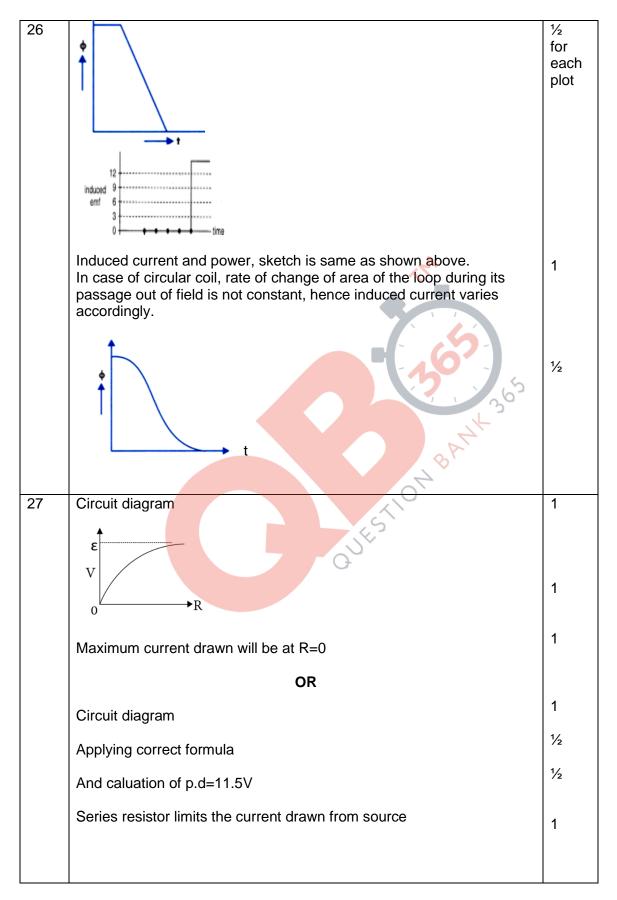
Class -XII


PHYSICS (Theory)

SQP Marking Scheme 2020-21

Sr. No.	VALUE POINTS	Marks
1	Magnetic dipole moment	1
2	Any one use of micro waves	1
	OR	
	1:1	
3	zero	1
4	Remains same	1
	OR OR	
	7.707A, 50Hz	1/2+1/2
5	h/2Π	1
6	4eV	1
7	Antinutrino	1
	Antinutrino OR	
	Electron	
8	Decreases	1
	OR	
	25Hz	
9	Dynamic resistance =change in voltage/change in current=1ohm	1
10	Photodiode	1
11	a) Both A and R are true and R is the correct explanation of A	1
12	b)Both A and R are true and R is the correct explanation of A	1
13	c)A is true but R is false	1

14	b) Both A and R are true but R is NOT the correct explanation of A	1
15	1.c) Copper 2.a) car	4x1 = 4
	3.c) zero	
	4.a) -q	
	5 b)1.9×10 ⁵ Nm ² /C leaving the surface	
	(any 4 parts to be attempted)	
16	1. b) Its critical angle with reference to air is too small	4x1=4
	2. a) 2.42 3. c) high refractive index	
	4. d) increase	
	5. d) less than first	
	(any 4 parts to be attempted)	
17	Explanation by showing magnetic field directions in all three regions Concluding left of region 1	1
18	Plot of Intensity distribution of diffraction with proper labeling	2
	OR	
	$n\lambda/d=2\lambda/a$ $n=2d/a$,where d is separation between slit and a width of slit	
19	Derivation including both terms electrostatic energy in system and in external field	1+1
	OR	
	Derivation of relation E=-dV/dr Diagram of equipotential surfaces	1+1

