25. Product of Three Vectors

Exercise 25A

Q. 1

Prove that

i. $\left[\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k}\end{array}\right]=\left[\begin{array}{lll}\hat{\jmath} & \hat{k} & \hat{\imath}\end{array}\right]=\left[\begin{array}{lll}\hat{k} & \hat{\imath} & \hat{\jmath}\end{array}\right]=1$
ii. $\left[\begin{array}{lll}\hat{\imath} & \hat{k} & \hat{\jmath}\end{array}\right]=\left[\begin{array}{lll}\hat{k} & \hat{\jmath} & \hat{\imath}\end{array}\right]=\left[\begin{array}{lll}\hat{\jmath} & \hat{\imath} & \hat{k}\end{array}\right]=-1$

Answer:

i. $\left[\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k}\end{array}\right]=\left[\begin{array}{lll}\hat{\jmath} & \hat{k} & \hat{\imath}\end{array}\right]=\left[\begin{array}{lll}\hat{k} & \hat{\imath} & \hat{\jmath}\end{array}\right]=1$

Let, $\hat{\imath}, \hat{\jmath}, \hat{k}_{\text {be }}$ unit vectors in the direction of positive X-axis, Y-axis, Z-axis respectively.
Hence,
Magnitude of $\hat{\imath}$ is $1 \Rightarrow|\hat{\imath}|=1$
Magnitude of $\hat{\jmath}$ is $1 \Rightarrow|\hat{\jmath}|=1$
Magnitude of \hat{k} is $1 \Rightarrow|\hat{k}|=1$
To Prove :
$\left[\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k}\end{array}\right]=\left[\begin{array}{lll}\hat{\jmath} & \hat{k} & \hat{\imath}\end{array}\right]=\left[\begin{array}{lll}\hat{k} & \hat{\imath} & \hat{\jmath}\end{array}\right]=1$
Formulae :
a) Dot Products :
i) $\hat{\imath} \cdot \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\hat{k} \cdot \hat{k}=1$
ii) $\hat{\imath} . \hat{\jmath}=\hat{\jmath} . \hat{k}=\hat{k} . \hat{\imath}=0$
b) Cross Products :
i) $\hat{\imath} \times \hat{\imath}=\hat{\jmath} \times \hat{\jmath}=\hat{k} \times \hat{k}=0$
ii) $\hat{\imath} \times \hat{\jmath}=\hat{k}, \hat{\jmath} \times \hat{k}=\hat{\imath}, \hat{k} \times \hat{\imath}=\hat{\jmath}$
iii) $\hat{\jmath} \times \hat{\imath}=-\hat{k}, \hat{k} \times \hat{\jmath}=-\hat{\imath}, \hat{\imath} \times \hat{k}=-\hat{\jmath}$
c) Scalar Triple Product :
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\bar{a} \cdot(\bar{b} \times \bar{c})$
Now,
(i) $[\hat{\imath} \hat{\jmath} \hat{k}]=\hat{\imath} .(\hat{\jmath} \times \hat{k})$
$=\hat{\imath} . \hat{\imath} \ldots \ldots . . . \quad(\because \hat{\jmath} \times \hat{k}=\hat{\imath})$
$=1 \ldots \ldots \ldots \ldots . .(\because \hat{\imath} . \hat{\imath}=1)$
$\therefore\left[\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k}\end{array}\right]=1$
(ii) $\left[\begin{array}{ll}\hat{\jmath} & \hat{k}\end{array} \hat{\imath}\right]=\hat{\jmath} .(\hat{k} \times \hat{\imath})$
$=\hat{\jmath} \cdot \hat{\jmath} . \ldots . \quad(\because \hat{k} \times \hat{\imath}=\hat{\jmath})$
$=1 \ldots \ldots \ldots \ldots . .(\because \hat{\jmath} \cdot \hat{\jmath}=1)$
$\therefore\left[\begin{array}{lll}\hat{\jmath} & \hat{k} & \hat{l}\end{array}\right]=1$ \qquad eq(2)
(iii) $\left.\begin{array}{lll}\hat{k} & \hat{\imath} & \hat{\jmath}\end{array}\right]=\hat{k} \cdot(\hat{\imath} \times \hat{\jmath})$
$=\hat{k} \cdot \hat{k} . \ldots \ldots(\because \hat{\imath} \times \hat{\jmath}=\hat{k})$
$=1 \ldots(\because \hat{k} \cdot \hat{k}=1)$
$\therefore\left[\begin{array}{lll}\hat{k} & \hat{\imath} & \hat{\jmath}\end{array}\right]=1$ \qquad eq(3)

From eq(1), eq(2) and eq(3),
$\left[\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k}\end{array}\right]=\left[\begin{array}{lll}\hat{\jmath} & \hat{k} & \hat{\imath}\end{array}\right]=\left[\begin{array}{lll}\hat{k} & \hat{\imath} & \hat{\jmath}\end{array}\right]=1$
Hence Proved.
Notes:

1. A cyclic change of vectors in a scalar triple product does not change its value i.e.
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left[\begin{array}{lll}\bar{b} & \bar{c} & \bar{a}\end{array}\right]=\left[\begin{array}{lll}\bar{c} & \bar{a} & \bar{b}\end{array}\right]$
2. Scalar triple product of unit vectors taken in a clockwise direction is 1, and that of unit vectors taken in anticlockwise direction is -1
$[\hat{\imath} \hat{\jmath} \hat{k}]=1$
$\left[\begin{array}{lll}\hat{k} & \hat{\jmath} & \hat{\imath}\end{array}\right]=-1$

ii. $\left.\begin{array}{lll}\hat{\imath} & \hat{k} & \hat{\jmath}\end{array}\right]=\left[\begin{array}{lll}\hat{k} & \hat{\jmath} & \hat{\imath}\end{array}\right]=\left[\begin{array}{lll}\hat{\jmath} & \hat{\imath} & \hat{k}\end{array}\right]=-1$

Let, $\hat{\imath}, \hat{\jmath}, \hat{k}_{\text {be }}$ be unit vectors in the direction of positive X -axis, Y -axis, Z -axis respectively.
Hence,
Magnitude of $\hat{\imath}$ is $1 \Rightarrow|\hat{\imath}|=1$
Magnitude of $\hat{\jmath}$ is $1 \Rightarrow|\hat{\jmath}|=1$
Magnitude of \hat{k} is $1 \Rightarrow|\hat{k}|=1$
To Prove :
$\left[\begin{array}{lll}\hat{\imath} & \hat{k} & \hat{\jmath}\end{array}\right]=\left[\begin{array}{lll}\hat{k} & \hat{\jmath} & \hat{\imath}\end{array}\right]=\left[\begin{array}{lll}\hat{\jmath} & \hat{\imath} & \hat{k}\end{array}\right]=-1$
Formulae :
a) Dot Products :
i) $\hat{\imath} \cdot \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\hat{k} \cdot \hat{k}=1$
ii) $\hat{l} . \hat{\jmath}=\hat{\jmath} . \hat{k}=\hat{k} . \hat{\imath}=0$
b) Cross Products :
i) $\hat{\imath} \times \hat{\imath}=\hat{\jmath} \times \hat{\jmath}=\hat{k} \times \hat{k}=0$
ii) $\hat{\imath} \times \hat{\jmath}=\hat{k}, \hat{\jmath} \times \hat{k}=\hat{\imath}, \hat{k} \times \hat{\imath}=\hat{\jmath}$
iii) $\hat{\jmath} \times \hat{\imath}=-\hat{k}, \hat{k} \times \hat{\jmath}=-\hat{\imath}, \hat{\imath} \times \hat{k}=-\hat{\jmath}$
c) Scalar Triple Product :
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\bar{a} \cdot(\bar{b} \times \bar{c})$
Answer:
(i) $\left.\begin{array}{lll}\hat{\imath} & \hat{k} & \hat{\jmath}\end{array}\right]=\hat{\imath} .(\hat{k} \times \hat{\jmath})$
$=\hat{\imath} .(-\hat{\imath}) \ldots \ldots \ldots \ldots . .(\because \hat{k} \times \hat{\jmath}=-\hat{\imath})$
$=-\hat{\imath} . \hat{\imath}$
$=-1$ \qquad $(\because \hat{\imath} \cdot \hat{\imath}=1)$
$\therefore\left[\begin{array}{lll}\hat{\imath} & \hat{k} & \hat{\jmath}\end{array}\right]=-1$ eq(1)
(ii) $\left[\begin{array}{lll}\hat{k} & \hat{\jmath} & \hat{\imath}\end{array}\right]=\hat{k} \cdot(\hat{\jmath} \times \hat{\imath})$
$=\hat{k} \cdot(-\hat{k})(\because \hat{\jmath} \times \hat{\imath}=-\hat{k})$
$=-\hat{k} \cdot \hat{k}$
$=-1 \ldots \cdots \cdots \cdots(\because \hat{k}, \hat{k}=1)$
$\therefore\left[\begin{array}{lll}\hat{k} & \hat{\jmath} & \hat{\imath}\end{array}\right]=-1$ \qquad eq(2)
(iii) $\begin{array}{lll}\hat{\jmath} & \hat{\imath} & \hat{k}]=\hat{\jmath} \cdot(\hat{\imath} \times \hat{k})\end{array}$
$=\hat{\jmath} \cdot(-\hat{\jmath}) \ldots \ldots \cdots \cdots \cdots(\because \hat{\imath} \times \hat{k}=-\hat{\jmath})$
$=-\hat{j} \cdot \hat{j}$
$=-1 \ldots \ldots \ldots \ldots . .(\because \hat{\jmath} \cdot \hat{\jmath}=1)$
$\left.\therefore \begin{array}{lll}\hat{\jmath} & \hat{\imath} & \hat{k}\end{array}\right]=-1$ eq(3)

From eq(1), eq(2) and eq(3),
$\left[\begin{array}{lll}\hat{\imath} & \hat{k} & \hat{\jmath}\end{array}\right]=\left[\begin{array}{lll}\hat{k} & \hat{\jmath} & \hat{\imath}\end{array}\right]=\left[\begin{array}{lll}\hat{\jmath} & \hat{\imath} & \hat{k}\end{array}\right]=-1$
Hence Proved.
Notes:

1. A cyclic change of vectors in a scalar triple product does not change its value ie.
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left[\begin{array}{lll}\bar{b} & \bar{c} & \bar{a}\end{array}\right]=\left[\begin{array}{lll}\bar{c} & \bar{a} & \bar{b}\end{array}\right]$
2. Scalar triple product of unit vectors taken in a clockwise direction is 1 , and that of unit vectors taken in anticlockwise direction is -1
$\left[\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k}\end{array}\right]=1$
$\left[\begin{array}{lll}\hat{k} & \hat{\jmath} & \hat{\imath}\end{array}\right]=-1$

Q. 2

Find $[\vec{a} \vec{b} \quad \vec{b}]$, when
i. $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and. $\vec{c}=3 \hat{i}+\hat{j}+2 \hat{k}$.
ii. $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{c}=3 \hat{i}-\hat{j}+2 \hat{k}$
iii. $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=3 \hat{\mathrm{i}}-\hat{\mathrm{k}}$

Answer :

i. $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=3 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$

Given Vectors :

1) $\bar{a}=2 \hat{\imath}+\hat{\jmath}+3 \hat{k}$
2) $\bar{b}=-\hat{\imath}+2 \hat{\jmath}+\hat{k}$
3) $\bar{c}=3 \hat{\imath}+\hat{\jmath}+2 \hat{k}$

To Find: $\left.\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$
Formulae :

1) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :
For given vectors,
$\bar{a}=2 \hat{\imath}+\hat{\jmath}+3 \hat{k}$
$\bar{b}=-\hat{\imath}+2 \hat{\jmath}+\hat{k}$
$\bar{c}=3 \hat{\imath}+\hat{\jmath}+2 \hat{k}$
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{ccc}2 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 2\end{array}\right|$
$=2(2 \times 2-1 \times 1)-1((-1) \times 2-3 \times 1)+3((-1) \times 1-3 \times 2)$
$=2(3)-1(-5)+3(-7)$
$=6+5-21$
$=-10$

$$
\left.\therefore \begin{array}{lll}
\bar{a} & \bar{b} & \bar{c}
\end{array}\right]=-10
$$

ii. $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$

Given Vectors :

1) $\bar{a}=2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k}$
2) $\bar{b}=\hat{\imath}+2 \hat{\jmath}-\hat{k}$
3) $\bar{c}=3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$

To Find: $\left.\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$
Formulae :

1) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer:
For given vectors,
$\bar{a}=2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k}$
$\bar{b}=\hat{\imath}+2 \hat{\jmath}-\hat{k}$
$\bar{c}=3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
$\left[\begin{array}{ccc}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{ccc}2 & -3 & 4 \\ 1 & 2 & -1 \\ 3 & -1 & 2\end{array}\right|$
$=2(2 \times 2-(-1) \times(-1))-(-3)(1 \times 2-3 \times(-1))+4(1 \times(-1)-3 \times 2)$
$=2(3)+3(5)+4(-7)$
$=6+15-28$
$=-7$
$\therefore\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=-7$
iii. $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=3 \hat{\mathrm{i}}-\hat{\mathrm{k}}$

Given Vectors :

1) $\bar{a}=2 \hat{\imath}-3 \hat{\jmath}$
2) $\bar{b}=\hat{\imath}+\hat{\jmath}-\hat{k}$
3) $\bar{c}=3 \hat{\imath}-\hat{k}$

To Find : $\left.\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$
Formulae :

1) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :
For given vectors,
$\bar{a}=2 \hat{\imath}-3 \hat{\jmath}+0 \hat{k}$
$\bar{b}=\hat{\imath}+\hat{\jmath}-\hat{k}$
$\bar{c}=3 \hat{\imath}+0 \hat{\jmath}-\hat{k}$
$\left[\begin{array}{ccc}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{ccc}2 & -3 & 0 \\ 1 & 1 & -1 \\ 3 & 0 & -1\end{array}\right|$
$=2(1 \times(-1)-(-1) \times 0)-(-3)(1 \times(-1)-3 \times(-1))+0(1 \times 0-3 \times 1)$
$=2(-1)+3(2)+0$
$=-2+6$
$=4$

$$
\left.\therefore \begin{array}{lll}
\bar{a} & \bar{b} & \bar{c}
\end{array}\right]=4
$$

Q. 3

Find the volume of the parallelepiped whose conterminous edges are represented by the vectors
i. $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$
ii. $\vec{a}=-3 \hat{i}+7 \hat{j}+5 \hat{k}, \vec{b}=-5 \hat{i}+7 \hat{j}-3 \hat{k}, \vec{c}=7 \hat{i}-5 \hat{j}-3 \hat{k}$
iii. $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\hat{k}, \vec{c}=\hat{j}+\hat{k}$
iv. $\bar{a}=6 \hat{\imath}, \bar{b}=2 \hat{\jmath}, \bar{c}=5 \hat{k}$

Answer:

i. $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$

Given :
Coterminous edges of parallelopiped are $\bar{a}, \bar{b}, \bar{c}$ where,
$\bar{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$
$\bar{b}=\hat{\imath}-\hat{\jmath}+\hat{k}$
$\bar{c}=\hat{\imath}+2 \hat{\jmath}-\hat{k}$
To Find : Volume of parallelepiped
Formulae :

1) Volume of parallelepiped:

If $\bar{a}, \bar{b}, \bar{c}$ are coterminous edges of parallelepiped,
Where,
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then, volume of parallelepiped V is given by,
$V=\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :
Volume of parallelopiped with coterminous edges
$\bar{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$
$\bar{b}=\hat{\imath}-\hat{\jmath}+\hat{k}$
$\bar{c}=\hat{\imath}+2 \hat{\jmath}-\hat{k}$

$V=\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
$=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & -1\end{array}\right|$
$=1((-1) \times(-1)-2 \times 1)-1(1 \times(-1)-1 \times 1)+1(1 \times 2-1 \times(-1))$
$=1(-1)-1(-2)+1(3)$
$=-1+2+3$
$=4$
Therefore,

Volume of parallelepiped $=4$ cubic unit

ii. $\vec{a}=-3 \hat{i}+7 \hat{j}+5 \hat{k}, \vec{b}=-5 \hat{i}+7 \hat{j}-3 \hat{k}, \vec{c}=7 \hat{i}-5 \hat{j}-3 \hat{k}$

Given :
Coterminous edges of parallelopiped are $\bar{a}, \bar{b}, \bar{c}$ where,
$\bar{a}=-3 \hat{\imath}+7 \hat{\jmath}+5 \hat{k}$
$\bar{b}=-5 \hat{\imath}+7 \hat{\jmath}-3 \hat{k}$
$\bar{c}=7 \hat{\imath}-5 \hat{\jmath}-3 \hat{k}$

To Find: Volume of parallelepiped
Formulae :

1) Volume of parallelepiped:

If $\bar{a}, \bar{b}, \bar{c}$ are coterminous edges of parallelepiped,
Where,
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then, volume of parallelepiped V is given by,
$V=\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer:
Volume of parallelopiped with coterminous edges
$\bar{a}=-3 \hat{\imath}+7 \hat{\jmath}+5 \hat{k}$
$\bar{b}=-5 \hat{\imath}+7 \hat{\jmath}-3 \hat{k}$
$\bar{c}=7 \hat{\imath}-5 \hat{\jmath}-3 \hat{k}$

$V=\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
$=\left|\begin{array}{ccc}-3 & 7 & 5 \\ -5 & 7 & -3 \\ 7 & -5 & -3\end{array}\right|$
$=-3(7 \times(-3)-(-5) \times(-3))-7((-5) \times(-3)-7 \times(-3))$
$+5((-5) \times(-5)-7 \times 7)$
$=-3(-36)-7(36)+5(-24)$
$=108-252-120$
$=-264$
As volume is never negative
Therefore,

Volume of parallelepiped $=264$ cubic unit

iii. $\quad \overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=\hat{\mathrm{j}}+\hat{\mathrm{k}}$

