27. Straight Line in Space

Exercise 27A

1. Question

A line passes through the point $(3,4,5)$ and is parallel to vector $(2 \hat{i}+2 \hat{j}-3 \hat{k})$. Find the equations of the line in the vector as well as Cartesian forms.

Answer

Given: line passes through point $(3,4,5)$ and is parallel to $2 \hat{\imath}+2 \hat{\jmath}-3 \hat{k}$
To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is a vector parallel to the line.

Explanation:

Here, $\vec{a}=3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k}$ and $\vec{b}=2 \hat{\imath}+2 \hat{\jmath}-3 \hat{k}$
Therefore,
Vector form:
$\overrightarrow{\mathrm{r}}=3 \hat{\imath}+4 \hat{\jmath}+5 \hat{\mathrm{k}}+\lambda(2 \hat{\imath}+2 \hat{\jmath}-3 \hat{\mathrm{k}})$
Cartesian form:
$\frac{x-3}{2}=\frac{y-4}{2}=\frac{z-5}{-3}$

2. Question

A line passes through the point $(2,1,-3)$ and is parallel to vector $(\hat{i}-2 \hat{j}+3 \hat{k})$. Find the equations of the line in vector and Cartesian forms.

Answer

Given: line passes through $(2,1,-3)$ and is parallel to $\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$

To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{~b}_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{~b}_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is a vector parallel to the line.

Explanation:

Here, $\vec{a}=2 \hat{\imath}+\hat{\jmath}-3 \hat{k}$ and $\vec{b}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
Therefore,
Vector form:
$\overrightarrow{\mathrm{r}}=2 \hat{\imath}+\hat{\jmath}-3 \hat{\mathrm{k}}+\lambda(\hat{\imath}-2 \hat{\jmath}+3 \hat{\mathrm{k}})$
Cartesian form:
$\frac{x-2}{1}=\frac{y-1}{-2}=\frac{z+3}{3}$

3. Question

Find the vector equation of the line passing through the point with position vector $(2 \hat{i}+\hat{j}-5 \hat{k})$ and parallel to the vector $(\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}})$. Deduce the Cartesian equations of the line.

Answer

Given: line passes through $2 \hat{\imath}+\hat{\jmath}-5 \hat{k}$ and is parallel to $\hat{\imath}+3 \hat{\jmath}-\hat{k}$
To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is a vector parallel to the line.

Explanation:

Here, $\overrightarrow{\mathrm{a}}=2 \hat{\imath}+\hat{\jmath}-5 \hat{k}$ and $\overrightarrow{\mathrm{b}}=\hat{\imath}+3 \hat{\jmath}-\hat{\mathrm{k}}$
Therefore,

Vector form:
$\overrightarrow{\mathrm{r}}=2 \hat{\imath}+\hat{\jmath}-5 \hat{\mathrm{k}}+\lambda(\hat{\imath}+3 \hat{\jmath}-\hat{\mathrm{k}})$
Cartesian form:
$\frac{x-2}{1}=\frac{y-1}{3}=\frac{z+5}{-1}$

4. Question

A line is drawn in the direction of $(\hat{i}+\hat{j}-2 \hat{k})$ and it passes through a point with position vector $(2 \hat{i}-\hat{j}-4 \hat{k})$. Find the equations of the line in the vector as well as Cartesian forms.

Answer

Given: line passes through $2 \hat{\imath}-\hat{\jmath}-4 \hat{k}$ and is drawn in the direction of $\hat{\imath}+\hat{\jmath}-2 \hat{k}$
To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is a vector parallel to the line.

Explanation:

Since line is drawn in the direction of $(\hat{1}+\hat{\jmath}-\widehat{2 k})$, it is parallel to $(\hat{\imath}+\hat{\jmath}-2 \hat{k})$
Here, $\overrightarrow{\mathrm{a}}=2 \hat{\imath}-\hat{\jmath}-4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=\hat{\imath}+\hat{\jmath}-2 \hat{k}$
Therefore,
Vector form:
$\overrightarrow{\mathrm{r}}=2 \hat{\imath}-\hat{\jmath}-4 \hat{\mathrm{k}}+\lambda(\hat{\imath}+\hat{\jmath}-2 \hat{\mathrm{k}})$
Cartesian form:
$\frac{x-2}{1}=\frac{y+1}{1}=\frac{z+4}{-2}$

5. Question

The Cartesian equations of a line are $\frac{x-3}{2}=\frac{y+2}{-5}=\frac{z-6}{4}$. Find the vector equation of the line.