Circuit diagram showing biasing of LED in F.B	½ 1
For emission in visible range least band energy required is1.8eV	1/2
Calculation of magnetic flux Φ =BA $cos\theta$,where θ =30° = $\sqrt{3}/2^{10^{-11}}$ Wb Calculation of induced emf E=A $cos\theta$ dB/dt=0.5V	1
Path difference= $3\lambda/2$ Putting value we will get λ =3cm	1
Well labeled energy band diagram of n-type semiconductor	1
n-type semiconductor	1/2
electrons-majority charge carriers	1/2
Definition of each term Diagram showing relation	½+½ 1
OR 30°	
Bv/B _H =tanθ	1
Putting values,θ=30 ⁰	1
Two characteristics- virtual and enlarged image and same side of	1
As u and v both negative, we get 1/v=1/u-1/f Interpret y=mx+c ,plot of the graph	1
	Action of LED For emission in visible range least band energy required is1.8eV Calculation of magnetic flux Φ=BA cosθ ,where θ=30° =√3/2^10-11Wb Calculation of induced emf E=A cosθdB/dt=0.5V Path difference=3λ/2 Putting value we will getλ=3cm Well labeled energy band diagram of n-type semiconductor n-type semiconductor electrons-majority charge carriers Definition of each term Diagram showing relation OR Bv/B _H =tanθ Putting values,θ=30° Two characteristics- virtual and enlarged image and same side of object. As u and v both negative, we get 1/v=1/u-1/f

	,	
28	De-Broglie reasoned out that nature was symmetrical and two basic physical entities –mass and radiation must be symmetrical. If radiation shows shows dual aspect than matter should do so.	1
	De-Broglie equation- λ=h/P	1
	For photon – P=hv/C	
	Therefore,h/P=C/ ν = λ As λ =h/ $\sqrt{2}$ mk	
	AS \(-11\) \(\z \)	
	So,alpha particle will be having shortest de-Broglie wavelength compared to deutrons.	1
	OR	
	Main implications- 1. kinetic energy of emitted electrons depends upon frequency, but not on intensisty of radiation	1
	2.there exist a frequency of radiation below which no photoemission takes place, how high intensity of radiation may be.	1
	Explanation wave nature of radiation fails to explain photoelectric effect	1
29	Derivation of frequency of radiation emitted when a hydrogen atom de excites from level n to level (n-1).	2
	$v = me^4 (2n-1) / (4\Pi)^3 (h/2\Pi)^3 n^2 (n-1)^2$	1
	Comparing for large values of n, with classical freuency $v = v / 2\Pi r$	
30	One difference between nuclear fission and nuclear fusion	1
	Calculating Q=((m) Fe-2(m) Al)C ² =26.90MeV	1
	Justification not possible	1
31	(a) Statement of Gauss law	1
	Proof of outward flux due to a point charge Q ,in vacuum within gaussian surface, is independent of its size and shape	2
	(b) Net electric field towards left=σ/ε left	1
	Net electric field towards right=σ/ε right	1
		1

	OR	
	Definitionof ideal dipole +example	½+ ½
	Derivation of torque	2
	Putting values in correct formula and solving, value of charge and potential energy Q=8×10 ⁻³ C U=-8J	1
32	(a) Derivation of instantaneous current i=i₀sin (ωt +Π/2)	1
	Reactance $X_C=1/\omega C$	1
	Phasor diagram showing v and i relation in pure C	1
	(b) Explanation that adding R it will behave RC series ac circuit Calcuation of current and phase angle	1+1
	Calcuation of current and phase angie OR (a)Principle of ac generator (b)Well labelled diagram Brief working and emf expression	
	(a)Principle of ac generator	1
	(b)Well labelled diagram	1
	Brief working and emf expression	2
	(c) reason	1
33	(a) Definition of wavefront	1
	(b) Ray diagram showing shapes of wavefront Incident plans wavefront Convex lens	1
	Spherical wavefront at radius R	1
	(c) Proof of Snell's law	2

OR	
(a) choice of objective	1
(b) ray diagram of reflecting type telescope Formula of magnifying power	2+1
(c) stating two advantages	2