Given :
Coterminous edges of parallelopiped are $\bar{a}, \bar{b}, \bar{c}$ where,
$\bar{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
$\bar{b}=2 \hat{\imath}+\hat{\jmath}-\hat{k}$
$\bar{c}=\hat{\jmath}+\hat{k}$
To Find : Volume of parallelepiped
Formulae :

1) Volume of parallelepiped:

If $\bar{a}, \bar{b}, \bar{c}$ are coterminous edges of parallelepiped,
Where,
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then, volume of parallelepiped V is given by,
$V=\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer:
Volume of parallelopiped with coterminous edges
$\bar{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
$\bar{b}=2 \hat{\imath}+\hat{\jmath}-\hat{k}$
$\bar{c}=0 \hat{\imath}+\hat{\jmath}+\hat{k}$

$V=\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
$=\left|\begin{array}{ccc}1 & -2 & 3 \\ 2 & 1 & -1 \\ 0 & 1 & 1\end{array}\right|$
$=1(1 \times 1-1 \times(-1))-(-2)(2 \times 1-0 \times(-1))+3(2 \times 1-0 \times 1)$
$=1(2)+2(2)+3(2)$
$=2+4+6$
$=12$
Therefore,

Volume of parallelepiped $=12$ cubic unit

iv. $\bar{a}=6 \hat{\imath}, \bar{b}=2 \hat{\jmath}, \bar{c}=5 \hat{k}$

Given :
Coterminous edges of parallelopiped are $\bar{a}, \bar{b}, \bar{c}$ where,
$\bar{a}=6 \hat{\imath}$
$\bar{b}=2 \hat{\jmath}$
$\bar{c}=5 \hat{k}$
To Find: Volume of parallelepiped
Formulae :

1) Volume of parallelepiped:

If $\bar{a}, \bar{b}, \bar{c}$ are coterminous edges of parallelepiped,
Where,
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then, volume of parallelepiped V is given by,
$V=\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$

Volume of parallelopiped with coterminous edges
$\bar{a}=6 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}$
$\bar{b}=0 \hat{\imath}+2 \hat{\jmath}+0 \hat{k}$
$\bar{c}=0 \hat{\imath}+0 \hat{\jmath}+5 \hat{k}$

$V=\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
$=\left|\begin{array}{lll}6 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5\end{array}\right|$
$=6(2 \times 5-0 \times 0)-0(0 \times 5-0 \times 0)+0(0 \times 0-0 \times 2)$
$=6(10)+0+0$
$=60$

Therefore,
Volume of parallelepiped $=60$ cubic unit
Q. 4

Show that the vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar, when
i. $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-2 \hat{j}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=-2 \hat{\mathrm{i}}+3 \hat{j}-4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}-3 \hat{j}+5 \hat{k}$
ii. $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
iii. $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$

Answer:

i. $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}-3 \hat{j}+5 \hat{\mathrm{k}}$

Given Vectors :
$\bar{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
$\bar{b}=-2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$
$\bar{c}=\hat{\imath}-3 \hat{\jmath}+5 \hat{k}$
To Prove : Vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar.
i.e. $\left.\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=0$

Formulae :

1) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer:
For given vectors,
$\bar{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
$\bar{b}=-2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$
$\bar{c}=\hat{\imath}-3 \hat{\jmath}+5 \hat{k}$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\bar{a} & \bar{b} & \bar{c}
\end{array}\right]=\left|\begin{array}{ccc}
1 & -2 & 3 \\
-2 & 3 & -4 \\
1 & -3 & 5
\end{array}\right|} \\
& =1(3 \times 5-(-3) \times(-4))-(-2)((-2) \times 5-1 \times(-4)) \\
& +3((-2) \times(-3)-3 \times 1) \\
& =1(3)+2(-6)+3(3) \\
& =3-12+9 \\
& =0 \\
& \left.\therefore \begin{array}{lll}
\bar{a} & \bar{b} & \bar{c}
\end{array}\right]=0
\end{aligned}
$$

Hence, the vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar.
Note: For coplanar vectors $\bar{a}, \bar{b}, \bar{c}$,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=0$
ii. $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$

Given Vectors:
$\bar{a}=\hat{\imath}+3 \hat{\jmath}+\hat{k}$
$\bar{b}=2 \hat{\imath}-\hat{\jmath}-\hat{k}$
$\bar{c}=7 \hat{\jmath}+3 \hat{k}$
To Prove : Vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar.
i.e. $\left.\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=0$

Formulae :

1) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :
For given vectors,
$\bar{a}=\hat{\imath}+3 \hat{\jmath}+\hat{k}$
$\bar{b}=2 \hat{\imath}-\hat{\jmath}-\hat{k}$
$\bar{c}=7 \hat{\jmath}+3 \hat{k}$
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{ccc}1 & 3 & 1 \\ 2 & -1 & -1 \\ 0 & 7 & 3\end{array}\right|$
$=1((-1) \times 3-7 \times(-1))-3(2 \times 3-0 \times(-1))+1(2 \times 7-0 \times(-1))$
$=1(4)-3(6)+1(14)$
$=4-18+14$
$=0$

$$
\left.\therefore \begin{array}{lll}
\bar{a} & \bar{b} & \bar{c}
\end{array}\right]=0
$$

Hence, the vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar.
Note: For coplanar vectors $\bar{a}, \bar{b}, \bar{c}$,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=0$
iii. $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$

Given Vectors :
$\bar{a}=2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
$\bar{b}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$
$\bar{c}=3 \hat{\imath}-4 \hat{\jmath}+7 \hat{k}$

To Prove : Vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar.
i.e. $\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=0$

Formulae :

1) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :
For given vectors,
$\bar{a}=2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
$\bar{b}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$
$\bar{c}=3 \hat{\imath}-4 \hat{\jmath}+7 \hat{k}$
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{ccc}2 & -1 & 2 \\ 1 & 2 & -3 \\ 3 & -4 & 7\end{array}\right|$
$=2(2 \times 7-(-3) \times(-4))-(-1)(1 \times 7-3 \times(-3))+2(1 \times(-4)-3 \times 2)$
$=2(2)+1(16)+2(-10)$
$=4+16-20$
$=0$

$$
\left.\therefore \begin{array}{lll}
\bar{a} & \bar{b} & \bar{c}
\end{array}\right]=0
$$

Hence, the vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar.
Note: For coplanar vectors $\bar{a}, \bar{b}, \bar{c}$,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=0$
Q. 5

Find the value of λ for which the vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar, when

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}), \overrightarrow{\mathrm{b}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \text { and } \overrightarrow{\mathrm{c}}=(3 \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+5 \hat{\mathrm{k}}) \\
& \text { i. } \overrightarrow{\mathrm{a}}=\lambda \hat{\mathrm{i}}-10 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}, \overrightarrow{\mathrm{~b}}=-7 \hat{\mathrm{i}}-5 \hat{\mathrm{j}} \text { and } \overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}-4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}} \\
& \text { ii. } \\
& \text { iii. } \overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{~b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}} \text { and } \overrightarrow{\mathrm{c}}=\lambda \hat{\mathrm{i}}-\hat{j}+\lambda \hat{\mathrm{k}}
\end{aligned}
$$

Answer:

i. $\overrightarrow{\mathrm{a}}=(2 \hat{i}-\hat{j}+\hat{k}), \vec{b}=(\hat{i}+2 \hat{j}+3 \hat{k})$. and $\vec{c}=(3 \hat{i}+\lambda \hat{j}+5 \hat{k})$

Given : Vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar.
Where,
$\bar{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k}$
$\bar{b}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$\bar{c}=3 \hat{\imath}+\lambda \hat{\jmath}+5 \hat{k}$
To Find : value of λ
Formulae :

1) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer:
As vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar
$\therefore\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=0$ \qquad .eq(1)

For given vectors,
$\bar{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k}$
$\bar{b}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$\bar{c}=3 \hat{\imath}+\lambda \hat{\jmath}+5 \hat{k}$
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{ccc}2 & -1 & 1 \\ 1 & 2 & 3 \\ 3 & \lambda & 5\end{array}\right|$
$=2(2 \times 5-3 \times \lambda)-(-1)(1 \times 5-3 \times 3)+1(1 \times \lambda-3 \times 2)$
$=2(10-3 \lambda)-4+1(\lambda-6)$
$=20-6 \lambda-4+\lambda-6$
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=10-5 \lambda$ \qquad .eq(2)

From eq(1) and eq(2),
$10-5 \lambda=0$
$\therefore 5 \lambda=10$

$$
\therefore \lambda=2
$$

ii. $\overrightarrow{\mathrm{a}}=\lambda \hat{\mathrm{i}}-10 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=-7 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}$ and $\overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}-4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$

Given : Vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar.
Where,
$\bar{a}=\lambda \hat{\imath}-10 \hat{\jmath}-5 \hat{k}$
$\bar{b}=-7 \hat{\imath}-5 \hat{\jmath}$
$\bar{c}=\hat{\imath}-4 \hat{\jmath}-3 \hat{k}$
To Find: value of λ
Formulae :

1) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant :
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :
As vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar
$\therefore \begin{array}{lll}{\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=0}\end{array}$.eq(1)

For given vectors,
$\bar{a}=\lambda \hat{\imath}-10 \hat{\jmath}-5 \hat{k}$
$\bar{b}=-7 \hat{\imath}-5 \hat{\jmath}+0 \hat{k}$
$\bar{c}=\hat{\imath}-4 \hat{\jmath}-3 \hat{k}$
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{ccc}\lambda & -10 & -5 \\ -7 & -5 & 0 \\ 1 & -4 & -3\end{array}\right|$
$=\lambda((-5) \times(-3)-0 \times(-4))-(-10)((-7) \times(-3)-0 \times 1)$ $+(-5)((-7) \times(-4)-1 \times(-5))$
$=\lambda(15)+10(21)-5(33)$
$=15 \lambda+45$
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=15 \lambda+45$ eq(2)

From eq(1) and eq(2),
$15 \lambda+45=0$
$\therefore 15 \lambda=45$

$$
\therefore \lambda=-3
$$

iii. . $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$. and $\overrightarrow{\mathrm{c}}=\lambda \hat{\mathrm{i}}-\hat{\mathrm{j}}+\lambda \hat{\mathrm{k}}$

Given: Vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar.
Where,
$\bar{a}=\hat{\imath}-\hat{\jmath}+\hat{k}$
$\bar{b}=2 \hat{\imath}+\hat{\jmath}-\hat{k}$
$\bar{c}=\lambda \hat{\imath}-\hat{\jmath}+\lambda \hat{k}$
To Find: value of λ
Formulae :

1) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$

Answer :
As vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar
$\therefore\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=0$ \qquad eq(1)

For given vectors,
$\bar{a}=\hat{\imath}-\hat{\jmath}+\hat{k}$
$\bar{b}=2 \hat{\imath}+\hat{\jmath}-\hat{k}$
$\bar{c}=\lambda \hat{\imath}-\hat{\jmath}+\lambda \hat{k}$
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -1 \\ \lambda & -1 & \lambda\end{array}\right|$
$=1(1 \times \lambda-(-1) \times(-1))-(-1)(2 \times \lambda-(-1) \times \lambda)+1(2 \times(-1)-\lambda \times 1)$
$=1(\lambda-1)+1(3 \lambda)+1(-\lambda-2)$
$=\lambda-1+3 \lambda-2-\lambda$
$=3 \lambda-3$
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=3 \lambda-3$ eq(2)

From eq(1) and eq(2),
$3 \lambda-3=0$
$\therefore 3 \lambda=3$

$$
\therefore \lambda=1
$$

Q. 6

If $\overrightarrow{\mathrm{a}}=(2 \hat{i}-\hat{j}+\hat{k}), \vec{b}=(\hat{i}-3 \hat{j}-5 \hat{k})$ and $\vec{c}=(3 \hat{i}-4 \hat{j}-\hat{k})$, find $[\vec{a} \vec{b} \vec{c}]$ and interpret the result.

Answer:

Given Vectors :
$\bar{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k}$
$\bar{b}=\hat{\imath}-3 \hat{\jmath}-5 \hat{k}$
$\bar{c}=3 \hat{\imath}-4 \hat{\jmath}-\hat{k}$
To Find: $\left.\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]$
Formulae :

1) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :
For given vectors,
$\bar{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k}$
$\bar{b}=\hat{\imath}-3 \hat{\jmath}-5 \hat{k}$
$\bar{c}=3 \hat{\imath}-4 \hat{\jmath}-\hat{k}$
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{ccc}2 & -1 & 1 \\ 1 & -3 & -5 \\ 3 & -4 & -1\end{array}\right|$
$=2((-3) \times(-1)-(-4) \times(-5))-(-1)((-1) \times 1-3 \times(-5))$ $+1((-4) \times 1-3 \times(-3))$
$=2(-17)+1(14)+1(5)$
$=-34+14+5$
$=-15$

$$
\left.\therefore \begin{array}{lll}
\bar{a} & \bar{b} & \bar{c}
\end{array}\right]=-15
$$

Q. 7

The volume of the parallelepiped whose edges are $(-12 \hat{\mathrm{i}}+\lambda \hat{\mathrm{k}}),(3 \hat{\mathrm{j}}-\hat{\mathrm{k}})$ and $(2 \hat{i}+\hat{j}-15 \hat{k})$ is 546 cubic units. Find the value of $\boldsymbol{\lambda}$.

Answer:

Given :

1) Coterminous edges of parallelepiped are
$\bar{a}=-12 \hat{\imath}+\lambda \hat{k}$
$\bar{b}=3 \hat{\jmath}-\hat{k}$
$\bar{c}=2 \hat{\imath}+\hat{\jmath}-15 \hat{k}$
2) Volume of parallelepiped,
$V=546$ cubic unit
To Find : value of λ
3) Volume of parallelepiped :

If $\bar{a}, \bar{b}, \bar{c}$ are coterminous edges of parallelepiped,
Where,
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then, volume of parallelepiped V is given by,
$V=\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :

Given volume of parallelepiped,
$V=546$ cubic uniteq(1)
Volume of parallelopiped with coterminous edges
$\bar{a}=-12 \hat{\imath}+\lambda \hat{k}$
$\bar{b}=3 \hat{\jmath}-\hat{k}$
$\bar{c}=2 \hat{\imath}+\hat{\jmath}-15 \hat{k}$

$V=\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
$=\left|\begin{array}{ccc}-12 & 0 & \lambda \\ 0 & 3 & -1 \\ 2 & 1 & -15\end{array}\right|$
$=-12(3 \times(-15)-1 \times(-1))-0+\lambda(0 \times 1-3 \times 2)$
$=528-0-6 \lambda$
$=528-6 \lambda$
$\therefore V=(528-6 \lambda)$ cubic unit \qquad .eq(2)

From eq(1) and eq(2)
$528-6 \lambda=546$
$\therefore-6 \lambda=18$
$\therefore \lambda=-3$
Q. 8

Show that the vectors
the same plane.
\{HINT: Show that $[\vec{a} \vec{b} \vec{c}]=0$ \}

Answer:

Given Vectors :
$\bar{a}=\hat{\imath}+3 \hat{\jmath}+\hat{k}$
$\bar{b}=2 \hat{\imath}-\hat{\jmath}-\hat{k}$
$\bar{c}=7 \hat{\jmath}+3 \hat{k}$
To Prove : Vectors $\bar{a}, \bar{b}, \bar{c}$ are parallel to same plane.
Formulae :

1) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer:
Vectors will be parallel to the same plane if they are coplanar.
For vectors $\bar{a}, \bar{b}, \bar{c}$ to be coplanar, $\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=0$
Now, for given vectors,
$\bar{a}=\hat{\imath}+3 \hat{\jmath}+\hat{k}$
$\bar{b}=2 \hat{\imath}-\hat{\jmath}-\hat{k}$
$\bar{c}=7 \hat{\jmath}+3 \hat{k}$
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{ccc}1 & 3 & 1 \\ 2 & -1 & -1 \\ 0 & 7 & 3\end{array}\right|$
$=1(3 \times(-1)-7 \times(-1))-3(2 \times 3-0 \times(-1))+1(2 \times 7-0 \times(-1))$
$=1(4)-3(6)+1(14)$
$=4-18+14$
$=0$
$\left.\therefore \begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=0$
Hence, given vectors are parallel to the same plane.
Q. 9

If the vectors $(a \hat{i}+a \hat{j}+c \hat{k}),(\hat{i}+\hat{k})$ and $(c \hat{i}+c \hat{j}+b \hat{k})$ be coplanar, show that $\boldsymbol{c}^{\boldsymbol{2}} \boldsymbol{=} \boldsymbol{a b}$.

Answer:

Given : vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar. Where
$\bar{a}=a \hat{\imath}+a \hat{\jmath}+c \hat{k}$
$\bar{b}=\hat{\imath}+\hat{k}$
$\bar{c}=c \hat{\imath}+c \hat{\jmath}+b \hat{k}$
To Prove : $c^{2}=a b$
Formulae :

1) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
2) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :
As vectors $\bar{a}, \bar{b}, \bar{c}$ are coplanar
$\therefore\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=0$.........eq(1)
For given vectors,
$\bar{a}=a \hat{\imath}+a \hat{\jmath}+c \hat{k}$
$\bar{b}=\hat{\imath}+\hat{k}$
$\bar{c}=c \hat{\imath}+c \hat{\jmath}+b \hat{k}$
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a & a & c \\ 1 & 0 & 1 \\ c & c & b\end{array}\right|$
$=a(0 \times b-c \times 1)-a(1 \times b-1 \times c)+c(1 \times c-0 \times c)$
$=a \cdot(-c)-a \cdot(b-c)+c(c)$
$=-\mathrm{ac}-\mathrm{ab}+\mathrm{ac}+\mathrm{c}^{2}$
$=-a b+c^{2}$
$\therefore\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=-a b+c^{2}$.eq(2)

From eq(1) and eq(2),
$-a b+c^{2}=0$
Therefore,

$$
c^{2}=a b
$$

Hence proved.
Note : Three vectors $\bar{a}, \bar{b} \& \bar{c}$ are coplanar if and only if
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=0$
Q. 10

Show that the four points with position vectors $(4 \hat{i}+8 \hat{j}+12 \hat{k}),(2 \hat{i}+4 \hat{j}+6 \hat{k})$, $(3 \hat{i}+5 \hat{j}+4 \hat{k})$ and $(5 \hat{i}+8 \hat{j}+5 \hat{k})$ are coplanar.

