius of the resulting sphere is 12cm.	
32	(sin A-cos A+1)/ (sin A+cosA-1) = 1/(sec A-tan A) L.H.S. divide numerator and denominator by cos A	
	= (tan A-1+secA)/ (tan A+1-sec A)	1
	= (tan A-1+secA)/(1-sec A + tan A)	
	We know that 1+tan ² A=sec ² A	1
	Or $1 = \sec^2 A \cdot \tan^2 A = (\sec A + \tan A)(\sec A - \tan A)$	
	=(sec A + tan A-1)/[(sec A + tan A)(sec A-tan A)-(sec A-tan A)]	
	=(sec A + tan A-1)/(sec A-tan A)(sec A + tan A-1)	1

= 1/(sec A-tan A) , proved.	
Given:-	
Speed of boat =18 <i>km/hr</i> Distance =24 <i>km</i>	
Let x be the speed of stream. Let $t1$ and $t2$ be the time for upstream and downstream. As we know that,	1⁄2
speed= distance / time ⇒time= distance / speed	
For upstream, Speed = $(18-x) km/hr$ Distance = $24km$ Time = $t1$ Therefore,	1/2
$t_1 = \frac{24}{18-x}$	
For downstream, Speed =(18+ <i>x</i>) <i>km</i> / <i>hr</i> Distance =24 <i>km</i> Time = <i>t</i> 2 Therefore, 24	
Now according to the question-	
18-x 18+x $\Rightarrow \frac{24(18+x)-24(18-x)}{(18-x)(18+x)} = 1$	1⁄2
$\Rightarrow 48x = (18 - x)(18 + x)$	
$\Rightarrow 48x = 324 + 18x - 18x - x^2$	
$\Rightarrow x^{2} + 48x - 324 = 0$ $\Rightarrow x^{2} + 54x - 6x - 324 = 0$ $\Rightarrow x(x+54) - 6(x+54) = 0$	
	Given:- Speed of boat =18km/hr Distance =24km Let x be the speed of stream. Let 1 and 2 be the time for upstream and downstream. As we know that, speed= distance / time \Rightarrow time= distance / speed For upstream, Speed =(18-x) km/hr Distance =24km Time =1 Therefore, t_1 = $\frac{24}{18-x}$ For downstream, Speed =(18+x)km/hr Distance =24km Time =2 Therefore, t_2 = $\frac{24}{18+x}$ Now according to the question- t1=2+1 $\frac{24}{18-x} = \frac{24}{18+x} + 1$ $\Rightarrow \frac{24(18+x)-24(18-x)}{(18-x)(18+x)} = 1$ $\Rightarrow 48x=(18-x)(18+x)$ $\Rightarrow 48x=324+18x-18x-x^2$ $\Rightarrow x^2+48x-324=0$ $\Rightarrow x^2+48x-324=0$

	Let $AD = x m$ and $AB = y m$.	
	Then in right \triangle ADE, tan60° = $\frac{DE}{AD}$	
	$\sqrt{3} = \frac{87}{X}$	1
	$X = \frac{87}{\sqrt{3}}$ (i)	
	In right $\triangle ABC$, tan 30° = $\frac{BC}{AB}$	
	$\frac{1}{\sqrt{3}} = \frac{87}{y}$	
	Y = 87√3(ii)	1
	Subtracting(i) and (ii)	
	$y-x = 87\sqrt{3} - \frac{87}{\sqrt{3}}$	
	$y-x = \frac{87.2.\sqrt{3}}{\sqrt{3}.\sqrt{3}}$	1
	y-x = 58√3 m	
	Hence, the distance travelled by the balloon is equal to BD	
	y-x =58√3 m.	1
35	Let A be the first term and D the common difference of A.P.	
	Tp = a = A + (p-1)D = (A - D) + pD (1)	1/2
	Tq=b=A+(q-1)D=(A-D)+qD(2)	1/2
	Tr=c=A+(r-1)D=(A-D)+rD(3)	1/2
	Here we have got two unknowns A and D which are to be eliminated.	
	We multiply (1),(2) and (3) by $q-r,r-p$ and $p-q$ respectively and add:	
	a (q-r) = (A - D)(q-r) + Dp(q-r)	1/2
	b(r-p) = (A-D) (r-p) + Dq (r-p) c(p-q) = (A-D) (p-q) + Dr (p-q)	1/2 1/2
	a(q-r)+b(r-p)+c(p-q)	1
	=(A-D)[q-r+r-p+p-q]+D[p(q-r)+q(r-p)+r(p-q)] = (A - D) (0) + D [pq-pr + qr - pq + rp - rq) =0	1

36	Height (in cm) f C.F.	
	below 140 4 4	
	140-145 7 11	1
	145-150 18 29	
	150-155 11 40	
	155-160 6 46	
	160-165 5 51	
	<i>N</i> =51⇒	
	<i>N/2</i> =51/2=25.5	
	As 29 is just greater than 25.5, therefore median class is 145-150.	
	$Median = I + \frac{\left(\frac{N}{2} - C\right)}{f} X h$	
	Here, <i>I</i> = lower limit of median class =145	
	C=C.F. of the class preceding the median class =11	1/2
	h= higher limit - lower limit =150-145=5	
	f= frequency of median class =18 \therefore median= 145 $\cdot (25.5-11) \times 5$	
	∴median=	
	$= 145 + \frac{(25.5-11)}{18} \times 5$ =149.03 Mean by direct method	1⁄2
	Mean by direct method	
		1
	Height (in cm) ^f x _i f _{xi}	
	below 140 4 137.5 550	
	140-145 7 142.5 997.5	
	145-150 18 147.5 2655	
	150-155 11 152.5 1677.5	
	155-160 6 157.5 945	1
	5 162.5 812.5	
	160-165 $\sum fx$	
	N = N	
	=7637.5/51	
	= 149.75	1