## RD Sharma Solutions <br> Class 12 Maths <br> $$
\text { Chapter } 8
$$ <br> $$
\text { Ex } 8.2
$$

$2 x-y+z=0$
$3 x+2 y-z=0$
$x+4 y+3 z=0$

The systm can be written as

$$
\begin{aligned}
{\left[\begin{array}{ccc}
2 & -1 & 1 \\
3 & 2 & -1 \\
1 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
A & =0
\end{aligned}
$$

Now $|A|=2(10)+1(10)+1(10)$

$$
=40
$$

$$
\neq 0
$$

Since $|A| \neq 0$, hence $x=y=z=0$ is the only solution of this homogeneous system.

## Solution of Simultaneous Linear Equations Ex 8.2 Q2

$2 x-y+2 z=0$
$5 x+3 y-z=0$
$x+5 y-5 z=0$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
2 & -1 & 2 \\
5 & 3 & -1 \\
1 & 5 & -5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
\text { or } A \quad x=0
\end{gathered}
$$

$$
\begin{aligned}
|A|=2 & (-10)+1(-24)+2(22) \\
& =-20-24+44 \\
& =0
\end{aligned}
$$

Hence, the system has infinite solutions.
Let $z=k$

$$
2 x-y=-2 k
$$

$$
5 x+3 y=k
$$

$$
\left[\begin{array}{cc}
2 & -1 \\
5 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
-2 k \\
k
\end{array}\right]
$$

$$
A \quad x=B
$$

$|A|=6+5=11 \neq 0$ so $A^{-1}$ exist
Now adj $A=\left[\begin{array}{cc}3 & -5 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}3 & 1 \\ -5 & 2\end{array}\right]$
$x=A^{-1} \cdot B=\frac{1}{|A|}(\operatorname{adj} A) B=\frac{1}{11}\left[\begin{array}{cc}3 & 1 \\ -5 & 2\end{array}\right]\left[\begin{array}{c}-2 k \\ k\end{array}\right]=\left[\begin{array}{c}\frac{-5 k}{11} \\ \frac{12 k}{11}\end{array}\right]$
Hence, $x=\frac{-5 k}{11}, y=\frac{12 k}{11}, z=k$
Solution of Simultaneous Linear Equations Ex 8.2 Q3
$3 x-y+2 z=0$
$4 x+3 y+3 z=0$
$5 x+7 y+4 z=0$

$$
\begin{aligned}
|A| & =\left[\begin{array}{ccc}
3 & -1 & 2 \\
4 & 3 & 3 \\
5 & 7 & 4
\end{array}\right] \\
& =B(-9)+1(1)+2(13)=-27+1+26=-27+27 \\
& =0
\end{aligned}
$$

Hence, it has infinite solutions.
Let

$$
\begin{aligned}
& z=k \\
& 3 x-y=-2 k \\
& 4 x+3 y=-3 k
\end{aligned}
$$

or $\left[\begin{array}{cc}3 & -1 \\ 4 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}-2 k \\ -3 k\end{array}\right]$
or $\quad A \quad x=B$
$|A|=9+4=13 \neq 0$ hence $A^{-1}$ exists
$\operatorname{adj} A=\left[\begin{array}{cc}3 & -4 \\ 1 & 3\end{array}\right]=\left[\begin{array}{cc}3 & 1 \\ -4 & 3\end{array}\right]$

Now $x=A^{-1} B=\frac{1}{|A|}(a d j A) B$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{13}\left[\begin{array}{cc}3 & 1 \\ -4 & 3\end{array}\right]\left[\begin{array}{l}-2 k \\ -3 k\end{array}\right]=\frac{1}{13}\left[\begin{array}{l}-9 k \\ -k\end{array}\right]$

Hence, $x=\frac{-9 k}{13}, y=\frac{-k}{13}, z=k$
Solution of Simultaneous Linear Equations Ex 8.2 Q4

$$
\begin{aligned}
& x+y-6 z=0 \\
& x-y+2 z=0 \\
& -3 x+y+2 z=0
\end{aligned}
$$

Hence, $|A|=\left[\begin{array}{ccc}1 & 1 & -6 \\ 1 & -1 & 2 \\ -3 & 1 & 2\end{array}\right]$

$$
\begin{aligned}
& =1(-4)-1(8)-6(-2) \\
& =-4-8+12 \\
& =0
\end{aligned}
$$

Hence, the system has infinite solutions.
Let $z=k$

$$
x+y=6 k
$$

$$
x-y=-2 k
$$

or $\left[\begin{array}{ll}1 & +1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}6 k \\ -2 k\end{array}\right]$
or $\quad A \quad x=B$
$|A|=-1-1=-2 \neq 0$ hence $A^{-1}$ exists.
adj $A=\left[\begin{array}{ll}-1 & -1 \\ -1 & +1\end{array}\right]$
$x=A^{-1} B=\frac{1}{|A|}\left(a d^{\prime} j A\right) B=\frac{1}{-2}\left[\begin{array}{ll}-1 & -1 \\ -1 & +1\end{array}\right]\left[\begin{array}{l}6 k \\ -2 k\end{array}\right]$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{-2}\left[\begin{array}{l}-6 k+2 k \\ -6 k-2 k\end{array}\right]=\left(\frac{1}{-2}\right)\left[\begin{array}{l}-4 k \\ -8 k\end{array}\right]=\frac{-1}{2}\left[\begin{array}{l}-4 k \\ -8 k\end{array}\right]=\left[\begin{array}{c}2 k \\ 4 k\end{array}\right]$