Answer:

Given :
Let $\mathrm{A}, \mathrm{B}, \mathrm{C} \& \mathrm{D}$ be four points with position vectors $\bar{a}, \bar{b}, \bar{c} \& \bar{d}$.
Therefore,
$\bar{a}=4 \hat{\imath}+8 \hat{\jmath}+12 \hat{k}$
$\bar{b}=2 \hat{\imath}+4 \hat{\jmath}+6 \hat{k}$
$\bar{c}=3 \hat{\imath}+5 \hat{\jmath}+4 \hat{k}$
$\bar{d}=5 \hat{\imath}+8 \hat{\jmath}+5 \hat{k}$
To Prove : Points A, B, C \& D are coplanar.
Formulae :

1) Vectors:

If $A \& B$ are two points with position vectors $\bar{a} \& \bar{b}$,
Where,
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then vector $\overline{A B}$ is given by,
$\overline{A B}=\bar{b}-\bar{a}$
$\left(b_{1}-a_{1}\right) \hat{\imath}+\left(b_{2}-a_{2}\right) \hat{\jmath}+\left(b_{3}-a_{3}\right) \hat{k}$
2) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
3) Determinant :
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :
For given position vectors,
$\bar{a}=4 \hat{\imath}+8 \hat{\jmath}+12 \hat{k}$
$\bar{b}=2 \hat{\imath}+4 \hat{\jmath}+6 \hat{k}$
$\bar{c}=3 \hat{\imath}+5 \hat{\jmath}+4 \hat{k}$
$\bar{d}=5 \hat{\imath}+8 \hat{\jmath}+5 \hat{k}$
Vectors $\overline{B A}, \overline{C A} \& \overline{D A}$ are given by,
$\overline{B A}=\bar{a}-\bar{b}$
$=(4-2) \hat{\imath}+(8-4) \hat{\jmath}+(12-6) \hat{k}$
$\therefore \overline{B A}=2 \hat{\imath}+4 \hat{\jmath}+6 \hat{k}$
$\overline{C A}=\bar{a}-\bar{c}$
$=(4-3) \hat{\imath}+(8-5) \hat{\jmath}+(12-4) \hat{k}$
$\therefore \overline{C A}=\hat{\imath}+3 \hat{\jmath}+8 \hat{k}$ \qquad
$\overline{D A}=\bar{a}-\bar{d}$
$=(4-5) \hat{\imath}+(8-8) \hat{\jmath}+(12-5) \hat{k}$
$\therefore \overline{D A}=-\hat{\imath}+0 \hat{\jmath}+7 \hat{k}$ eq(3)

Now, for vectors
$\overline{B A}=2 \hat{\imath}+4 \hat{\jmath}+6 \hat{k}$
$\overline{C A}=\hat{\imath}+3 \hat{\jmath}+8 \hat{k}$
$\overline{D A}=-\hat{\imath}+0 \hat{\jmath}+7 \hat{k}$
$\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=\left|\begin{array}{ccc}2 & 4 & 6 \\ 1 & 3 & 8 \\ -1 & 0 & 7\end{array}\right|$
$=2(3 \times 7-0 \times 8)-4(1 \times 7-(-1) \times 8)+6(1 \times 0-(-1) \times 3)$
$=2(21)-4(15)+6(3)$
$=42-60+18$
$=0$
$\therefore\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=0$
Hence, vectors $\overline{B A}, \overline{C A} \& \overline{D A}$ are coplanar.
Therefore, points A, B, C \& D are coplanar.
Note : Four points A, B, C \& D are coplanar if and only if $\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=0$

Q. 11

Show that the four points with position vectors $(6 \hat{i}-7 \hat{j}),(16 \hat{i}-19 \hat{j}-4 \hat{k}),(3 \hat{j}-6 \hat{k})$ and $(2 \hat{i}-5 \hat{j}+10 \hat{k})$ are coplanar.

Answer :

Given :
Let A, B, C \& D be four points with position vectors $\bar{a}, \bar{b}, \bar{c} \& \bar{d}$.
Therefore,
$\bar{a}=6 \hat{\imath}-7 \hat{\jmath}$
$\bar{b}=16 \hat{\imath}-19 \hat{\jmath}-4 \hat{k}$
$\bar{c}=3 \hat{\jmath}-6 \hat{k}$
$\bar{d}=2 \hat{\imath}-5 \hat{\jmath}+10 \hat{k}$
To Prove : Points A, B, C \& D are coplanar.
Formulae :

1) Vectors:

If $A \& B$ are two points with position vectors $\bar{a} \& \bar{b}$,
Where,
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then vector $\overline{A B}$ is given by,
$\overline{A B}=\bar{b}-\bar{a}$
$\left(b_{1}-a_{1}\right) \hat{\imath}+\left(b_{2}-a_{2}\right) \hat{\jmath}+\left(b_{3}-a_{3}\right) \hat{k}$
2) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
3) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :
For given position vectors,
$\bar{a}=6 \hat{\imath}-7 \hat{\jmath}$
$\bar{b}=16 \hat{\imath}-19 \hat{\jmath}-4 \hat{k}$
$\bar{c}=3 \hat{\jmath}-6 \hat{k}$
$\bar{d}=2 \hat{\imath}-5 \hat{\jmath}+10 \hat{k}$
Vectors $\overline{B A}, \overline{C A} \& \overline{D A}$ are given by,
$\overline{B A}=\bar{a}-\bar{b}$
$=(6-16) \hat{\imath}+(-7+19) \hat{\jmath}+(0+4) \hat{k}$
$\therefore \overline{B A}=-10 \hat{\imath}+12 \hat{\jmath}+4 \hat{k}$ eq(1)
$\overline{C A}=\bar{a}-\bar{c}$
$=(6-0) \hat{\imath}+(-7-3) \hat{\jmath}+(0+6) \hat{k}$
$\therefore \overline{C A}=6 \hat{\imath}-10 \hat{\jmath}+6 \hat{k}$
$\overline{D A}=\bar{a}-\bar{d}$
$=(6-2) \hat{\imath}+(-7+5) \hat{\jmath}+(0-10) \hat{k}$
$\therefore \overline{D A}=4 \hat{\imath}-2 \hat{\jmath}-10 \hat{k}$.eq(3)

Now, for vectors
$\overline{B A}=-10 \hat{\imath}+12 \hat{\jmath}+4 \hat{k}$
$\overline{C A}=6 \hat{\imath}-10 \hat{\jmath}+6 \hat{k}$
$\overline{D A}=4 \hat{\imath}-2 \hat{\jmath}-10 \hat{k}$
$\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=\left|\begin{array}{ccc}-10 & 12 & 4 \\ 6 & -10 & 6 \\ 4 & -2 & -10\end{array}\right|$
$=-10((-10) \times(-10)-(-2) \times 6)-12(6 \times(-10)-4 \times 6)$ $+4(6 \times(-2)-(-10) \times 4)$
$=-10(112)-12(-84)+4(28)$
$=-1120+1008+112$
$=0$
$\therefore\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=0$
Hence, vectors $\overline{B A}, \overline{C A} \& \overline{D A}$ are coplanar.
Therefore, points A, B, C \& D are coplanar.
Note : Four points A, B, C \& D are coplanar if and only if $\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=0$

Q. 12

Find the value of $\boldsymbol{\lambda}$ for which the four points with position vectors $(\hat{i}+2 \hat{j}+3 \hat{k})$, $(3 \hat{i}-\hat{j}+2 \hat{k}),(-2 \hat{i}+\lambda \hat{j}+\hat{k})$ and $(6 \hat{i}-4 \hat{j}+2 \hat{k})$ are coplanar.

Ans. $\boldsymbol{\lambda}=3$

Answer:

Given :
Let, $A, B, C \& D$ be four points with given position vectors
$\bar{a}=1 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$\bar{b}=3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
$\bar{c}=-2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}$
$\bar{d}=6 \hat{\imath}-4 \hat{\jmath}+2 \hat{k}$
To Find : value of λ
Formulae :

1) Vectors:

If $A \& B$ are two points with position vectors $\bar{a} \& \bar{b}$,
Where,
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then vector $\overline{A B}$ is given by,
$\overline{A B}=\bar{b}-\bar{a}$
$\left(b_{1}-a_{1}\right) \hat{\imath}+\left(b_{2}-a_{2}\right) \hat{\jmath}+\left(b_{3}-a_{3}\right) \hat{k}$
2) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
3) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :
For given position vectors,
$\bar{a}=1 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$\bar{b}=3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
$\bar{c}=-2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}$
$\bar{d}=6 \hat{\imath}-4 \hat{\jmath}+2 \hat{k}$
Vectors $\overline{B A}, \overline{C A} \& \overline{D A}$ are given by,
$\overline{B A}=\bar{a}-\bar{b}$
$=(1-3) \hat{\imath}+(2+1) \hat{\jmath}+(3-2) \hat{k}$
$\therefore \overline{B A}=-2 \hat{\imath}+3 \hat{\jmath}+\hat{k}$ \qquad
$\overline{C A}=\bar{a}-\bar{c}$
$=(1+2) \hat{\imath}+(2-\lambda) \hat{\jmath}+(3-1) \hat{k}$
$\therefore \overline{C A}=3 \hat{\imath}+(2-\lambda) \hat{\jmath}+2 \hat{k}$
$\overline{D A}=\bar{a}-\bar{d}$
$=(1-6) \hat{\imath}+(2+4) \hat{\jmath}+(3-2) \hat{k}$
$\therefore \overline{D A}=-5 \hat{\imath}+6 \hat{\jmath}+\hat{k}$
Now, for vectors
$\overline{B A}=-2 \hat{\imath}+3 \hat{\jmath}+\hat{k}$
$\overline{C A}=3 \hat{\imath}+(2-\lambda) \hat{\jmath}+2 \hat{k}$
$\overline{D A}=-5 \hat{\imath}+6 \hat{\jmath}+\hat{k}$
$\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=\left|\begin{array}{ccc}-2 & 3 & 1 \\ 3 & (2-\lambda) & 2 \\ -5 & 6 & 1\end{array}\right|$
$=-2((2-\lambda) \times 1-2 \times 6)-3(3 \times 1-2 \times(-5))$

$$
+1(6 \times 3-(2-\lambda) \times(-5))
$$

$=-2(-\lambda-10)-3(13)+1(28-5 \lambda)$
$=2 \lambda+20-39+28-5 \lambda$
$=9-3 \lambda$
$\therefore\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=9-3 \lambda$ \qquad eq(4)

Four points $A, B, C \& D$ are coplanar if and only if
$\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=0$ \qquad .eq(5)

From eq(4) and eq(5)
$9-3 \lambda=0$
$3 \lambda=9$
$\lambda=3$
Q. 13

Find the value of $\boldsymbol{\lambda}$ for which the four points with position vectors $(-\hat{\mathrm{j}}+\hat{\mathrm{k}})$, $(2 \hat{i}-\hat{j}-\hat{k}),(\hat{i}+\lambda \hat{j}+\hat{k})$ and $(3 \hat{j}+3 \hat{k})$ are coplanar.

Answer:

Given :
Let, $A, B, C \& D$ be four points with given position vectors
$\bar{a}=-\hat{\jmath}+\hat{k}$
$\bar{b}=2 \hat{\imath}-\hat{\jmath}-\hat{k}$
$\bar{c}=\hat{\imath}+\lambda \hat{\jmath}+\hat{k}$
$\bar{d}=3 \hat{\jmath}+3 \hat{k}$
To Find : value of λ
Formulae:

1) Vectors:

If $A \& B$ are two points with position vectors $\bar{a} \& \bar{b}$,
Where,
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then vector $\overline{A B}$ is given by,
$\overline{A B}=\bar{b}-\bar{a}$
$\left(b_{1}-a_{1}\right) \hat{\imath}+\left(b_{2}-a_{2}\right) \hat{\jmath}+\left(b_{3}-a_{3}\right) \hat{k}$
2) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
3) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :
For given position vectors,
$\bar{a}=-\hat{\jmath}+\hat{k}$
$\bar{b}=2 \hat{\imath}-\hat{\jmath}-\hat{k}$
$\bar{c}=\hat{\imath}+\lambda \hat{\jmath}+\hat{k}$
$\bar{d}=3 \hat{\jmath}+3 \hat{k}$
Vectors $\overline{B A}, \overline{C A} \& \overline{D A}$ are given by,
$\overline{B A}=\bar{a}-\bar{b}$
$=(0-2) \hat{\imath}+(-1+1) \hat{\jmath}+(1+1) \hat{k}$
$\therefore \overline{B A}=-2 \hat{\imath}+0 \hat{\jmath}+2 \hat{k}$ eq(1)
$\overline{C A}=\bar{a}-\bar{c}$
$=(0-1) \hat{\imath}+(-1-\lambda) \hat{\jmath}+(1-1) \hat{k}$
$\therefore \overline{C A}=-\hat{\imath}+(-1-\lambda) \hat{\jmath}+0 \hat{k}$ eq(2)
$\overline{D A}=\bar{a}-\bar{d}$
$=(0-0) \hat{\imath}+(-1-3) \hat{\jmath}+(1-3) \hat{k}$
$\therefore \overline{D A}=0 \hat{\imath}-4 \hat{\jmath}-2 \hat{k}$ eq(3)

Now, for vectors
$\overline{B A}=-2 \hat{\imath}+0 \hat{\jmath}+2 \hat{k}$
$\overline{C A}=-\hat{\imath}+(-1-\lambda) \hat{\jmath}+0 \hat{k}$
$\overline{D A}=0 \hat{\imath}-4 \hat{\jmath}-2 \hat{k}$
$\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=\left|\begin{array}{ccc}-2 & 0 & 2 \\ -1 & (-1-\lambda) & 0 \\ 0 & -4 & -2\end{array}\right|$
$=-2((-1-\lambda) \times(-2)-(-4) \times 0)-0((-1) \times(-2)-0 \times 0)$ $+2((-1) \times(-4)-(-1-\lambda) \times 0)$
$=-2(2+2 \lambda)-0+2(4)$
$=-4-4 \lambda+8$
$=4-4 \lambda$
$\therefore\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=4-4 \lambda$ eq(4)

Four points $A, B, C \& D$ are coplanar if and only if
$\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=0$ \qquad
From eq(4) and eq(5)
$4-4 \lambda=0$
$4 \lambda=4$
$\lambda=1$
Q. 14

Using vector method, show that the points $A(4,5,1), B(0,-1,-1), C(3,9,4)$ and D(-4, 4, 4) are coplanar.

Answer :

Given Points :
$A \equiv(4,5,1)$
$B \equiv(0,-1,-1)$
$C \equiv(3,9,4)$
$D \equiv(-4,4,4)$
To Prove: Points A, B, C \& D are coplanar.
Formulae :
4) Position Vectors:

If A is a point with co-ordinates $\left(a_{1}, a_{2}, a_{3}\right)$
then its position vector is given by,
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
5) Vectors:

If $A \& B$ are two points with position vectors $\bar{a} \& \bar{b}$,
Where,
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then vector $\overline{A B}$ is given by,
$\overline{A B}=\bar{b}-\bar{a}$
$\left(b_{1}-a_{1}\right) \hat{\imath}+\left(b_{2}-a_{2}\right) \hat{\jmath}+\left(b_{3}-a_{3}\right) \hat{k}$
6) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
7) Determinant:
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer :
For given points,
$A \equiv(4,5,1)$
$B \equiv(0,-1,-1)$
$\mathrm{C} \equiv(3,9,4)$
$\mathrm{D} \equiv(-4,4,4)$
Position vectors of above points are,
$\bar{a}=4 \hat{\imath}+5 \hat{\jmath}+\hat{k}$
$\bar{b}=0 \hat{\imath}-\hat{\jmath}-\hat{k}$
$\bar{c}=3 \hat{\imath}+9 \hat{\jmath}+4 \hat{k}$
$\bar{d}=-4 \hat{\imath}+4 \hat{\jmath}+4 \hat{k}$
Vectors $\overline{B A}, \overline{C A} \& \overline{D A}$ are given by,
$\overline{B A}=\bar{a}-\bar{b}$
$=(4-0) \hat{\imath}+(5+1) \hat{\jmath}+(1+1) \hat{k}$
$\therefore \overline{B A}=4 \hat{\imath}+6 \hat{\jmath}+2 \hat{k}$ \qquad eq(1)
$\overline{C A}=\bar{a}-\bar{c}$
$=(4-3) \hat{\imath}+(5-9) \hat{\jmath}+(1-4) \hat{k}$
$\therefore \overline{C A}=\hat{\imath}-4 \hat{\jmath}-3 \hat{k}$ \qquad eq(2)
$\overline{D A}=\bar{a}-\bar{d}$
$=(4+4) \hat{\imath}+(5-4) \hat{\jmath}+(1-4) \hat{k}$
$\therefore \overline{D A}=8 \hat{\imath}+1 \hat{\jmath}-3 \hat{k}$

Now, for vectors
$\overline{B A}=4 \hat{\imath}+6 \hat{\jmath}+2 \hat{k}$
$\overline{C A}=\hat{\imath}-4 \hat{\jmath}-3 \hat{k}$
$\overline{D A}=8 \hat{\imath}+1 \hat{\jmath}-3 \hat{k}$
$\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=\left|\begin{array}{ccc}4 & 6 & 2 \\ 1 & -4 & -3 \\ 8 & 1 & -3\end{array}\right|$
$=4((-4) \times(-3)-1 \times(-3))-6(1 \times(-3)-(-3) \times 8)$

$$
+2(1 \times 1-(-4) \times 8)
$$

$=4(15)-6(21)+2(33)$
$=60-126+66$
$=0$
$\therefore\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=0$
Hence, vectors $\overline{B A}, \overline{C A} \& \overline{D A}$ are coplanar.
Therefore, points A, B, C \& D are coplanar.
Note : Four points A, B, C \& D are coplanar if and only if $\left.\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=0$
Q. 15

Find the value of λ for which the points $A(3,2,1), B(4, \lambda, 5), C(4,2,-2)$ and $D(6,5,-1)$ are coplanar.