Given: Cartesian equation of line
$\frac{x-3}{2}=\frac{y+2}{-5}=\frac{z-6}{4}$
To find: equation of line in vector form

Formula Used: Equation of a line is

Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is a vector parallel to the line.

Explanation:

From the Cartesian equation of the line, we can find \vec{a} and \vec{b}
Here, $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}-\widehat{2} \mathrm{j}+6 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=\widehat{2 \mathrm{l}}-5 \hat{\jmath}+4 \hat{\mathrm{k}}$
Therefore,
Vector form:
$\overrightarrow{\mathrm{r}}=3 \hat{\imath}-2 \hat{\jmath}+6 \hat{\mathrm{k}}+\lambda(2 \hat{\imath}-5 \hat{\jmath}+4 \hat{\mathrm{k}})$

6. Question

The Cartesian equations of a line are $3 x+1=6 y-2=1-z$. Find the fixed point through which it passes, its direction ratios and also its vector equation.

Answer

Given: Cartesian equation of line are $3 x+1=6 y-2=1-z$
To find: fixed point through which the line passes through, its direction ratios and the vector equation.
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is a vector parallel to the line and also its direction ratio.

Explanation:
The Cartesian form of the line can be rewritten as:
$\frac{x+\frac{1}{3}}{\frac{1}{3}}=\frac{y-\frac{1}{3}}{\frac{1}{6}}=\frac{z-1}{-1}=\lambda$
$\Rightarrow \frac{x+\frac{1}{3}}{2}=\frac{y-\frac{1}{3}}{1}=\frac{z-1}{-6}=\lambda$
Therefore, $\vec{a}=\frac{-1}{3} \hat{\imath}+\frac{1}{3} \hat{\jmath}+\hat{k}$ and $\vec{b}=2 \hat{\imath}+\hat{\jmath}-6 \hat{k}$
So, the line passes through $\left(\frac{-1}{3}, \frac{1}{3}, 1\right)$ and direction ratios of the line are $(2,1,-6)$ and vector form is:
$\overrightarrow{\mathrm{r}}=\frac{-1}{3} \hat{\mathrm{\imath}}+\frac{1}{3} \hat{\jmath}+\hat{\mathrm{k}}+\lambda(2 \hat{\imath}+\hat{\jmath}-6 \hat{\mathrm{k}})$

7. Question

Find the Cartesian equations of the line which passes through the point $(1,3,-2)$ and is parallel to the line given by $\frac{x+1}{3}=\frac{y-4}{5}=\frac{z+3}{-6}$. Also, find the vector form of the equations so obtained.

Answer

Given: line passes through ($1,3,-2$) and is parallel to the line
$\frac{x+1}{3}=\frac{y-4}{5}=\frac{z+3}{-6}$
To find: equation of line in vector and Cartesian form
Formula Used: Equation of a line is
Vector form: $\vec{r}=\vec{a}+\lambda \vec{b}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is a vector parallel to the line.

Explanation:

Since the line (say L_{1}) is parallel to another line (say L_{2}), L_{1} has the same direction ratios as that of L_{2}

Here, $\vec{a}=\hat{\imath}+3 \hat{\jmath}-2 \hat{k}$
Since the equation of L_{2} is
$\frac{x+1}{3}=\frac{y-4}{5}=\frac{z+3}{-6}$
$\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{\imath}}+5 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}$

Therefore,
Vector form of the line is:
$\overrightarrow{\mathrm{r}}=\hat{\imath}+3 \hat{\jmath}-2 \hat{\mathrm{k}}+\lambda(3 \hat{\imath}+5 \hat{\jmath}-6 \hat{k})$
Cartesian form of the line is:
$\frac{x-1}{3}=\frac{y-3}{5}=\frac{z+2}{-6}$

8. Question

Find the equations of the line passing through the point $(1,-2,3)$ and parallel to the line $\frac{x-6}{3}=\frac{y-2}{-4}=\frac{z+7}{5}$. Also find the vector form of this equation so obtained.