Hence, $x=2 k, y=4 k, z=k$
Solution of Simultaneous Linear Equations Ex 8.2 Q5

$$
\begin{aligned}
& x+y+z=0 \\
& x-y-5 z=0 \\
& x+2 y+4 z=0 \\
& |A|=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -5 \\
1 & 2 & 4
\end{array}\right] \\
& \quad=1(6)-1(9)+1(3)-9-9=0
\end{aligned}
$$

Hence, the system has infinite solutions.

$$
\begin{aligned}
& z=k \\
& x+y=-k \\
& x-y=5 k
\end{aligned}
$$

$$
\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-k \\
5 k
\end{array}\right]
$$

$$
\text { or } \quad A \quad x=B
$$

$|A|=-2 \neq 0$, hence $A^{-1}$ exists.
$\operatorname{adj} A=\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]$
so, $x=A^{-1} B=\frac{1}{|A|}(\operatorname{adj} A) B=\frac{1}{-2}\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{c}-k \\ 5 k\end{array}\right]$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left(\frac{1}{-2}\right)\left[\begin{array}{l}k-5 k \\ k+5 k\end{array}\right]=\left[\begin{array}{l}2 k \\ -3 k\end{array}\right]$
$x=2 k, y=-3 k, z=k$
Solution of Simultaneous Linear Equations Ex 8.2 Q6
$x+y-z=0$
$x-2 y+z=0$
$3 x+6 y-5 z=0$

Hence, $|A|=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & -2 & 1 \\ 3 & 6 & -5\end{array}\right]$
$=1(4)-1(-8)-1(12)$
$=4+8-12=0$

Hence, the system will have infinite solutions.
Let $z=k$

$$
\begin{aligned}
& x+y=-k \\
& x-2 y=-k
\end{aligned}
$$

or $\left[\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}k \\ -k\end{array}\right]$
or $\quad A \quad x=B$
$|A|=-3 \neq 0$, hence $A^{-1}$ exists.
Now, adj $A=\left[\begin{array}{cc}-2 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}-2 & -1 \\ -1 & 1\end{array}\right]$

Next $\chi=A^{-1} B$

$$
\begin{aligned}
=\frac{1}{|A|}(\operatorname{adj} A)(B) & =\frac{1}{-3}\left[\begin{array}{cc}
-2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
k \\
-k
\end{array}\right] \\
& =\frac{-1}{3}\left[\begin{array}{c}
-2 k+k \\
-2 k
\end{array}\right] \\
& =\frac{-1}{3}\left[\begin{array}{c}
-k \\
-2 k
\end{array}\right]=\left[\begin{array}{c}
\frac{k}{3} \\
\frac{2 k}{3}
\end{array}\right]
\end{aligned}
$$

Hence, $x=\frac{k}{3}, y=\frac{2 k}{3}, z=k$
or $x=k, y=2 k, z=3 k$
Solution of Simultaneous Linear Equations Ex 8.2 Q7

$$
\begin{aligned}
& 3 x+y-2 z=0 \\
& x+y+z=0 \\
& x-2 y+z=0
\end{aligned}
$$

Hence, $|A|=\left[\begin{array}{ccc}3 & 1 & -2 \\ 1 & 1 & 1 \\ 1 & -2 & 1\end{array}\right]$

$$
\begin{aligned}
|A| & =B(1+2)-1(1-1)-2(-3) \\
& =9-0+6 \\
& =15 \neq 0
\end{aligned}
$$

Hence, the given system has only trivial solutions given by $x=y=z=0$

## Solution of Simultaneous Linear Equations Ex 8.2 Q8

$$
\begin{aligned}
& 2 x+3 y-z=0 \\
& x-y-2 z=0 \\
& 3 x+y+3 z=0
\end{aligned}
$$

Hence, $A=\left[\begin{array}{ccc}2 & 3 & -1 \\ 1 & -1 & -2 \\ 3 & 1 & 3\end{array}\right]$

$$
\begin{aligned}
|A| & =\left[\begin{array}{ccc}
2 & 3 & -1 \\
1 & -1 & -2 \\
3 & 1 & 3
\end{array}\right] \\
& =2(-3+2)-3(3+6)-1(4) \\
& =-2-27-4 \\
& \neq 0
\end{aligned}
$$

Hence, the system has only trivial solutions given by $x=y=z=0$