Ans. $\boldsymbol{\lambda}=5$
Answer :
Given :
Points A, B, C \& D are coplanar where,
$A \equiv(3,2,1)$
$B \equiv(4, \lambda, 5)$
$C \equiv(4,2,-2)$
$D \equiv(6,5,-1)$
To Find : value of λ
Formulae :

1) Position Vectors :

If A is a point with co-ordinates $\left(a_{1}, a_{2}, a_{3}\right)$
then its position vector is given by,
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
2) Vectors:

If $A \& B$ are two points with position vectors $\bar{a} \& \bar{b}$,
Where,
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then vector $\overline{A B}$ is given by,
$\overline{A B}=\bar{b}-\bar{a}$
$\left(b_{1}-a_{1}\right) \hat{\imath}+\left(b_{2}-a_{2}\right) \hat{\jmath}+\left(b_{3}-a_{3}\right) \hat{k}$
3) Scalar Triple Product:

If
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
$\bar{c}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k}$
Then,
$\left[\begin{array}{lll}\bar{a} & \bar{b} & \bar{c}\end{array}\right]=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
4) Determinant :
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left(b_{2} \cdot c_{3}-c_{2} \cdot b_{3}\right)-a_{2}\left(b_{1} \cdot c_{3}-c_{1} \cdot b_{3}\right)+a_{3}\left(b_{1} \cdot c_{2}-c_{1} \cdot b_{2}\right)$
Answer:
For given points,
$A \equiv(3,2,1)$
$B \equiv(4, \lambda, 5)$
$\equiv(4,2,-2)$
$D \equiv(6,5,-1)$
Position vectors of above points are,
$\bar{a}=3 \hat{\imath}+2 \hat{\jmath}+\hat{k}$
$\bar{b}=4 \hat{\imath}+\lambda \hat{\jmath}+5 \hat{k}$
$\bar{c}=4 \hat{\imath}+2 \hat{\jmath}-2 \hat{k}$
$\bar{d}=6 \hat{\imath}+5 \hat{\jmath}-\hat{k}$
Vectors $\overline{B A}, \overline{C A} \& \overline{D A}$ are given by,
$\overline{B A}=\bar{a}-\bar{b}$
$=(3-4) \hat{\imath}+(2-\lambda) \hat{\jmath}+(1-5) \hat{k}$
$\therefore \overline{B A}=-\hat{\imath}+(2-\lambda) \hat{\jmath}-4 \hat{k}$ eq(1)
$\overline{C A}=\bar{a}-\bar{c}$
$=(3-4) \hat{\imath}+(2-2) \hat{\jmath}+(1+2) \hat{k}$
$\therefore \overline{C A}=-\hat{\imath}+0 \hat{\jmath}+3 \hat{k}$ \qquad
$\overline{D A}=\bar{a}-\bar{d}$
$=(3-6) \hat{\imath}+(2-5) \hat{\jmath}+(1+1) \hat{k}$
$\therefore \overline{D A}=-3 \hat{\imath}-3 \hat{\jmath}+2 \hat{k}$
Now, for vectors
$\overline{B A}=-\hat{\imath}+(2-\lambda) \hat{\jmath}-4 \hat{k}$
$\overline{C A}=-\hat{\imath}+0 \hat{\jmath}+3 \hat{k}$
$\overline{D A}=-3 \hat{\imath}-3 \hat{\jmath}+2 \hat{k}$
$\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=\left|\begin{array}{ccc}-1 & (2-\lambda) & -4 \\ -1 & 0 & 3 \\ -3 & -3 & 2\end{array}\right|$
$=-1(0 \times 2-3 \times(-3))-(2-\lambda)(2 \times(-1)-(-3) \times 3)$ $-4((-1) \times(-3)-(-3) \times 0)$
$=-1(9)-(2-\lambda) \cdot(7)-4(3)$
$=-9-14+7 \lambda-12$
$=7 \lambda-35$
$\therefore\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=7 \lambda-35$ eq(4)

But points A, B, C \& D are coplanar if and only if
$\left[\begin{array}{lll}\overline{B A} & \overline{C A} & \overline{D A}\end{array}\right]=0$ \qquad eq(5)

From eq(4) and eq(5)
$7 \lambda-35=0$
$\therefore 7 \lambda=35$

Exercise 25B

Q. 1

If $\overrightarrow{\mathrm{a}}=x \hat{\mathrm{i}}+2 \hat{j}-z \hat{k}$ and $\overrightarrow{\mathrm{b}}=3 \hat{i}-y \hat{j}+\hat{k}$ are two equal vectors the $\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=\boldsymbol{?}$
Answer:
$\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=\hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\vec{a}=x \hat{\imath}+2 \hat{\jmath}-z \hat{k}$
$\vec{b}=3 \hat{\imath}-y \hat{\jmath}+\hat{k}$
Since, these two vectors are equal, therefore comparing these two vectors we get,
$x=3,-y=2,-z=1$
$\Rightarrow x=3, y=-2, z=-1$
$\therefore \mathrm{x}+\mathrm{y}+\mathrm{z}=3+(-2)+(-1)=3-2-1=0$
Ans: $x+y+z=0$
Q. 2

Write a unit vector in the direction of the sum of the vectors $\vec{a}=(2 \hat{i}+2 \hat{j}-5 \hat{k})$ and $\overrightarrow{\mathrm{b}}=(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-7 \hat{\mathrm{k}})$.

Answer :

Let \vec{s} be the sum of the vectors \vec{a} and \vec{b}
$\Rightarrow \vec{s}=\vec{a}+\vec{b}$
$\Rightarrow \vec{s}=2 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}+2 \hat{\imath}+\hat{\jmath}-7 \hat{k}$
$\Rightarrow \vec{s}=4 \hat{\imath}+3 \hat{\jmath}-12 \hat{k}$
$|\vec{S}|=\left(4^{2}+3^{2}+(-12)^{2}\right)^{1 / 2}$
$\Rightarrow|\vec{S}|=(16+9+144)^{1 / 2}=(169)^{1 / 2}=13$
a unit vector in the direction of the sum of the vectors is given by:
$\hat{s}=\frac{\vec{s}}{|\vec{s}|}=\frac{4 \hat{\imath}+3 \hat{\jmath}-12 \hat{k}}{13}$
Ans: ${ }^{\hat{s}}=\frac{4 \hat{\imath}+3 \hat{\jmath}-12 \hat{k}}{13}$
Q. 3

Write the value of $\boldsymbol{\lambda}$ so that the vectors $\vec{a}=(2 \hat{i}+\lambda \hat{j}+\hat{k})$ and $\vec{b}=(\hat{i}-2 \hat{j}+3 \hat{k})$ are perpendicular to each other.

Answer:
$\vec{a}=2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}$
$\vec{b}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
Since these two vectors are perpendicular the dot product of these two vectors is zero.
i.e.: $\vec{a} \cdot \vec{b}=0$
$\Rightarrow(2 \hat{\imath}+\lambda \hat{\jmath}+\hat{k}) \cdot \widehat{(l}-2 \hat{\jmath}+3 \hat{k})=0$
$\Rightarrow 2+\lambda \times(-2)+3=0$
$\Rightarrow 5=2 \lambda$
$\Rightarrow \lambda=5 / 2$
Ans: $\lambda=5 / 2$
Q. 4

Find the value of \mathbf{p} for which the vectors $\vec{a}=(3 \hat{i}+2 \hat{j}+9 \hat{k})_{\text {and }} \quad \vec{b}=(\hat{i}-2 \hat{\mathrm{j}}+3 \hat{k})_{\text {are }}$ parallel.

Answer:

$\vec{a}=3 \hat{\imath}+2 \hat{\jmath}+9 \hat{k}$
$\vec{b}=\hat{\imath}-2 p \hat{\jmath}+3 \hat{k}$

Since these two vectors are parallel
$\therefore \frac{3}{1}=\frac{2}{-2 p}=\frac{9}{3}$
$\Rightarrow \frac{3}{1}=\frac{1}{-p}$
${ }_{\Rightarrow} p=\frac{-1}{3}$
Ans: $p=\frac{-1}{3}$
Q. 5

Find the value of $\boldsymbol{\lambda}$ when the projection of $\vec{a}=(\lambda \hat{i}+\hat{j}+4 \hat{k})$ on $\vec{b}=(2 \hat{i}+6 \hat{j}+3 \hat{k})$ is 4 units.

Answer:

$\vec{a}=\lambda \hat{\imath}+\hat{\jmath}+4 \hat{k}$
$\vec{b}=2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$
projection of a on b is given by: $\vec{a} . \hat{b}$
$|\vec{b}|=\left(2^{2}+6^{2}+3^{2}\right)^{1 / 2}$
$\Rightarrow \mid \vec{b}_{\mid}=(4+36+9)^{1 / 2}=(49)^{1 / 2}=7$
a unit vector in the direction of the sum of the vectors is given by:
$\hat{b}=\frac{b}{|\vec{b}|}=\frac{2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}}{7}$
Now it is given that: $\vec{a} \cdot \hat{b}=4$
$\Rightarrow(\lambda \hat{\imath}+\hat{\jmath}+4 \hat{k}) \cdot\left(\frac{2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}}{7}\right)=4$
$\Rightarrow 2 \lambda+6+(3 \times 4)=28$
$\Rightarrow \lambda=(28-12-6) / 2$
$\Rightarrow \lambda=10 / 2=5$
Ans: $\lambda=5$
Q. 6

If \vec{a} and \vec{b} are perpendicular vectors such that $|\vec{a}+\vec{b}|=13$ and $|\vec{a}|=5$, find the value of $|\vec{b}|$.

Answer:

Since a and b vectors are perpendicular .
$\Rightarrow \theta=\frac{\pi}{2}$
Now,
$\left|\vec{a}+\vec{b}_{\left.\right|^{2}}=\left|\vec{a}_{\left.\right|^{2}}+\left|\vec{b}^{2}\right|^{2}+2\right| \vec{a}_{\mid} \vec{b}_{\mid \cos \theta}\right.$
$\Rightarrow 13^{2}=5^{2}+\left.\left.\right|_{b^{2}}\right|^{2}+0 \ldots\left(\cos \theta=\cos \frac{\pi}{2}=0\right)$
$\Rightarrow|\vec{b}|^{2}=169-25=144$
$\Rightarrow|\vec{b}|=12$
Ans: $\mid \vec{b}_{\mid=12}$
Q. 7

If \vec{a} is a unit vector such that $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=15$, find $|\vec{x}|$.

Answer:

$(\vec{x}-\vec{a})(\vec{x}+\vec{a})=15$
$\Rightarrow\left|\vec{x}^{2}-|\vec{a}|^{2}=15\right.$
$\Rightarrow\left|\vec{x}_{\left.\right|^{2}}=\right| \vec{a}_{\left.\right|^{2}}+15$
Now, a is a unit vector,
$\Rightarrow \mid \vec{a}_{\mid=1}$
$\Rightarrow|\vec{x}|^{2}=1^{2}+15$
$\Rightarrow|\vec{x}|^{2}=16$
$\Rightarrow \mid \vec{x}_{\mid}=4$
Ans: $\mid \vec{x}_{\mid}=4$
Q. 8

Find the sum of the vectors $\vec{a}=(\hat{i}-3 \hat{k}), \vec{b}=(2 \hat{j}-\hat{k})$ and $\vec{c}=(2 \hat{i}-3 \hat{j}+2 \hat{k})$.
Answer:
$\vec{a}=\hat{\imath}-3 \hat{k}$
$\vec{b}=2 \hat{\jmath}-\hat{k}$
$\vec{c}=2 \hat{\imath}-3 \hat{\jmath}+2 \hat{k}$
Now,
$\vec{a}+\vec{b}+\vec{c}=\hat{\imath}-3 \hat{\jmath}+2 \hat{\jmath}-\hat{k}+2 \hat{\imath}-3 \hat{\jmath}+2 \hat{k}$
$\Rightarrow \vec{a}+\vec{b}+\vec{c}=3 \hat{\imath}-\hat{\jmath}-2 \hat{k}$
Ans: $\vec{a}+\vec{b}+\vec{c}=3 \hat{\imath}-\hat{\jmath}-2 \hat{k}$
Q. 9

Find the sum of the vectors $\vec{a}=(\hat{i}-2 \hat{j}), \vec{b}=(2 \hat{i}-3 \hat{j})$ and $\vec{c}=(2 \hat{i}+3 \hat{k})$.
Answer:
$\vec{a}=\hat{\imath}-2 \hat{\jmath}$
$\vec{b}=2 \hat{\imath}-3 \hat{\jmath}$
$\vec{c}=2 \hat{\imath}+3 \hat{k}$
Now,
$\vec{a}+\vec{b}+\vec{c}=\hat{\imath}-2 \hat{\jmath}+2 \hat{\imath}-3 \hat{\jmath}+2 \hat{\imath}+3 \hat{k}$
$\Rightarrow \vec{a}+\vec{b}+\vec{c}=5 \hat{\imath}-5 \hat{\jmath}+3 \hat{k}$
Ans: $\vec{a}+\vec{b}+\vec{c}=5 \hat{\imath}-5 \hat{\jmath}+3 \hat{k}$
Q. 10

Write the projection of the vector $(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ along the vector $\hat{\mathrm{j}}$.

Answer:

projection of a on b is given by: $\vec{a} \cdot \hat{b}$
\therefore the projection of the vector $(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ along the vector $\hat{\mathrm{j}}$.
$(\hat{\imath}+\hat{\jmath}+\hat{k}) \cdot \hat{\jmath}=0+1+0=1$
Ans: the projection of the vector $(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ along the vector $\hat{\mathrm{j}}$. is:1

Q. 11

Write the projection of the vector $(7 \hat{\mathrm{i}}+\hat{\mathrm{j}}-4 \hat{\mathrm{k}})$ on the vector $(2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$.

Answer:

$\vec{a}=7 \hat{\imath}+\hat{\jmath}-4 \hat{k}$
$\vec{b}=2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$
projection of a on b is given by: $\vec{a} . \hat{b}$
$|\vec{b}|=\left(2^{2}+6^{2}+3^{2}\right)^{1 / 2}$
$\Rightarrow|\vec{b}|=(4+36+9)^{1 / 2}=(49)^{1 / 2}=7$
a unit vector in the direction of the sum of the vectors is given by:
$\hat{b}=\frac{\vec{b}}{|\vec{b}|}=\frac{2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}}{7}$
$\vec{a} \cdot \hat{b}=(7 \hat{\imath}+\hat{\jmath}-4 \hat{k}) \cdot\left(\frac{2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}}{7}\right)=\frac{(7 \times 2)+(1 \times 6)-(4 \times 3)}{7}$

$$
=\frac{14+6-12}{7}=\frac{8}{7}
$$

Ans: the projection of the vector $(7 \hat{\mathrm{i}}+\hat{\mathrm{j}}-4 \hat{\mathrm{k}})$ on the vector $(2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$.
Q. 12

Find $\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})$ when $\overrightarrow{\mathrm{a}}=(2 \hat{\mathrm{i}}+\hat{j}+3 \hat{\mathrm{k}}), \overrightarrow{\mathrm{b}}=(-\hat{\mathrm{i}}+2 \hat{j}+\hat{k})$ and $\overrightarrow{\mathrm{c}}=(3 \hat{i}+\hat{j}+2 \hat{k})$.
Answer:
$\vec{a}=2 \hat{\imath}+\hat{\jmath}+3 \hat{k}$

$$
\begin{aligned}
& \vec{b}=-\hat{\imath}+2 \hat{\jmath}+\hat{k} \\
& \vec{c}=3 \hat{\imath}+\hat{\jmath}+2 \hat{k} \\
& \vec{b} \times \vec{c}=(-\hat{\imath}+2 \hat{\jmath}+\hat{k}) \times(3 \hat{\imath}+\hat{\jmath}+2 \hat{k})=\left[\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-1 & 2 & 1 \\
3 & 1 & 2
\end{array}\right] \\
& {\left[\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-1 & 2 & 1 \\
3 & 1 & 2
\end{array}\right]=\hat{\imath}(4-1)-\hat{\jmath}(-2-3)+\hat{k}(-1-6)=3 \hat{\imath}+5 \hat{\jmath}-7 \hat{k}} \\
& \therefore \vec{b} \times \vec{c}=3 \hat{\imath}+5 \hat{\jmath}-7 \hat{k} \\
& \therefore \vec{a} \cdot(\vec{b} \times \vec{c})=(2 \hat{\imath}+\hat{\jmath}+3 \hat{k}) \cdot(3 \hat{\imath}+5 \hat{\jmath}-7 \hat{k})=(2 \times 3)+(1 \times 5)+(3 \times-7) \\
& =6+5-21=-10
\end{aligned}
$$

Ans: - 10
Q. 13

Find a vector in the direction of $(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$ which has magnitude 21 units. Answer:
$\vec{a}=2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k}$
$\mid \vec{a}_{\mid}=\left(2^{2}+(-3)^{2}+6^{2}\right)^{1 / 2}$
$\Rightarrow \mid \vec{a}_{\mid}=(4+9+36)^{1 / 2}=(49)^{1 / 2}=7$
a unit vector in the direction of the sum of the vectors is given by:
$\hat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k}}{7}$
a vector in the direction of $(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$ which has magnitude 21 units.
$=21^{\hat{a}}=21 \times \frac{2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k}}{7}=3(2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k})=6 \hat{\imath}-9 \hat{\jmath}+18 \hat{k}$
Ans: $6 \hat{\imath}-9 \hat{\jmath}+18 \hat{k}$
Q. 14

If $\vec{a}=(2 \hat{i}+2 \hat{j}+3 \hat{k}), \vec{b}=(-\hat{i}+2 \hat{j}+\hat{k})$ and $\vec{c}=(3 \hat{i}+\hat{j})$ are such that $(\vec{a}+\lambda \vec{b})$ is perpendicular to $\vec{c}_{\text {then }}$ find the value of $\boldsymbol{\lambda}$.