Answer

Given: line passes through $(1,-2,3)$ and is parallel to the line
$\frac{x-6}{3}=\frac{y-2}{-4}=\frac{z+7}{5}$
To find: equation of line in vector and Cartesian form
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is a vector parallel to the line.

Explanation:

Since the line (say L_{1}) is parallel to another line (say L_{2}), L_{1} has the same direction ratios as that of L_{2}

Here, $\vec{a}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
Since the equation of L_{2} is
$\frac{x-6}{3}=\frac{y-2}{-4}=\frac{z+7}{5}$
$\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
Therefore,
Vector form of the line is:
$\overrightarrow{\mathrm{r}}=\hat{\imath}-2 \hat{\jmath}+3 \hat{\mathrm{k}}+\lambda(3 \hat{\imath}-4 \hat{\jmath}+5 \hat{k})$

Cartesian form of the line is:
$\frac{x-1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}$

9. Question

Find the Cartesian and vector equations of a line which passes through the point $(1,2,3)$ and is parallel to the line $\frac{-x-2}{1}=\frac{y+3}{7}=\frac{2 z-6}{3}$.

Answer

Given: line passes through $(1,2,3)$ and is parallel to the line
$\frac{-x-2}{1}=\frac{y+3}{7}=\frac{2 z-6}{3}$
To find: equation of line in Vector and Cartesian form
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{~b}_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{~b}_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is a vector parallel to the line.

Explanation:

Since the line (say L_{1}) is parallel to another line (say L_{2}), L_{1} has the same direction ratios as that of L_{2}

Here, $\vec{a}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
Equation of L_{2} can be rewritten as:
$\frac{x+2}{-1}=\frac{y+3}{7}=\frac{z-3}{\frac{3}{2}}$
$\Rightarrow \frac{x+2}{-2}=\frac{y+3}{14}=\frac{z-3}{3}$
$\overrightarrow{\mathrm{b}}=-2 \hat{\imath}+14 \hat{\jmath}+3 \hat{k}$
Therefore,
Vector form of the line is:
$\overrightarrow{\mathrm{r}}=\hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}}+\lambda(-2 \hat{\imath}+14 \hat{\jmath}+3 \hat{\mathrm{k}})$
Cartesian form of the line is:
$\frac{x-1}{-2}=\frac{y-2}{14}=\frac{z-3}{3}$

10. Question

Find the equations of the line passing through the point $(-1,3,-2)$ and perpendicular to each of the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$.

Answer

Given: line passes through ($-1,3,-2$) and is perpendicular to each of the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{\mathrm{x}+2}{-3}=\frac{\mathrm{y}-1}{2}=\frac{\mathrm{z}+1}{5}$

To find: equation of line in Vector and Cartesian form

Formula Used: Equation of a line is

Vector form: $\vec{r}=\vec{a}+\lambda \vec{b}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is a vector parallel to the line.

If 2 lines of direction ratios $a_{1}: a_{2}: a_{3}$ and $b_{1}: b_{2}: b_{3}$ are perpendicular, then $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0$

Explanation:

