### **Very Short Answer Questions**

Q. 1. Name the part of the eye which gives colour to the eyes. [NCERT Exemplar]

Ans. Iris

Q. 2. Boojho while waving his hand very fast in front of his eyes, observes that his fingers appear blurred. What could be the reason for it? [NCERT Exemplar]

Ans. Persistence of vision.

Q. 3. The angle between incident ray and reflected ray is 60°. What is the value of angle of incidence? [NCERT Exemplar]

**Ans.**  $\angle i + \angle r = 60^{\circ}$ 

As  $\angle i = \angle r$ 

So, angle of incidence = 30°

Q. 4. The distance between the object and its image formed by a plane mirror appears to be 24 cm. What is the distance between the mirror and the object? [NCERT Exemplar]

**Ans.** 12 cm

Q. 5. Look at figure given below. Can the image of the child in it be obtained on a screen? [NCERT Exemplar]



**Ans.** No, the image of the child cannot be obtained on a screen.

### Q. 6. What happens to light when it gets dispersed? Give an example. [NCERT Exemplar]

**Ans.** Light is split into its constituent colours. Rainbow is an example.

### Q. 7. What is Braille system?

**Ans.** It is system of raised dots that can be read with the fingers by blind people or people who have low vision.

#### Q. 8. What do you mean by dispersion of light?

**Ans.** The splitting of white light into seven colours is known as dispersion of light.

#### Q. 9. What is lateral inversion?

**Ans.** When an image formed by a plane mirror is such that the left of the object appears on the right and the right appears on the left. This is known as lateral inversion.

### **Short Answer Questions**

Q. 1. Draw the figure given below showing the position of the plane mirror. Also label the angle of incidence and angle of reflection on it. [NCERT Exemplar]



Q. 2. There is a mistake in each of the following ray diagrams given below as (a), (b), and (c). Make the necessary correction (s). [NCERT Exemplar]



**Ans.** The figure in all the three cases after correction should be as in the figure given below.



# Q. 3. Explain the process which enables us to perceive motion in a cartoon film. [NCERT Exemplar]

**Ans.** The cartoon film we see is actually the projection of static pictures on the screen in a specific order. Usually the static pictures are shown in a sequence at the rate of 24 pictures per second one after the other giving us the perception of movement.

# Q. 4. How is the phenomenon of reflection used in making a kaleidoscope? What are the applications of a kaleidoscope? [NCERT Exemplar]

**Ans.** The kaleidoscope gives a number of images formed by reflection from the mirrors inclined to one another. Designers and artists use kaleidoscope to get ideas for new patterns to design wallpapers, jewellery and fabrics.

## Q. 5. Figure given below shows the word REST written in two ways in front of a mirror. Show how the word would appear in the mirror. [NCERT Exemplar]



## Q. 6. Eyes of the nocturnal birds have large cornea and a large pupil. How does this structure help them? [NCERT Exemplar]

**Ans.** A large pupil and large cornea allows more light to enter their eyes and they can see objects even in faint light.

# Q. 7. What kind of lens is there in our eyes? Where does it form the image of an object? [NCERT Exemplar]

Ans. The type of lens in our eyes is convex. It forms images on the retina.

# Q. 8. Which part of the eye gets affected if someone is suffering from cataract? How is it treated? [NCERT Exemplar]

**Ans.** In people suffering from cataract the eye lens becomes clouded. Cataract is treated by replacing the opaque lens with a new artificial lens.

### Q. 9. What is meant by 'Persistence of vision'?

**Ans.** Persistence of vision is the characteristic of human eye to capture image on the retina and this image is retained for 1/16th of a second on the retina. If the time difference between the two pictures is less than one sixteenth of a second then our

eyes will not be able to distinguish the two different pictures rather it will be seen as if the picture is moving.

# Q. 10. Calculate the number of images formed when two plane mirrors are kept at following angles:

- (i) 45°
- (ii) 60°

### Ans. (i)

Number of images = 
$$\frac{360^{\circ}}{\text{Angle between the mirrors}}$$

$$=\frac{360^{\circ}}{45^{\circ}}=8$$
 images

(ii)

Number of images = 
$$\frac{360^{\circ}}{60^{\circ}}$$

= 6 images

### **Long Answer Questions**

Q. 1. Boojho planned an activity to observe an object A through pipes as shown in figure below, so that he could see objects which he could not directly see. [NCERT Exemplar]



- (i) How many mirrors should he use to see the objects?
- (ii) Indicate the positions of the mirrors in the figure.
- (iii) What must be the angle with respect to the incident light at which he should place the mirrors?
- (iv) Indicate the direction of rays in the figure.
- (v) If any of the mirrors is removed, will he be able to see the objects?

Ans. (i) Three

(ii)



(iii) 45°

(iv)



(v) No, he will not be able to see the objects.

# Q. 2. Write down the names of parts of the eye marked in the figure given below. [NCERT Exemplar]



Ans. (i) Ciliary muscle

- (ii) Iris
- (iii) Lens
- (iv) Cornea
- (v) Retina
- (vi) Optic nerve

### **Hots (Higher Order Thinking Skills)**

### Q. 1. Why is rainbow usually seen after heavy rainfall?

**Ans.** The rainbow is usually seen after heavy rainfall because after a rain shower, there are droplets of water in air, when sunlight passes through these water droplets, it splits into seven colours and forms rainbow.

#### Q. 2. What will happen if there were no photoreceptors in the eye?

**Ans.** If there are no photoreceptors, the brain will get no information about the image formed at retina and thus nothing could be seen.

### Q. 3. A girl looked into a plane mirror and saw the clock as shown below. Can you tell what was the time then?



**Ans.** The plane mirror forms laterally inverted image.



So, the time was 7:40.

#### Q. 4. What would happen if light incident on the mirror along the normal.

**Ans.** : Angle of incidence = Angle of reflection

And  $\angle$ i (angle of incidence) = 0

So  $\angle$ r (angle of reflection) = 0

So, the light returns back to its path.