Answer :

$$
\begin{aligned}
& \vec{a}=2 \hat{\imath}+2 \hat{\jmath}+3 \hat{k} \\
& \vec{b}=-\hat{\imath}+2 \hat{\jmath}+\hat{k} \\
& \vec{c}=3 \hat{\imath}+\hat{\jmath} \\
& \vec{a}+\lambda \vec{b}=2 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}+\lambda(-\hat{\imath}+2 \hat{\jmath}+\hat{k}) \\
& \Rightarrow \vec{a}+\lambda \vec{b}=(2-\lambda) \hat{\imath}+(2+2 \lambda) \hat{\jmath}+(3+\lambda) \hat{k}
\end{aligned}
$$

Since $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}
$\Rightarrow(\vec{a}+\lambda \vec{b}) \cdot \vec{c}=0$
$\Rightarrow((2-\lambda) \hat{\imath}+(2+2 \lambda) \hat{\jmath}+(3+\lambda) \hat{k}) \cdot(3 \hat{\imath}+\hat{\jmath})=0$
$\Rightarrow(2-\lambda) \times 3+(2+2 \lambda) \times 1=0$
$\Rightarrow 6+2-3 \lambda+2 \lambda=0$
$\Rightarrow \lambda=8$
Ans: $\lambda=8$
Q. 15

Write the vector of magnitude 15 units in the direction of vector $(\hat{i}-2 \hat{j}+2 \hat{k})$.
Answer :
$\vec{a}=\hat{\imath}-2 \hat{\jmath}+2 \hat{k}$
$\mid \vec{a}_{\mid=\left(1^{2}+(-2)^{2}+2^{2}\right)^{1 / 2}, ~}^{\text {a }}$
$\Rightarrow \mid \vec{a}_{\mid}=(1+4+4)^{1 / 2}=(9)^{1 / 2}=3$
a unit vector in the direction of the sum of the vectors is given by:
$\hat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{\hat{\imath}-2 \hat{\jmath}+2 \hat{k}}{3}$
a vector in the direction of $(\hat{i}-2 \hat{j}+2 \hat{k})$. which has magnitude 15 units.
$=15^{\hat{a}}=15 \times \frac{\hat{\imath}-2 \hat{\jmath}+2 \hat{k}}{3}=5(\hat{\imath}-2 \hat{\jmath}+2 \hat{k})=5 \hat{\imath}-10 \hat{\jmath}+10 \hat{k}$.
Ans: $5 \hat{\imath}-10 \hat{\jmath}+10 \hat{k}$.
Q. 16

If $\overrightarrow{\mathrm{a}}=(\hat{\mathrm{i}}+\hat{j}+\hat{k}), \overrightarrow{\mathrm{b}}=(4 \hat{\mathrm{i}}-2 \hat{j}+3 \hat{k})$ and $\overrightarrow{\mathrm{c}}=(\hat{\mathrm{i}}-2 \hat{j}+\hat{k})$, find a vector of magnitude 6 units which is parallel to the vector $(2 \vec{a}-\vec{b}+3 \vec{c})$.

Answer:

$\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}$
$\vec{b}=4 \hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
$\vec{c}=\hat{\imath}-2 \hat{\jmath}+\hat{k}$
$\therefore(2 \vec{a}-\vec{b}+3 \vec{c})=2(\hat{\imath}+\hat{\jmath}+\hat{k})-(4 \hat{\imath}-2 \hat{\jmath}+3 \hat{k})+3(\hat{\imath}-2 \hat{\jmath}+\hat{k})$
$\Rightarrow(2 \vec{a}-\vec{b}+3 \vec{c})=\hat{\imath}-2 \hat{\jmath}+2 \hat{k}$
LET, $(2 \vec{a}-\vec{b}+3 \vec{c})=\vec{s}$
$\vec{s}=\hat{\imath}-2 \hat{\jmath}+2 \hat{k}$
$|\vec{s}|=\left(1^{2}+(-2)^{2}+2^{2}\right)^{1 / 2}$
$\Rightarrow|\vec{S}|=(1+4+4)^{1 / 2}=(9)^{1 / 2}=3$
a unit vector in the direction of the sum of the vectors is given by:
$\hat{s}=\frac{\vec{s}}{|\vec{s}|}=\frac{\hat{\imath}-2 \hat{\jmath}+2 \hat{k}}{3}$
a vector of magnitude 6 units which is parallel to the vector $(2 \vec{a}-\vec{b}+3 \vec{c})$. is:
$6 \hat{s}=6 \times \frac{\hat{\imath}-2 \hat{\jmath}+2 \hat{k}}{3}=2(\hat{\imath}-2 \hat{\jmath}+2 \hat{k})=2 \hat{\imath}-4 \hat{\jmath}+4 \hat{k}$.
Ans: $2 \hat{\imath}-4 \hat{\jmath}+4 \hat{k}$
Q. 17

Write the projection of the vector $(\hat{i}-\hat{j})$ on the vector $(\hat{i}+\hat{j})$.

Answer :

$\vec{a}=\hat{\imath}-\hat{\jmath}$
$\vec{b}=\hat{\imath}+\hat{\jmath}$
projection of a on b is given by: $\vec{a} . \hat{b}$
$\mid \vec{b}_{\mid}=\left(1^{2}+1^{2}+0^{2}\right)^{1 / 2}$
$\Rightarrow|\vec{b}|=(1+1)^{1 / 2}=(2)^{1 / 2}$
a unit vector in the direction of the sum of the vectors is given by:
$\hat{b}=\frac{\vec{b}}{|\vec{b}|}=\frac{\hat{\imath}+\hat{\jmath}}{\sqrt{2}}$
$\vec{a} . \hat{b}=(\hat{\imath}-\hat{\jmath}) \cdot\left(\frac{\hat{\imath}+\hat{\jmath}}{\sqrt{2}}\right)=\frac{(1 \times 1)+(-1 \times 1)}{\sqrt{2}}=\frac{0}{\sqrt{2}}=0$
Ans: the projection of the vector $(7 \hat{\mathrm{i}}+\hat{\mathrm{j}}-4 \hat{\mathrm{k}})$ on the vector $(2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$.
Q. 18

Write the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\sqrt{6}$.

Answer :
${ }_{\mid} \vec{a}_{\mid=\sqrt{3}}$
$|\vec{b}|=2$
Since, $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
Substituting the given values we get:
$\Rightarrow \sqrt{6}=\sqrt{3} \times 2 \times \cos \theta$
$\Rightarrow \cos \theta=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$
$\Rightarrow \theta=\cos ^{-1} \frac{1}{\sqrt{2}}$
$\Rightarrow \theta=45^{\circ}=\frac{\pi}{4}$
Ans: $\theta=45^{\circ}=\frac{\pi}{4}$
Q. 19

If $\overrightarrow{\mathrm{a}}=(\hat{\mathrm{i}}-7 \hat{\mathrm{j}}+7 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{b}}=(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$ then find $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|$.
Answer:
$\vec{a}=\hat{\imath}-7 \hat{\jmath}+7 \hat{k}$
$\vec{b}=3 \hat{\imath}-2 \hat{\jmath}+2 \hat{k}$
$\vec{a} \times \vec{b}=(\hat{\imath}-7 \hat{\jmath}+7 \hat{k}) \times(3 \hat{\imath}-2 \hat{\jmath}+2 \hat{k})=\left[\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -7 & 7 \\ 3 & -2 & 2\end{array}\right]$
$\begin{aligned} {\left[\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -7 & 7 \\ 3 & -2 & 2\end{array}\right] } & =\hat{\imath}(-14-(-14))-\hat{\jmath}(2-21)+\hat{k}(-2-(-21)) \\ & =0 \hat{\imath}+19 \hat{\jmath}+19 \hat{k}\end{aligned}$
$\therefore \vec{a} \times \vec{b}=0 \hat{\imath}+19 \hat{\jmath}+19 \hat{k}$
$\therefore|\vec{a} \times \vec{b}|=\left(0^{2}+19^{2}+19^{2}\right)^{1 / 2}=\left(2 \times 19^{2}\right)^{1 / 2}=19 \sqrt{ } 2$
Ans: $\therefore|\vec{a} \times \vec{b}|=19 \sqrt{ } 2$
Q. 20

Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively, when $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{3}$.

Answer:
$|\vec{a}|={ }_{1}$
$|\vec{b}|=2$
Since, $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$
Substituting the given values we get:
$\Rightarrow \sqrt{3}=1 \times 2 \times \sin \theta$
$\Rightarrow \sin \theta=\frac{\sqrt{3}}{2}$
$\Rightarrow \theta=\sin ^{-1} \frac{\sqrt{3}}{2}$
$\Rightarrow \theta=60^{\circ}=\frac{\pi}{3}$
Ans: $\theta=60^{\circ}=\frac{\pi}{3}$
Q. 21

What conclusion can you draw about vectors \vec{a} and \vec{b} when $\vec{a} \times \vec{b}=\overrightarrow{0}$ and $\vec{a} \cdot \vec{b}=0$? Answer:

It is given that:
$\vec{a} \times \vec{b}=\overrightarrow{0}$ and $\vec{a} \cdot \vec{b}=\overrightarrow{0}$
$\Rightarrow|\vec{a}||\vec{b}| \sin \theta=|\vec{a}||\vec{b}| \cos \theta=\overrightarrow{0}$
Since $\sin \theta$ and $\cos \theta$ cannot be 0 simultaneously $\therefore|\vec{a}|=|\vec{b}|=0$
Conclusion: when $\vec{a} \times \vec{b}=\overrightarrow{0}$ and $\vec{a} \cdot \vec{b}=\overrightarrow{0}$
Then $|\vec{a}|=|\vec{b}|=0$
Q. 22

Find the value of $\boldsymbol{\lambda}$ when the vectors $\overrightarrow{\mathrm{a}}=(\hat{\mathrm{i}}+\lambda \hat{j}+3 \hat{k})$ and $\overrightarrow{\mathrm{b}}=(3 \hat{\mathrm{i}}+2 \hat{j}+9 \hat{k})$ are parallel. Answer:
$\vec{a}=\hat{\imath}+\lambda \hat{\jmath}+3 \hat{k}$
$\vec{b}=3 \hat{\imath}+2 \hat{\jmath}+9 \hat{k}$
It is given that $\vec{a} \| \vec{b}$
$\underset{\Rightarrow 3}{\frac{1}{3}}=\frac{\lambda}{2}=\frac{3}{9}$
$\underset{\Rightarrow 3}{\frac{1}{3}}=\frac{\lambda}{2}$
$\Rightarrow \lambda=2 \times \frac{1}{3}=\frac{2}{3}$
Ans: $\lambda=2 / 3$
Q. 23

Write the value of
$\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{i} \times \hat{j})$.

Answer :

We know that:
$\hat{\imath} \times \hat{\jmath}=\hat{k}, \hat{\jmath} \times \hat{k}=\hat{\imath}, \hat{k} \times \hat{\imath}=\hat{\jmath}$,
$\hat{\jmath} \times \hat{\imath}=-\hat{k}, \hat{k} \times \hat{\jmath}=-\hat{\imath}, \hat{\imath} \times \hat{k}=-\hat{\jmath}$
$\hat{\imath} . \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\hat{k} \cdot \hat{k}=1$
$. . \hat{\imath} \cdot(\hat{\jmath} \times \hat{k})+\hat{\jmath} \cdot(\hat{\imath} \times \hat{k})+\hat{k} \cdot(\hat{\imath} \times \hat{\jmath})=\hat{\imath} . \hat{\imath}+\hat{\jmath} \cdot(-\hat{\jmath})+\hat{k} \cdot \hat{k}=1-1+1=1$
Ans: $\hat{\imath} \cdot(\hat{\jmath} \times \hat{k})+\hat{\jmath} \cdot(\hat{\imath} \times \hat{k})+\hat{k} \cdot(\hat{\imath} \times \hat{\jmath})=1$
Q. 24

Find the volume of the parallelepiped whose edges are represented by the vectors $\overrightarrow{\mathrm{a}}=(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}), \overrightarrow{\mathrm{b}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{c}}=(3 \hat{\mathrm{i}}-2 \hat{j}+2 \hat{\mathrm{k}})$.

Answer :

Scalar triple product geometrically represents the volume of the parallelepiped whose three coterminous edges are represented by $\vec{a}, \vec{b}, \vec{c}$.i.e. $\mathrm{V}=[\vec{a} \vec{b} \vec{c}]$
$\vec{a}=2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k}$
$\vec{b}=\hat{\imath}+2 \hat{\jmath}-\hat{k}$
$\vec{c}=3 \hat{\imath}-2 \hat{\jmath}+2 \hat{k}$
$\therefore \mathrm{V}=[\vec{a} \vec{b} \vec{c}]=\left[\begin{array}{ccc}2 & -3 & 4 \\ 1 & 2 & -1 \\ 3 & -2 & 2\end{array}\right]=2(4-2)-(-3)(2-(-3))+4(-2-6)=4+15-32=|-13|=$ 13 cubic units.

Ans: 13 cubic units.
Q. 25

If $\vec{a}=(-2 \hat{i}-2 \hat{j}+4 \hat{k}), \vec{b}=(-2 \hat{j}+4 \hat{j}-2 \hat{k})$ and $\vec{c}=(4 \hat{i}-2 \hat{j}-2 \hat{k})$ then prove that \vec{a}, \vec{b} and \vec{c} are coplanar.

Answer:
$\vec{a}=-2 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}$
$\vec{b}=-2 \hat{\imath}+4 \hat{\jmath}-2 \hat{k}$
$\vec{c}=4 \hat{\imath}-2 \hat{\jmath}-2 \hat{k}$
If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then $[\vec{a} \vec{b} \vec{c}]=0$
L.H.S $=\left[\begin{array}{ccc}-2 & -2 & 4 \\ -2 & 4 & -2 \\ 4 & -2 & -2\end{array}\right]=-2(-8-4)+2(4+8)+4(4-16)=24+24-48=0=$ R.H.S \therefore L.H.S $=$ R.H.S

Hence proved that the vectors $\vec{a}=-2 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}$
$\vec{b}=-2 \hat{\imath}+4 \hat{\jmath}-2 \hat{k}$
$\vec{c}=4 \hat{\imath}-2 \hat{\jmath}-2 \hat{k}$
Are coplanar.
Q. 26
$\underset{\text { If }}{\vec{a}}=(2 \hat{i}+6 \hat{j}+27 \hat{k})$ and $\vec{b}=(\hat{i}+\lambda \hat{j}+\mu \hat{k})$ are such that $\vec{a} \times \vec{b}=\overrightarrow{0}$ then find the values of $\boldsymbol{\lambda}$ and μ.

Answer:

$\vec{a}=2 \hat{\imath}+6 \hat{\jmath}+27 \hat{k}$
$\vec{b}=\hat{\imath}+\lambda \hat{\jmath}+\mu \hat{k}$

It is given that $\vec{a} \times \vec{b}=\overrightarrow{0}$
$\Rightarrow(2 \hat{\imath}+6 \hat{\jmath}+27 \hat{k}) \times(\hat{\imath}+\lambda \hat{\jmath}+\mu \hat{k})=0$
$\Rightarrow\left[\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 6 & 27 \\ 1 & \lambda & \mu\end{array}\right]=0=\hat{\imath}(6 \mu-27 \lambda)-\hat{\jmath}(2 \mu-27)+\hat{k}(2 \lambda-6)$
$\Rightarrow 2 \lambda-6=0$
$\Rightarrow \lambda=6 / 2=3$
$\Rightarrow 2 \mu-27=0$
$\Rightarrow \mu=27 / 2$
Ans: $\lambda=3, \mu=27 / 2$
Q. 27

If $\boldsymbol{\theta}$ is the angle between \vec{a} and \vec{b}, and $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ then what is the value of θ ?

Answer:

It is given that:
$|\vec{a} \times \vec{b}|=|\vec{a} \cdot \vec{b}|$
$\Rightarrow|\vec{a}||\vec{b}| \sin \theta=|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow \sin \theta=\cos \theta$
$\Rightarrow \tan \theta=1$

$$
\Rightarrow \theta=\tan ^{-1} 1=\frac{\pi}{4}
$$

Ans: $\theta=\frac{\pi}{4}$
Q. 28

When does $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$ hold?

Answer:

When the two vectors are parallel or collinear, they can be added in a scalar way because the angle between them is zero degrees, they are I the same or opposite direction.

Therefore when two vectors \vec{a} and \vec{b} are either parallel or collinear then $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$
Q. 29

Find the direction cosines of a vector which is equally inclined to the $\mathbf{x}-\mathrm{axis}, \mathbf{y}-\mathrm{axis}$ and \mathbf{z} - axis.