Here, $\vec{a}=-\hat{\imath}+3 \hat{\jmath}-2 \hat{k}$
Let the direction ratios of the line be $b_{1}: b_{2}: b_{3}$
Direction ratios of the other two lines are $1: 2: 3$ and $-3: 2: 5$
Since the other two line are perpendicular to the given line, we have
$\mathrm{b}_{1}+2 \mathrm{~b}_{2}+3 \mathrm{~b}_{3}=0$
$-3 b_{1}+2 b_{2}+5 b_{3}=0$
Solving,
$\frac{\mathrm{b}_{1}}{\left|\begin{array}{ll}2 & 3 \\ 2 & 5\end{array}\right|}=\frac{-\mathrm{b}_{2}}{\left|\begin{array}{cc}1 & 3 \\ -3 & 5\end{array}\right|}=\frac{\mathrm{b}_{3}}{\left|\begin{array}{cc}1 & 2 \\ -3 & 2\end{array}\right|}$
$\Rightarrow \frac{\mathrm{b}_{1}}{4}=\frac{\mathrm{b}_{2}}{-14}=\frac{\mathrm{b}_{3}}{8}$
$\Rightarrow \frac{\mathrm{b}_{1}}{2}=\frac{\mathrm{b}_{2}}{-7}=\frac{\mathrm{b}_{3}}{4}$
$\overrightarrow{\mathrm{b}}=2 \hat{\imath}-7 \hat{\jmath}+4 \hat{\mathrm{k}}$
Therefore,
Vector form of the line is:
$\overrightarrow{\mathrm{r}}=-\hat{\imath}+3 \hat{\jmath}-2 \hat{\mathrm{k}}+\lambda(2 \hat{\imath}-7 \hat{\jmath}+4 \hat{\mathrm{k}})$
Cartesian form of the line is:
$\frac{x+1}{2}=\frac{y-3}{-7}=\frac{z+2}{4}$

11. Question

Find the Cartesian and vector equations of the line passing through the point $(1,2,-4)$ and perpendicular to each of the lines $\frac{x-8}{8}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y+29}{8}=\frac{z-5}{-5}$.

Answer

Given: line passes through $(1,2,-4)$ and is perpendicular to each of the lines $\frac{x-8}{8}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y+29}{8}=\frac{z-5}{-5}$

To find: equation of line in Vector and Cartesian form
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ is a vector parallel to the line.

If 2 lines of direction ratios $a_{1}: a_{2}: a_{3}$ and $b_{1}: b_{2}: b_{3}$ are perpendicular, then $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0$
Explanation:
Here, $\vec{a}=\hat{\imath}+2 \hat{\jmath}-4 \hat{k}$
Let the direction ratios of the line be $b_{1}: b_{2}: b_{3}$
Direction ratios of other two lines are $8:-16: 7$ and $3: 8:-5$
Since the other two line are perpendicular to the given line, we have
$8 b_{1}-16 b_{2}+7 b_{3}=0$
$3 b_{1}+8 b_{2}-5 b_{3}=0$
Solving,
$\frac{\mathrm{b}_{1}}{\left|\begin{array}{cc}-16 & 7 \\ 8 & -5\end{array}\right|}=\frac{-\mathrm{b}_{2}}{\left|\begin{array}{cc}8 & 7 \\ 3 & -5\end{array}\right|}=\frac{\mathrm{b}_{3}}{\left|\begin{array}{cc}8 & -16 \\ 3 & 8\end{array}\right|}$
$\Rightarrow \frac{\mathrm{b}_{1}}{24}=\frac{\mathrm{b}_{2}}{61}=\frac{\mathrm{b}_{3}}{112}$
$\overrightarrow{\mathrm{b}}=24 \hat{\imath}+61 \hat{j}+112 \hat{k}$
Therefore,
Vector form of the line is:
$\overrightarrow{\mathrm{r}}=\hat{\imath}+2 \hat{\jmath}-4 \hat{\mathrm{k}}+\lambda(24 \hat{\imath}+61 \hat{\jmath}+112 \hat{\mathrm{k}})$
Cartesian form of the line is:
$\frac{x-1}{24}=\frac{y-2}{61}=\frac{z+4}{112}$

12. Question

Prove that the lines $\frac{x-4}{1}=\frac{y+3}{4}=\frac{z+1}{7}$ and $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ intersect each other and find the point of their intersection.