Answer:

Let the inclination with:
$x-$ axis $=\alpha$
$y-a x i s=\beta$
$z-$ axis $=\gamma$
The vector is equally inclined to the three axes.
${ }_{\Rightarrow} \alpha=\beta=\gamma$
Direction cosines: $\cos \alpha, \cos \beta, \cos \gamma$
We know that: $\cos ^{2} a+\cos ^{2} \beta+\cos ^{2} Y=1$
$\Rightarrow \cos ^{2} a+\cos ^{2} a+\cos ^{2} a=1 \ldots(\alpha=\beta=\gamma)$
$\Rightarrow 3 \cos ^{2} a=1$
$\cos \alpha=\frac{1}{\sqrt{3}}$
$\Rightarrow \cos \alpha=\frac{1}{\sqrt{3}}$
$\cos \beta=\frac{1}{\sqrt{3}}$
$\cos \gamma=\frac{1}{\sqrt{3}}$
Ans: $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
Q. 30

If $P(1,5,4)$ and $Q(4,1,-2)$ be the position vectors of two points P and Q, find the direction ratios of $\overrightarrow{\mathrm{PQ}}$.

Answer:

Let $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ be the two points then Direction ratios of line joining P and Q i.e. $P Q$ are $x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z$

Here, P is $(1,5,4)$ and Q is $(4,1,-2)$
Direction ratios of PQ are: $(4-1),(1-5),(-2-4)=3,-4,-6$
Ans: the direction ratios of $\overrightarrow{\mathrm{PQ}}$. are: 3, $-4,-6$
Q. 31

Find the direction cosines of the vector $\overrightarrow{\mathrm{a}}=(\hat{\mathrm{i}}+2 \hat{j}+3 \hat{k})$

Answer:

$\vec{a}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
Let the inclination with:
$x-a x i s=\alpha$
$y-a x i s=\beta$
$z-$ axis $=\gamma$
Direction cosines: $\cos \alpha, \cos \beta, \cos \gamma=l, m, n$
For a vector $\vec{a}=a \hat{\imath}+b \hat{\jmath}+c \hat{k}$
$l=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, l=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$
$\therefore l=\frac{1}{\sqrt{1^{2}+2^{2}+3^{2}}}=\frac{1}{\sqrt{1+4+9}}=\frac{1}{\sqrt{14}}$.
$\therefore m=\frac{2}{\sqrt{1^{2}+2^{2}+3^{2}}}=\frac{2}{\sqrt{1+4+9}}=\frac{2}{\sqrt{14}}$
$\therefore n=\frac{3}{\sqrt{1^{2}+2^{2}+3^{2}}}=\frac{3}{\sqrt{1+4+9}}=\frac{3}{\sqrt{14}}$
Ans: $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
Q. 32

If \hat{a} and \hat{b} are unit vectors such that $(\hat{a}+\hat{b})$ is a unit vector, what is the angle between \hat{a} and \hat{b} ?

Answer:

It is given that \hat{a} and \hat{b} are unit vectors, as well as $(\hat{a}+\hat{b})$ is also a unit vector
$\Rightarrow\left|\hat{a}_{\mid}=\left|\hat{b}_{\mid}=\right| \hat{a}+\hat{b}_{\mid=1}\right.$
Since the modulus of a unit vector is unity.
Now,
$|\hat{a}+\hat{b}|^{2}=\left|\hat{a}^{2}+|\hat{b}|^{2}+2\right| \hat{a}_{\mid} \hat{b}^{2} \mid \cos \theta$
$\Rightarrow 1^{2}=1^{2}+1^{2}+2 \times 1 \times 1 \times \cos \theta$
$\Rightarrow \cos \theta=(1-1-1) / 2$
$\Rightarrow \cos \theta=\frac{-1}{2}$
$\Rightarrow \theta=\cos ^{-1} \frac{-1}{2}=\frac{2 \pi}{3}$
Ans: $\frac{2 \pi}{3}$

Objective Questions

Q. 1

Mark $(\sqrt{ })$ against the correct answer in each of the following:
A unit vector in the direction of the vector $\vec{a}=(2 \hat{i}-3 \hat{j}+6 \hat{k})$ is
A. $\left(\hat{\mathrm{i}}-\frac{3}{2} \hat{\mathrm{j}}+3 \hat{\mathrm{k}}\right)$
B. $\left(\frac{2}{5} \hat{\mathrm{i}}-\frac{3}{5} \hat{\mathrm{j}}+\frac{6}{5} \hat{\mathrm{k}}\right)$
C. $\left(\frac{2}{7} \hat{\mathrm{i}}-\frac{3}{7} \hat{\mathrm{j}}+\frac{6}{7} \hat{\mathrm{k}}\right)$
D. none of these

Answer :

Tip - A vector in the direction of another vector $a \hat{\imath}+b \hat{\jmath}+c \hat{k}$ is given by $\lambda(a \hat{\imath}+b \hat{\jmath}+c \hat{k})$ and the unit vector is given by $\frac{\lambda(\mathrm{ai}+\mathrm{b} \hat{\mathrm{j}}+\mathrm{ck})}{\sqrt{(\mathrm{a} \lambda)^{2}+(\mathrm{b} \lambda)^{2}+(\mathrm{c} \lambda)^{2}}}$

So, a vector parallel to $\vec{a}=2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k}$ is given by $\lambda(2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k})$ where λ is an arbitrary constant.

Now, $|\vec{a}|=\sqrt{2^{2}+3^{2}+6^{2}}=7$
Hence, the required unit vector
$=\frac{\lambda(2 \hat{\imath}-3 \hat{\jmath}+6 \hat{\mathrm{k}})}{\sqrt{(2 \lambda)^{2}+(3 \lambda)^{2}+(6 \lambda)^{2}}}$
$=\frac{\lambda(2 \hat{\imath}-3 \hat{\jmath}+6 \hat{\mathrm{k}})}{\lambda \sqrt{2^{2}+3^{2}+6^{2}}}$
$=\frac{2}{7} \hat{\imath}-\frac{3}{7} \hat{\jmath}+\frac{6}{7} \hat{k}$

Q. 2

Mark $(\sqrt{ })$ against the correct answer in each of the following:

The direction cosines of the vector $\vec{a}=(-2 \hat{i}+\hat{j}-5 \hat{k})$ are
A. $-2,1,-5$
B. $\frac{1}{3}, \frac{-1}{6}, \frac{-5}{6}$
c. $\frac{2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{5}{\sqrt{30}}$
D. $\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}$

Answer:
Formula to be used - The direction cosines of a vector $a \hat{\imath}+b \hat{\jmath}+c \hat{k}$ is given by $\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$.

Hence, the direction cosines of the vector $-2 \hat{\imath}+\hat{\jmath}-5 \hat{k}$ is given by
$\left(\frac{-2}{\sqrt{2^{2}+1^{2}+5^{2}}}, \frac{1}{\sqrt{2^{2}+1^{2}+5^{2}}}, \frac{-5}{\sqrt{2^{2}+1^{2}+5^{2}}}\right)$
$=\frac{-2}{\sqrt{30}}, \frac{1}{\sqrt{30}}, \frac{-5}{\sqrt{30}}$
Q. 3

Mark $(\sqrt{ })$ against the correct answer in each of the following:
If $A(1,2,-3)$ and $B(-1,-2,1)$ are the end points of a vector $\overrightarrow{\mathrm{AB}}$ then the direction cosines of $\overrightarrow{\mathrm{AB}}$ are
A. $-2,-4,4$
$\frac{-1}{2},-1,1$
B. 2
C. $\frac{-1}{3}, \frac{-2}{3}, \frac{2}{3}$
D. none of these

Answer:

Given $-A(1,2,-3)$ and $B(-1,-2,1)$ are the end points of a vector $\overrightarrow{A B}$
Tip - If $P\left(a_{1}, b_{1}, c_{1}\right)$ and $Q\left(a_{2}, b_{2}, c_{2}\right)$ be two points then the vector $\overrightarrow{P Q}$ is represented by $\left(\mathrm{a}_{2}-\mathrm{a}_{1}\right) \hat{\mathrm{i}}+\left(\mathrm{b}_{2}-\mathrm{b}_{1}\right) \hat{\jmath}+\left(\mathrm{c}_{2}-\mathrm{c}_{1}\right) \hat{\mathrm{k}}$

Hence, $\overrightarrow{\mathrm{AB}}=(-1-1) \hat{\imath}+(-2-2) \hat{\jmath}+(1+3) \hat{\mathrm{k}}=-2 \hat{\imath}-4 \hat{\jmath}+4 \hat{\mathrm{k}}$
Formula to be used - The direction cosines of a vector $a \hat{\imath}+b \hat{\jmath}+c \hat{k}$ is given by $\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$.

Hence, the direction cosines of the vector $-2 \hat{\imath}-4 \hat{\jmath}+4 \hat{k}$ is given by
$\left(\frac{-2}{\sqrt{2^{2}+4^{2}+4^{2}}}, \frac{-4}{\sqrt{2^{2}+4^{2}+4^{2}}}, \frac{4}{\sqrt{2^{2}+4^{2}+4^{2}}}\right)$
$=\left(\frac{-2}{6}, \frac{-4}{6}, \frac{4}{6}\right)$
$=\frac{-1}{3}, \frac{-2}{3}, \frac{2}{3}$
Q. 4

Mark $(\sqrt{ })$ against the correct answer in each of the following:
If a vector makes angle a, β and y with the x-axis, y-axis and z-axis respectively then the value of $\left(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} y\right)$ is
A. 1
B. 2
C. 0
D. 3

Answer:

Given - A vector makes angle a, β and γ with the x-axis, y-axis and z-axis respectively.
To Find $-\left(\sin ^{2} a+\sin ^{2} \beta+\sin ^{2} \gamma\right)$
Formula to be used $-\cos ^{2} a+\cos ^{2} \beta+\cos ^{2} \gamma=1$
Hence,
$\sin ^{2} a+\sin ^{2} \beta+\sin ^{2} Y$
$=\left(1-\cos ^{2} a\right)+\left(1-\cos ^{2} \beta\right)+\left(1-\cos ^{2} \gamma\right)$
$=3-\left(\cos ^{2} a+\cos ^{2} \beta+\cos ^{2} \gamma\right)$
$=3-1$
$=2$
Q. 5

Mark $(\sqrt{ })$ against the correct answer in each of the following:
The vector $(\cos \alpha \cos \beta) \hat{i}+(\cos \alpha \cos \beta) \hat{j}+(\sin \alpha) \hat{k}$ is a
A. null vector
B. unit vector
C. a constant vector
D. none of these

Answer:

Tip - Magnitude of a vector $\vec{a}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is given by $|\vec{a}|=\sqrt{x^{2}+y^{2}+z^{2}}$
A unit vector is a vector whose magnitude $=1$.

Formula to be used $-\sin ^{2} \theta+\cos ^{2} \theta=1$
Hence, magnitude of $(\cos \alpha \cos \beta) \hat{\imath}+(\cos \alpha \sin \beta) \hat{\jmath}+(\sin \alpha) \hat{\mathrm{k}}_{\text {will be given by }}$ $\sqrt{(\cos \alpha \cos \beta)^{2}+(\cos \alpha \sin \beta)^{2}+(\sin \alpha)^{2}}$
$=\sqrt{\cos ^{2} \alpha\left(\cos ^{2} \beta+\sin ^{2} \beta\right)+\sin ^{2} \alpha}$
$=\sqrt{\cos ^{2} \alpha+\sin ^{2} \alpha}$
$=1$ i.e a unit vector
Q. 6

Mark $(\sqrt{ })$ against the correct answer in each of the following:

What is the angle which the vector $(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\sqrt{2} \hat{\mathrm{k}})$ makes with the \boldsymbol{z}-axis?
A. $\frac{\pi}{4}$

元
B. 3
с. $\frac{\pi}{6}$
D. $\frac{2 \pi}{3}$

Answer:

Formula to be used - The direction cosines of a vector $a \hat{\imath}+b \hat{\jmath}+c \hat{k}$ is given by $\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$.

Hence, the direction cosines of the vector $\hat{\imath}+\hat{\jmath}+\sqrt{2} \hat{k}$ is given by

$$
\left(\frac{1}{\sqrt{1^{2}+1^{2}+(\sqrt{2})^{2}}}, \frac{1}{\sqrt{1^{2}+1^{2}+(\sqrt{2})^{2}}}, \frac{\sqrt{2}}{\sqrt{1^{2}+1^{2}+(\sqrt{2})^{2}}}\right)
$$

$=\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{2}}{2}$
$=\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}$

The direction cosine of z-axis $=\frac{1}{\sqrt{2}}$ i.e. $\cos \theta=\frac{1}{\sqrt{2}}$ where θ is the angle the vector makes with the zaxis.
$\therefore \theta=\cos ^{-1} \frac{1}{\sqrt{2}}=\frac{\pi}{4}$
Q. 7

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$f^{\vec{a}}$ and $\overrightarrow{\mathrm{b}}$ are vectors such that $|\overrightarrow{\mathrm{a}}|=\sqrt{3},|\overrightarrow{\mathrm{~b}}|=2$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\sqrt{6}$ then the angle between $\overrightarrow{\mathrm{a}}$ and \vec{b} is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
. $\frac{\pi}{4}$
C. 4
D. $\frac{2 \pi}{3}$

Answer:
Given $-\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ are vectors such that $|\vec{a}|=\sqrt{3}$ and $|\overrightarrow{\mathrm{b}}|=2$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\sqrt{6}$

To find - Angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$.

Formula to be used - $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$

Hence, $\sqrt{6}=2 \sqrt{3} \cos \theta_{\text {i.e. }} \cos \theta=\frac{1}{\sqrt{2}} \quad \therefore \theta=\frac{\pi}{4}$
Q. 8

Mark $(\sqrt{ })$ against the correct answer in each of the following:
If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=|\vec{b}|=\sqrt{2}$ and $\vec{a} \cdot \vec{b}=-1$ then the angle between
\vec{a} and \vec{b} is
π
A. 6
π
B. 4
C. $\frac{\pi}{3}$
D. $\frac{2 \pi}{3}$

Answer:
Given $-\vec{a}$ and \vec{b} are vectors such that $|\vec{a}|=|\vec{b}|=\sqrt{2}$ and $\vec{a} \cdot \vec{b}=-1$

To find - Angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$.

Formula to be used - $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$

Hence, $-1=\sqrt{2} \sqrt{2} \cos \theta_{\text {i.e. }} \cos \theta=\frac{1}{2} \quad \therefore \theta=\frac{\pi}{3}$
Q. 9

Mark $(\sqrt{ })$ against the correct answer in each of the following:
The angle between the vectors $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$ is
A. $\cos ^{-1} \frac{5}{7}$
B. $\cos ^{-1} \frac{3}{5}$
C. $\cos ^{-1} \frac{3}{\sqrt{14}}$
D. none of these

Answer:

Given - $\overrightarrow{\mathrm{a}}=\hat{\imath}-2 \hat{\jmath}+3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=3 \hat{\imath}-2 \hat{\jmath}+\hat{\mathrm{k}}$
To find - Angle between \vec{a} and \vec{b}.
Formula to be used $-\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
Tip - Magnitude of a vector $\vec{a}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is given by $|\vec{a}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Here, $\vec{a} \cdot \vec{b}=(\hat{\imath}-2 \hat{\jmath}+3 \hat{k}) \cdot(3 \hat{\imath}-2 \hat{\jmath}+\hat{k})=3+4+3=10$
$|\vec{a}|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}$
$|\vec{b}|=\sqrt{3^{2}+2^{2}+1^{2}}=\sqrt{14}$
Hence, $10=\sqrt{14} \sqrt{14} \cos \theta_{\text {i.e. }} \cos \theta=\frac{10}{14}=\frac{5}{7}$
$\therefore \theta=\cos ^{-1} \frac{5}{7}$
Q. 10

Mark $(\sqrt{ })$ against the correct answer in each of the following:
If $\overrightarrow{\mathrm{a}}=(\hat{\mathrm{i}}+2 \hat{j}-3 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{b}}=(3 \hat{\mathrm{i}}-\hat{j}+2 \hat{k})$ then the angle between $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ is
A. $\frac{\pi}{3}$
. \quad r
B. 4
C. $\frac{\pi}{2}$
D. $\frac{2 \pi}{3}$

Answer :

Given - $\overrightarrow{\mathrm{a}}=\hat{\imath}+2 \hat{\jmath}-3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=3 \hat{\imath}-\hat{\jmath}+2 \hat{\mathrm{k}}$
To find - Angle between $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.
Formula to be used $-\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}=|\overrightarrow{\mathrm{p}}||\overrightarrow{\mathrm{q}}| \cos \theta$ where $\overrightarrow{\mathrm{p}}$ and $\overrightarrow{\mathrm{q}}$ are two vectors

Tip - Magnitude of a vector $\vec{a}=x \hat{\imath}+y \hat{j}+z \hat{k}$ is given by $|\vec{a}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Here, $\vec{a}+\vec{b}=(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})+(3 \hat{\imath}-\hat{\jmath}+2 \hat{k})=4 \hat{\imath}+\hat{\jmath}-\hat{k}$
and $\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}=(\hat{\mathrm{i}}+2 \hat{\jmath}-3 \hat{\mathrm{k}})-(3 \hat{\imath}-\hat{\jmath}+2 \hat{k})=-2 \hat{\imath}+3 \hat{\jmath}-5 \hat{k}$
$\therefore(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=(4 \hat{\imath}+\hat{\jmath}-\hat{k}) \cdot(-2 \hat{\imath}+3 \hat{\jmath}-5 \hat{k})=-8+3+5=0$
$|\vec{a}+\vec{b}|=\sqrt{4^{2}+1^{2}+1^{2}}=\sqrt{18}$
$|\vec{a}-\vec{b}|=\sqrt{2^{2}+3^{2}+5^{2}}=\sqrt{38}$
Hence, $0=\sqrt{18} \sqrt{38} \cos \theta$ i.e. $\cos \theta=0$
$\therefore \theta=\frac{\pi}{2}$
Q. 11

Mark $(\sqrt{ })$ against the correct answer in each of the following:

If $\vec{a}=(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\vec{b}=(3 \hat{i}-\hat{j}+2 \hat{k})$ then the angle between $(2 \vec{a}+\vec{b})$ and $(\vec{a}+2 \vec{b})$
is
A.
$\cos ^{-1}\left(\frac{21}{40}\right)$
B. $\cos ^{-1}\left(\frac{31}{50}\right)$
$\cos ^{-1}\left(\frac{11}{30}\right)$
C. none of these

Answer :

Given - $\overrightarrow{\mathrm{a}}=\hat{\imath}+2 \hat{\jmath}-3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=3 \hat{\imath}-\hat{\jmath}+2 \hat{\mathrm{k}}$
To find - Angle between $2 \vec{a}+\vec{b}$ and $\vec{a}+2 \vec{b}$.
Formula to be used $-\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}=|\overrightarrow{\mathrm{p}}||\overrightarrow{\mathrm{q}}| \cos \theta$ where $\overrightarrow{\mathrm{p}}$ and $\overrightarrow{\mathrm{q}}$ are two vectors
Tip - Magnitude of a vector $\vec{a}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is given by $|\vec{a}|=\sqrt{x^{2}+y^{2}+z^{2}}$
Here, $2 \vec{a}+\vec{b}=2(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})+(3 \hat{\imath}-\hat{\jmath}+2 \hat{k})=5 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$
and $\vec{a}+2 \vec{b}=(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})+2(3 \hat{\imath}-\hat{\jmath}+2 \hat{k})=7 \hat{\imath}+\hat{k}$
$\therefore(2 \vec{a}+\vec{b}) \cdot(\vec{a}-2 \vec{b})=(5 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}) \cdot(7 \hat{\imath}+\hat{k})=35-4=31$
$|2 \vec{a}+\vec{b}|=\sqrt{5^{2}+3^{2}+4^{2}}=\sqrt{50}$
$|\vec{a}-2 \vec{b}|=\sqrt{7^{2}+1^{2}}=\sqrt{50}$
Hence, $31=\sqrt{50} \sqrt{50} \cos \theta$ i.e. $\cos \theta=\frac{31}{50}$
$\therefore \theta=\cos ^{-1} \frac{31}{50}$
Q. 12

Mark $(\sqrt{ })$ against the correct answer in each of the following:
If $\overrightarrow{\mathrm{a}}=(2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-\hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{b}}=(3 \hat{\mathrm{i}}-2 \hat{j}+\lambda \hat{\mathrm{k}})$ be such that $\overrightarrow{\mathrm{a}} \perp \overrightarrow{\mathrm{b}}$ then $\boldsymbol{\lambda}=$?
A. 2
B. -2
C. 3
D. -3

Answer :

Given - $\vec{a}=2 \hat{\imath}+4 \hat{\jmath}-\hat{k}, \vec{b}=3 \hat{\imath}-2 \hat{\jmath}+\lambda \hat{k}$ and $\vec{a} \perp \vec{b}$
To find - Value of λ
Formula to be used $-\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}=|\overrightarrow{\mathrm{p}}||\overrightarrow{\mathrm{q}}| \cos \theta$ where $\overrightarrow{\mathrm{p}}$ and $\overrightarrow{\mathrm{q}}$ are two vectors
Tip - For perpendicular vectors, $\theta=\frac{\pi}{2}$ i.e. $\cos \theta=0$ i.e. the dot product $=0$
Hence, $\vec{a} . \vec{b}=0$
$\therefore(2 \hat{\imath}+4 \hat{\jmath}-\hat{k}) \cdot(3 \hat{\imath}-2 \hat{\jmath}+\lambda \hat{k})=0$
$\Rightarrow 6-8-\lambda=0$
i.e. $\lambda=-2$
Q. 13

Mark $(\sqrt{ })$ against the correct answer in each of the following:

What is the projection of $\vec{a}=(2 \hat{i}-\hat{j}+\hat{k})$ on $\vec{b}=(\hat{i}-2 \hat{j}+\hat{k})$?
A. $\frac{2}{\sqrt{3}}$
B. $\frac{4}{\sqrt{5}}$
c. $\frac{5}{\sqrt{6}}$
D. none of these

Answer:

Given - $\vec{a}=2 \hat{\imath}-\hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}-2 \hat{\jmath}+\hat{k}$
To find - Projection of \vec{a} on $\vec{b}_{\text {i.e. }} \vec{a} \cos \theta$
Formula to be used $-\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}=|\overrightarrow{\mathrm{p}}||\overrightarrow{\mathrm{q}}| \cos \theta$ where $\overrightarrow{\mathrm{p}}$ and $\overrightarrow{\mathrm{q}}$ are two vectors
Tip - If $\overrightarrow{\mathrm{p}}$ and $\overrightarrow{\mathrm{q}}$ are two vectors, then the projection of $\overrightarrow{\mathrm{p}}$ on $\overrightarrow{\mathrm{q}}$ is defined as $\overrightarrow{\mathrm{p}} \cos \theta$
Magnitude of a vector $\overrightarrow{\mathrm{p}}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{zk}$ is given by $|\overrightarrow{\mathrm{p}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
So,
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
$\Rightarrow(2 \hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}}) \cdot(\hat{\mathrm{i}}-2 \hat{\mathrm{\jmath}}+\hat{\mathrm{k}})=\sqrt{1^{2}+2^{2}+1^{2}}|\vec{a}| \cos \theta$
$\Rightarrow|\vec{a}| \cos \theta=\frac{2+2+1}{\sqrt{6}}$
$\Rightarrow|\vec{a}| \cos \theta=\frac{5}{\sqrt{6}}$
Q. 14

Mark $(\sqrt{ })$ against the correct answer in each of the following:
If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then
A. $|\vec{a}|=|\vec{b}|$
B. $\overrightarrow{\mathrm{a}} \| \overrightarrow{\mathrm{b}}$
c. $\overrightarrow{\mathrm{a}} \perp \overrightarrow{\mathrm{b}}$
D. none of these

Answer:

Given $-|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$
Tip - If $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ are two vectors then $|\overrightarrow{\mathrm{a}} \pm \overrightarrow{\mathrm{b}}|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2} \pm 2 \mathrm{abcos} \theta}$
Hence,
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$
$\Rightarrow \sqrt{a^{2}+b^{2}+2 a b \cos \theta}=\sqrt{a^{2}+b^{2}-2 a b \cos \theta}$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab} \cos \theta=\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab} \cos \theta$
$\Rightarrow 4 \mathrm{ab} \cos \theta=0$
$\Rightarrow \cos \theta=0$
i.e. $\theta=\frac{\pi}{2}$

So, $\vec{a} \perp \vec{b}$
Q. 15

Mark $(\sqrt{ })$ against the correct answer in each of the following:

If \vec{a} and \vec{b} are mutually perpendicular unit vectors then $(3 \vec{a}+2 \vec{b}) \cdot(5 \vec{a}-6 \vec{b})=$?
A. 3
B. 5
C. 6
D. 12

Answer:

Given - \vec{a} and \vec{b} are two mutually perpendicular unit vectors i.e. $|\vec{a}|=|\vec{b}|=1$
To Find $-(3 \vec{a}+2 \vec{b}) \cdot(5 \vec{a}-6 \vec{b})$
Formula to be used $-\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}=|\overrightarrow{\mathrm{p}}||\overrightarrow{\mathrm{q}}| \cos \theta$ where $\overrightarrow{\mathrm{p}}$ and $\overrightarrow{\mathrm{q}}$ are two vectors
Tip $-\vec{a} \perp \vec{b}$
$\therefore|\vec{a}||\vec{b}| \cos \theta=|\vec{a}||\vec{b}| \cos \frac{\pi}{2}=0$
$\therefore \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{a}}=0$
Hence,

$$
\begin{aligned}
& (3 \vec{a}+2 \vec{b}) \cdot(5 \vec{a}-6 \vec{b}) \\
& =15|\vec{a}|^{2}+10 \vec{b} \cdot \vec{a}-18 \vec{a} \cdot \vec{b}-12|\vec{b}|^{2} \\
& =15-12 \\
& =3
\end{aligned}
$$

Q. 16

Mark $(\sqrt{ })$ against the correct answer in each of the following:
If the vectors $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\lambda \hat{j}-3 \hat{k}$ are perpendicular to each other then $\boldsymbol{\lambda}=$?
A. $\mathbf{- 3}$
B. -6
C. -9
D. $\mathbf{- 1}$

Answer :

Given $-\vec{a}=3 \hat{\imath}+\hat{\jmath}-2 \hat{k}, \vec{b}=\hat{\imath}+\lambda \hat{\jmath}-3 \hat{k}$ and $\vec{a} \perp \vec{b}$
To find - Value of λ
Formula to be used $-\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}=|\overrightarrow{\mathrm{p}}||\overrightarrow{\mathrm{q}}| \cos \theta$ where $\overrightarrow{\mathrm{p}}$ and $\overrightarrow{\mathrm{q}}$ are two vectors
Tip - For perpendicular vectors, $\theta=\frac{\pi}{2}$ i.e. $\cos \theta=0$ i.e. the dot product $=0$
Hence, $\vec{a} \cdot \vec{b}=0$
$\therefore(3 \hat{\imath}+\hat{\jmath}-2 \hat{k}) \cdot(\hat{\imath}+\lambda \hat{\jmath}-3 \hat{k})=0$
$\Rightarrow 3+\lambda+6=0$
i.e. $\lambda=-9$
Q. 17

Mark $(\sqrt{ })$ against the correct answer in each of the following:
If $\boldsymbol{\theta}$ is the angle between two unit vectors $\hat{\mathrm{a}}$ and $\hat{\mathrm{b}}$ then $\frac{1}{2}|\hat{\mathrm{a}}-\hat{\mathrm{b}}|=$?
A. $\cos \frac{\theta}{2}$
B. $\sin \frac{\theta}{2}$
C. $\tan \frac{\theta}{2}$
D. none of these

Answer:

Given - $\hat{\mathrm{a}}$ and $\hat{\mathrm{b}}$ are two unit vectors with an angle θ between them
To find $-\frac{1}{2}|\hat{a}-\hat{b}|$
Formula used - If $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ are two vectors then $|\overrightarrow{\mathrm{a}} \pm \overrightarrow{\mathrm{b}}|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2} \pm 2 \mathrm{abcos} \theta}$ $\cos 2 \theta=1-2 \sin ^{2} \theta$

Tip $-|\hat{a}|^{2}=|\hat{\mathrm{b}}|^{2}=1$ \& $\hat{\mathrm{a}} . \hat{\mathrm{b}}=1$
Hence,
$\frac{1}{2}|\hat{a}-\hat{b}|$
$=\frac{1}{2} \sqrt{|\hat{\mathrm{a}}|^{2}+|\hat{\mathrm{b}}|^{2}+2 \mathrm{ab} \cos \theta}$
$=\frac{1}{2} \sqrt{2+2 \cos \theta}$
$=\frac{1}{\sqrt{2}} \sqrt{1+\cos \theta}$
$=\frac{1}{\sqrt{2}} \times \sqrt{2 \sin ^{2} \frac{\theta}{2}}$
$=\sin \frac{\theta}{2}$
Q. 18

Mark $(\sqrt{ })$ against the correct answer in each of the following:

If $\overrightarrow{\mathrm{a}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{b}}=(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})$ then $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=$?
A. $\sqrt{174}$
B. $\sqrt{87}$
C. $\sqrt{93}$
D. none of these

Answer:

Given $-\vec{a}=\hat{\imath}-\hat{\jmath}+2 \hat{k}$ and $\vec{b}=2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$ are two vectors.
To find $-|\vec{a} \times \vec{b}|$
Formula to be used - $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$ where $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
Tip - Magnitude of a vector $\overrightarrow{\mathrm{p}}=\mathrm{xi}+\mathrm{y} \hat{\mathrm{\jmath}}+\mathrm{zk}$ is given by $|\overrightarrow{\mathrm{p}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
So,
$\vec{a} \times \vec{b}$
$=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -1 & 2 \\ 2 & 3 & -4\end{array}\right|$
$=\hat{\imath}(4-6)+\hat{\jmath}(4+4)+\hat{\mathrm{k}}(3+2)$
$=-2 \hat{\imath}+8 \hat{\jmath}+5 \hat{k}$
$\therefore|\vec{a} \times \vec{b}|=\sqrt{2^{2}+8^{2}+5^{2}}=\sqrt{93}$

Q. 19

Mark $(\sqrt{ })$ against the correct answer in each of the following:
If $\overrightarrow{\mathrm{a}}=(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{b}}=(\hat{\mathrm{i}}-3 \hat{k})$ then $|\overrightarrow{\mathrm{b}} \times 2 \overrightarrow{\mathrm{a}}|=$?
A. $10 \sqrt{3}$
B. $5 \sqrt{17}$
c. $4 \sqrt{19}$
D. $2 \sqrt{23}$

Answer:

Given $-\vec{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$ and $\vec{b}=\hat{\imath}-3 \hat{k}$ are two vectors.
To find $-|\vec{b} \times 2 \vec{a}|$

Formula to be used -

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{\jmath} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \text { where } \vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k} \text { and } \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}
$$

Tip - Magnitude of a vector $\overrightarrow{\mathrm{p}}=\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{zk}$ is given by $|\overrightarrow{\mathrm{p}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$
So,
$\vec{b} \times 2 \vec{a}$
$=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\ 1 & 0 & -3 \\ 2 & -4 & 6\end{array}\right|$
$=\hat{\imath}(12)+\hat{\jmath}(-6-6)+\hat{k}(-4)$
$=12 \hat{\imath}-12 \hat{\jmath}-4 \hat{k}$
$\therefore|\overrightarrow{\mathrm{b}} \times 2 \overrightarrow{\mathrm{a}}|=\sqrt{12^{2}+12^{2}+4^{2}}=\sqrt{304}=4 \sqrt{19}$
Q. 20

Mark $(\sqrt{ })$ against the correct answer in each of the following:
If $|\overrightarrow{\mathrm{a}}|=2,|\overrightarrow{\mathrm{~b}}|=7$ and $(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$ then the angle between $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{2 \pi}{3}$
D. $\frac{3 \pi}{4}$

Answer:

Given - $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{\jmath}+6 \hat{k}$
To find - Angle between \vec{a} and \vec{b}
Formula to be used $-\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=|\overrightarrow{\mathrm{p}}||\overrightarrow{\mathrm{q}}| \sin \theta \hat{\mathrm{n}}$
Tip $-|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}|=||\overrightarrow{\mathrm{p}}|| \overrightarrow{\mathrm{q}}|\sin \theta \hat{\mathrm{n}}|=|\overrightarrow{\mathrm{p}}||\overrightarrow{\mathrm{q}}| \sin \theta$ \& magnitude of a vector $\overrightarrow{\mathrm{p}}=x \hat{\imath}+y \hat{\mathrm{p}}+\mathrm{z} \hat{\mathrm{k}}$ is given by $|\overrightarrow{\mathrm{p}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$

Hence, $|\vec{a} \times \vec{b}|=|3 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}|=\sqrt{3^{2}+2^{2}+6^{2}}=7$
$\therefore 7=2 \times 7 \sin \theta$
$\Rightarrow \sin \theta=\frac{1}{2}$
$\Rightarrow \theta=\frac{\pi}{6}$
Q. 21

Mark ($\sqrt{ }$) against the correct answer in each of the following:
If $|\overrightarrow{\mathrm{a}}|=\sqrt{26},|\overrightarrow{\mathrm{~b}}|=7$ and $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=35$ then $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=$?
A. 5
B. 7
C. 13
D. 12

Answer:

Given $-|\vec{a}|=\sqrt{26},|\vec{b}|=7$ and $|\vec{a} \times \vec{b}|=35$
To find $-\vec{a} . \vec{b}$
Formula to be used $-\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=|\overrightarrow{\mathrm{p}}||\overrightarrow{\mathrm{q}}| \sin \theta \hat{\mathrm{n}} \& \overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}=|\overrightarrow{\mathrm{p}}||\overrightarrow{\mathrm{q}}| \cos \theta$ where $\overrightarrow{\mathrm{p}} \& \overrightarrow{\mathrm{q}}$ are any two vectors
Tip $-|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}|=||\overrightarrow{\mathrm{p}}|| \overrightarrow{\mathrm{q}}|\sin \theta \hat{\mathrm{n}}|=|\overrightarrow{\mathrm{p}}||\overrightarrow{\mathrm{q}}| \sin \theta$
So,
$|\vec{a} \times \vec{b}|=35$
$\Rightarrow|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta=35$
$\Rightarrow \sin \theta=\frac{35}{7 \sqrt{26}}=\frac{5}{\sqrt{26}}$
$\therefore \cos \theta=\sqrt{1-\left(\frac{5}{\sqrt{26}}\right)^{2}}=\frac{1}{\sqrt{26}}$
$\therefore \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta=\sqrt{26} \times 7 \times \frac{1}{\sqrt{26}}=7$
Q. 22

Mark $(\sqrt{ })$ against the correct answer in each of the following:
Two adjacent sides of a II gm are represented by the vectors $\quad \overrightarrow{\mathrm{a}}=(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}+4 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{b}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$. The area of the $\| \mathrm{gm}$ is
A. $\sqrt{42}$ sq units
B. 6 sq units
C. $\sqrt{35}$ sq units
D. none of these

Answer:

Given - Two adjacent sides of a \| gm are represented by the vectors $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{\imath}}+\hat{\jmath}+4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=\hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+\hat{\mathrm{k}}$

To find - Area of the parallelogram
Formula to be used - $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$ where $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
Tip - Area of $\| g m=|\vec{a} \times \vec{b}|$ and magnitude of a vector $\vec{p}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is given by $|\overrightarrow{\mathrm{p}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$

Hence,
$\vec{a} \times \vec{b}$
$=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & 1 & 4 \\ 1 & -1 & 1\end{array}\right|$
$=\hat{\imath}(-4-1)+\hat{\jmath}(4-3)+\hat{\mathrm{k}}(-3-1)$
$=-5 \hat{\imath}+\hat{\jmath}-4 \hat{k}$
$\therefore|\vec{a} \times \vec{b}|=\sqrt{5^{2}+1^{2}+4^{2}}=\sqrt{42}$
i.e. the area of the parallelogram $=\sqrt{42}$ sq. units
Q. 23

Mark $(\sqrt{ })$ against the correct answer in each of the following:
The diagonals of a II gm are represented by the vectors $\overrightarrow{\mathrm{d}_{1}}=(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{d}_{2}}=(\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})$.

The area of the II gm is

A. $7 \sqrt{3}$ sq units
B. $5 \sqrt{3}$ sq units
C. $3 \sqrt{5}$ sq units
D. none of these

Answer:

Given - Two diagonals of a \|I gm are represented by the vectors $\overrightarrow{d_{1}}=3 \hat{\imath}+\hat{\jmath}-2 \hat{k}$ and $\overrightarrow{\mathrm{d}_{2}}=\hat{\imath}-3 \hat{\jmath}+4 \hat{k}$

To find - Area of the parallelogram

Formula to be used

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \text { where } \vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k} \text { and } \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}
$$

Tip - Area of $\| \mathrm{gm}=\frac{1}{2}\left|\overrightarrow{\mathrm{~d}_{1}} \times \overrightarrow{\mathrm{d}_{2}}\right|$ and magnitude of a vector $\overrightarrow{\mathrm{a}}=\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}_{\text {is given by }}$ $|\vec{a}|=\sqrt{x^{2}+y^{2}+z^{2}}$

Hence,
$\overrightarrow{\mathrm{d}_{1}} \times \overrightarrow{\mathrm{d}_{2}}$
$=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 3 & 1 & -2 \\ 1 & -3 & 4\end{array}\right|$
$=\hat{\imath}(4-6)+\hat{\jmath}(-2-12)+\hat{k}(-9-1)$
$=-2 \hat{\imath}-14 \hat{\jmath}-10 \hat{k}$
$\therefore\left|\overrightarrow{\mathrm{d}_{1}} \times \overrightarrow{\mathrm{d}_{2}}\right|=\sqrt{2^{2}+14^{2}+10^{2}}=\sqrt{300}$
i.e. the area of the parallelogram $=\frac{1}{2} \times \sqrt{300}=5 \sqrt{3}$ sq. units
Q. 24

Mark $(\sqrt{ })$ against the correct answer in each of the following:
Two adjacent sides of a triangle are represented by the vectors $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$ and $\overrightarrow{\mathrm{b}}=-5 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}$. The area of the triangle is
A. 41 sq units
B. 37 sq units

41
C. 2 sq units
D. none of these

Answer :

Given - Two adjacent sides of a triangle are represented by the vectors $\vec{a}=3 \hat{i}+4 \hat{\jmath}$ and $\overrightarrow{\mathrm{b}}=-5 \hat{\imath}+7 \hat{\jmath}$

To find - Area of the triangle

Formula to be used -

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \text { where } \vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k} \text { and } \vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}
$$

Tip - Area of triangle $=\frac{1}{2}|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|$ and magnitude of a vector $\overrightarrow{\mathrm{p}}=\mathrm{x} \hat{\imath}+y \hat{\jmath}+\mathrm{z} \hat{\mathrm{k}}$ is given by $|\overrightarrow{\mathrm{p}}|=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}$

Hence,
$\vec{a} \times \vec{b}$
$=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & 4 & 0 \\ -5 & 7 & 0\end{array}\right|$
$=\hat{\mathrm{k}}(21+20)$
$=41 \hat{\mathrm{k}}$
$\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{41^{2}}=41$
i.e. the area of the parallelogram $=\frac{41}{2}$ sq. units
Q. 25

Mark $(\sqrt{ })$ against the correct answer in each of the following:
The unit vector normal to the plane containing $\vec{a}=(\hat{i}-\hat{j}-\hat{k})$ and $\vec{b}=(\hat{i}+\hat{j}+\hat{k})$ is
A. $(\hat{\mathrm{j}}-\hat{\mathrm{k}})$
B. $(-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
c. $\frac{1}{\sqrt{2}}(-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
D. $\frac{1}{\sqrt{2}}(-\hat{\mathrm{i}}+\hat{\mathrm{k}})$

Answer :

Given - $\vec{a}=\hat{\imath}-\hat{\jmath}-\hat{k} \quad \& \quad \vec{b}=\hat{\imath}+\hat{\jmath}+\hat{k}$
To find - A unit vector perpendicular to the two given vectors.
Formula to be used - $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$ where $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
Tip - A vector perpendicular to two given vectors is their cross product.
The unit vector of any vector $a \hat{1}+b \hat{\jmath}+c \hat{k}$ is given by $\frac{(a \hat{i}+b \hat{j}+c \hat{k})}{\sqrt{\mathbf{a}^{2}+b^{2}+c^{2}}}$
Hence,
$\vec{a} \times \vec{b}$
$=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\ 1 & -1 & -1 \\ 1 & 1 & 1\end{array}\right|$
$=-2 \hat{\jmath}+2 \hat{\mathrm{k}}$, which the vector perpendicular to the two given vectors.
The required unit vector $=\frac{-2 \hat{\jmath}+2 \widehat{k}}{\sqrt{2^{2}+2^{2}}}=\frac{1}{\sqrt{2}}(-\hat{\jmath}+\hat{k})$
Q. 26

Mark $(\sqrt{ })$ against the correct answer in each of the following:
If \vec{a}, \vec{b} and \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ then $(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=$?
$\frac{1}{2}$
A. 2
-1
B. 2
C. $\frac{3}{2}$
D. $\frac{-3}{2}$

Answer:
Given $-\vec{a}, \vec{b}, \vec{c}$ are three unit vectors and $(\vec{a}+\vec{b}+\vec{c})=0$
To find $-\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$
Tip $-|\vec{a}|=|\vec{b}|=|\vec{c}|=1$
So,
$(\vec{a}+\vec{b}+\vec{c})^{2}=0$
$\Rightarrow|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0$
$\Rightarrow 3+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=0$
$\Rightarrow(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})=\frac{-3}{2}$
Q. 27

Mark $(\sqrt{ })$ against the correct answer in each of the following:
If \vec{a}, \vec{b} and \vec{c} are mutually perpendicular unit vectors then $[\vec{a}+\vec{b}+\vec{c}]=$?
A. 1
B. $\sqrt{2}$
c. $\sqrt{3}$
D. 2

Answer:

Given - $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular unit vectors
To find $-[\vec{a}+\vec{b}+\vec{c}]$
Tip $-|\vec{a}|=|\vec{b}|=|\vec{c}|=1_{\&} \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{b}} \cdot \vec{c}=\vec{c} \cdot \overrightarrow{\mathrm{a}}=0$
So,
$(\vec{a}+\vec{b}+\vec{c})^{2}$
$=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})$
$=3$
$\therefore[\vec{a}+\vec{b}+\vec{c}]=\sqrt{3}$
Q. 28

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$[\hat{\mathrm{i}} \hat{\mathrm{j}} \hat{\mathrm{k}}]=$?
A. 0
B. 1
C. 2
D. 3

Answer:
To find - $\left[\begin{array}{lll}\hat{\imath} & \hat{\jmath} & \hat{k}\end{array}\right]$
Formula to be used - $\left[\begin{array}{lll}\hat{a} & \hat{b} & \hat{c}\end{array}\right]=\hat{a} \cdot(\hat{b} \times \hat{c})$
$\therefore\left[\begin{array}{lll}\hat{1} & \hat{\mathrm{j}} & \hat{\mathrm{k}}\end{array}\right]$
$=\hat{\imath} .(\hat{\jmath} \times \hat{k})$
$=\hat{1} . \hat{1}$
$=|\hat{1}|^{2}$
$=1$

Q. 29

Mark $(\sqrt{ })$ against the correct answer in each of the following:
If $\overrightarrow{\mathrm{a}}=(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}), \overrightarrow{\mathrm{b}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{c}}=(3 \hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$ be the coterminous edges of
a parallelepiped then its volume is
A. 21 cubic units
B. 14 cubic units
C. 7 cubic units
D. none of these

Answer:

Given - The three coterminous edges of a parallelepiped are $\vec{a}=2 \hat{\imath}-3 \hat{\jmath}+4 \widehat{k}$,
$\overrightarrow{\mathrm{b}}=\hat{\mathrm{\imath}}+2 \hat{\jmath}-\hat{\mathrm{k}} \& \overrightarrow{\mathrm{c}}=3 \hat{\mathrm{\imath}}-\hat{\jmath}-2 \hat{\mathrm{k}}$
To find - The volume of the parallelepiped
Formula to be used - $\left[\begin{array}{lll}\hat{a} & \hat{b} & \hat{c}\end{array}\right]=\hat{a} \cdot(\hat{b} \times \hat{c})$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$ where $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$

Tip - The volume of the parallelepiped $\left.=\left\lvert\, \begin{array}{lll}\hat{a} & \hat{b} & \widehat{c}\end{array}\right.\right] \mid$
Hence,
$\left[\begin{array}{lll}\mathrm{a} & \hat{b} & \hat{c}\end{array}\right]$
$=\hat{a} \cdot(\hat{b} \times \hat{c})$
$=(2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k}) \cdot\{(\hat{\imath}+2 \hat{\jmath}-\hat{k}) \times(3 \hat{\imath}-\hat{\jmath}-2 \hat{k})\}$
$=(2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k}) \cdot\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & -1 \\ 3 & -1 & -2\end{array}\right|$
$=(2 \hat{\imath}-3 \hat{\jmath}+4 \hat{\mathrm{k}}) \cdot(-5 \hat{\imath}-\hat{\jmath}-7 \hat{\mathrm{k}})$
$=-10+3-28$
$=-35$
The volume $=35$ sq units
Q. 30

Mark $(\sqrt{ })$ against the correct answer in each of the following:

If the volume of a parallelepiped having $\vec{a}=(5 \hat{i}-4 \hat{j}+\hat{k}), \vec{b}=(4 \hat{i}+3 \hat{j}+\lambda \hat{k})$ and $\overrightarrow{\mathrm{c}}=(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+7 \hat{\mathrm{k}})$ as conterminous edges, is $\mathbf{2 1 6}$ cubic units then the value of $\boldsymbol{\lambda}$ is
A. $\frac{5}{3}$
B. $\frac{4}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer:

Given - The three coterminous edges of a parallelepiped are $\overrightarrow{\mathrm{a}}=5 \hat{\mathrm{i}}-4 \hat{\jmath}+\widehat{\mathrm{k}}$,
$\overrightarrow{\mathrm{b}}=4 \hat{\imath}+3 \hat{\jmath}+\lambda \hat{\mathrm{k}} \& \overrightarrow{\mathrm{c}}=\hat{\imath}-2 \hat{\jmath}+7 \hat{\mathrm{k}}$
To find - The value of λ
Formula to be used $-\left[\begin{array}{lll}\hat{a} & \hat{b} & \widehat{c}\end{array}\right]=\hat{a} \cdot(\hat{b} \times \widehat{c})$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$ where $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
Tip - The volume of the parallelepiped $\left.=\left\lvert\, \begin{array}{lll}\widehat{a} & \widehat{b} & \widehat{c}\end{array}\right.\right] \mid$
Hence,
$\left[\begin{array}{lll}\hat{a} & \hat{b} & \hat{c}\end{array}\right]$
$=\hat{\mathrm{a}} .(\hat{\mathrm{b}} \times \hat{\mathrm{c}})$
$=(5 \hat{\imath}-4 \hat{\jmath}+\hat{k}) \cdot\{(4 \hat{\imath}+3 \hat{\jmath}+\lambda \hat{k}) \times(\hat{\imath}-2 \hat{\jmath}+7 \hat{k})\}$
$=(5 \hat{\imath}-4 \hat{\jmath}+\hat{k}) \cdot\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 4 & 3 & \lambda \\ 1 & -2 & 7\end{array}\right|$
$=(5 \hat{\imath}-4 \hat{\jmath}+\hat{\mathrm{k}}) \cdot((21+2 \lambda) \hat{\imath}+(\lambda-28) \hat{\jmath}-11 \hat{\mathrm{k}})$
$=5(21+2 \lambda)-4(\lambda-28)-11$
$=206+6 \lambda$
The volume $=206+6 \lambda$
But, the volume $=216$ sq units
So, $206+6 \lambda=216 \Rightarrow \lambda=\frac{10}{6}=\frac{5}{3}$
Q. 31

Mark $(\sqrt{ })$ against the correct answer in each of the following:
It is given that the vectors $\vec{a}=(2 \hat{i}-2 \hat{k}), \vec{b}=\hat{i}+(\lambda+1) \hat{j}$ and $\vec{c}=(4 \hat{i}+2 \hat{k})$ are coplanar. Then, the value of λ is
A. $\frac{1}{2}$
в. $\frac{1}{3}$
C. 2
D. 1

Answer:

Given - The vectors $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}-2 \widehat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=\hat{\imath}+(\lambda+1) \hat{\jmath} \& \vec{c}=4 \hat{\imath}+2 \hat{\mathrm{k}}$ are coplanar
To find - The value of λ
Formula to be used - $\left[\begin{array}{lll}\hat{a} & \widehat{b} & \hat{c}\end{array}\right]=\hat{a} \cdot(\hat{b} \times \hat{c})$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$ where $\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
Tip - For vectors to be coplanar, $\left[\begin{array}{lll}\hat{a} & \hat{b} & \hat{c}\end{array}\right]=0$
Hence,
$\left[\begin{array}{lll}\mathrm{a} & \hat{\mathrm{b}} & \hat{c}\end{array}\right]=0$
$\Rightarrow \hat{\mathrm{a}} .(\hat{\mathrm{b}} \times \hat{\mathrm{c}})=0$
$\Rightarrow(2 \hat{\imath}-2 \hat{\mathbf{k}}) \cdot\{(\hat{\imath}+(\lambda+1) \hat{\jmath}) \times(4 \hat{\imath}+2 \hat{k})\}=0$
$\Rightarrow(2 \hat{\imath}-2 \hat{k}) \cdot\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & \lambda+1 & 0 \\ 4 & 0 & 2\end{array}\right|=0$
$\Rightarrow(2 \hat{\imath}-2 \hat{\mathrm{k}}) \cdot(2(\lambda+1) \hat{\imath}-2 \hat{\jmath}-4(\lambda+1) \hat{\mathrm{k}})=0$
$\Rightarrow 4(\lambda-1)+8(\lambda-1)=0$
$\Rightarrow 12(\lambda-1)=0$ i.e. $\lambda=1$
Q. 32

Mark $(\sqrt{ })$ against the correct answer in each of the following:
Which of the following is meaningless?
A. $\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})$
B.
$\vec{a} \times(\vec{b} \cdot \vec{c})$
C. $(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \cdot \overrightarrow{\mathrm{c}}$
D. none of these

Answer:
Tip - $[\hat{a} \quad \hat{b} \quad \hat{c}]=\hat{a} \cdot(\hat{b} \times \hat{c})=\hat{b} \cdot(\hat{c} \times \hat{a})=\hat{c} \cdot(\hat{a} \times \hat{b})=(\hat{a} \times \hat{b}) \cdot \hat{c}$ since, dot product is commutative

Hence, $\hat{a} \times(\hat{b} . \hat{c})$ is meaningless.
Q. 33

Mark $(\sqrt{ })$ against the correct answer in each of the following:
$\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})=$?
A. 0
B. 1
C. $a^{2} b$
D. meaningless

Answer:

Tip - The cross product of two vectors is the vector perpendicular to both the vectors.
$\therefore \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$ gives a vector perpendicular to both $\overrightarrow{\mathrm{a}}$ and $\overrightarrow{\mathrm{b}}$.
Now,
$\vec{a} .(\vec{a} \times \vec{b})$
$=|\vec{a}||\vec{b}| \cos \theta$
$=|\vec{a}||\vec{b}| \cos \frac{\pi}{2}$
$=0$
Q. 34

Mark $(\sqrt{ })$ against the correct answer in each of the following:
For any three vectors $\vec{a}, \vec{b}, \vec{c}$ the value of $[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]$ is
A. $2[\vec{a} \vec{b} \vec{c}]$
B. 1
C. 0
D. none of these

Answer:

Formula to be used - $\left[\begin{array}{lll}\hat{a} & \widehat{b} & \widehat{c}\end{array}\right]=\hat{a} \cdot(\hat{b} \times \widehat{c})=\hat{b} .(\hat{c} \times \hat{a})$ for any three arbitrary vectors
$\therefore\left[\begin{array}{lll}\mathrm{a} & \hat{\mathrm{b}} & \hat{\mathrm{b}}-\hat{\mathrm{c}}\end{array} \hat{\mathrm{c}}-\hat{\mathrm{a}}\right]$
$=(\hat{a}-\hat{b}) \cdot\{(\hat{b}-\hat{c}) \times(\hat{c}-\hat{a})\}$
$=(\hat{a}-\hat{b}) \cdot(\hat{b} \times \hat{c}-\hat{c} \times \hat{c}-\hat{b} \times \hat{a}+\hat{c} \times \hat{a})$
$=(\hat{a}-\hat{b}) \cdot(\hat{b} \times \hat{c}-\hat{b} \times \hat{a}+\hat{c} \times \hat{a})$
$=[\hat{a} .(\hat{b} \times \hat{c})-\hat{b}(\hat{b} \times \hat{c})-\hat{a} \cdot(\hat{b} \times \hat{a})+\hat{b}(\hat{b} \times \hat{a})+\hat{a} .(\hat{c} \times \hat{a})-\hat{b} \cdot(\hat{c} \times \hat{a})]$
$=\left[\begin{array}{lll}\hat{a} & \hat{b} & \hat{c}\end{array}\right]-\left[\begin{array}{lll}\hat{a} & \hat{b} & \hat{c}\end{array}\right]=0$