Answer

Given: The equations of the two lines are
$\frac{x-4}{1}=\frac{y+3}{4}=\frac{z+1}{7}$ and $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$
To Prove: The two lines intersect and to find their point of intersection.
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $b_{1}: b_{2}: b_{3}$ is the direction ratios of the line.
Proof:
Let
$\frac{x-4}{1}=\frac{y+3}{4}=\frac{z+1}{7}=\lambda_{1}$
$\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}=\lambda_{2}$

So a point on the first line is $\left(\lambda_{1}+4,4 \lambda_{1}-3,7 \lambda_{1}-1\right)$
A point on the second line is $\left(2 \lambda_{2}+1,-3 \lambda_{2}-1,8 \lambda_{2}-10\right)$
If they intersect they should have a common point.
$\lambda_{1}+4=2 \lambda_{2}+1 \Rightarrow \lambda_{1}-2 \lambda_{2}=-3$
$4 \lambda_{1}-3=-3 \lambda_{2}-1 \Rightarrow 4 \lambda_{1}+3 \lambda_{2}=2$
Solving (1) and (2),
$11 \lambda_{2}=14$
$\lambda_{2}=\frac{14}{11}$
Therefore, $\lambda_{1}=\frac{-5}{11}$
Substituting for the z coordinate, we get
$7 \lambda_{1}-1=\frac{-46}{11}$ and $8 \lambda_{2}-10=\frac{2}{11}$
So, the lines do not intersect.

13. Question

Show that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ intersect each other. Also, find the point of their intersection.

Answer

Given: The equations of the two lines are
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$
To Prove: The two lines intersect and to find their point of intersection.
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{~b}_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{~b}_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $b_{1}: b_{2}: b_{3}$ is the direction ratios of the line.
Proof:
Let
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda_{1}$
$\frac{x-4}{5}=\frac{y-1}{2}=z=\lambda_{2}$
So a point on the first line is $\left(2 \lambda_{1}+1,3 \lambda_{1}+2,4 \lambda_{1}+3\right)$
A point on the second line is $\left(5 \lambda_{2}+4,2 \lambda_{2}+1, \lambda_{2}\right)$
If they intersect they should have a common point.
$2 \lambda_{1}+1=5 \lambda_{2}+4 \Rightarrow 2 \lambda_{1}-5 \lambda_{2}=3$
$3 \lambda_{1}+2=2 \lambda_{2}+1 \Rightarrow 3 \lambda_{1}-2 \lambda_{2}=-1$
Solving (1) and (2),
$-11 \lambda_{2}=11$
$\lambda_{2}=-1$
Therefore, $\lambda_{1}=-1$
Substituting for the z coordinate, we get
$4 \lambda_{1}+3=-1$ and $\lambda_{2}=-1$
So, the lines intersect and their point of intersection is ($-1,-1,-1$)

14. Question

Show that the lines $\frac{x-1}{2}=\frac{y+1}{3}=z$ and $\frac{x+1}{5}=\frac{y-2}{1}, z=2$ do not intersect each other.

Answer

Given: The equations of the two lines are
$\frac{x-1}{2}=\frac{y+1}{3}=z$ and $\frac{x+1}{5}=\frac{y-2}{1}, z=2$
To Prove: the lines do not intersect each other.
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $b_{1}: b_{2}: b_{3}$ is the direction ratios of the line.
Proof:
Let
$\frac{x-1}{2}=\frac{y+1}{3}=z=\lambda_{1}$
$\frac{x+1}{5}=\frac{y-2}{1}=\lambda_{2}, z=2$
So a point on the first line is $\left(2 \lambda_{1}+1,3 \lambda_{1}-1, \lambda_{1}\right)$
A point on the second line is $\left(5 \lambda_{2}-1, \lambda_{2}+1,2\right)$
If they intersect they should have a common point.
$2 \lambda_{1}+1=5 \lambda_{2}-1 \Rightarrow 2 \lambda_{1}-5 \lambda_{2}=-2$
$3 \lambda_{1}-1=\lambda_{2}+1 \Rightarrow 3 \lambda_{1}-\lambda_{2}=2$
Solving (1) and (2),
$-13 \lambda_{2}=-10$
$\lambda_{2}=\frac{10}{13}$
Therefore, $\lambda_{1}=\frac{33}{65}$
Substituting for the z coordinate, we get
$\lambda_{1}=\frac{33}{65}$ and $\mathrm{z}=2$
So, the lines do not intersect.

15. Question

Find the coordinates of the foot of the perpendicular drawn from the point $(1,2,3)$ to the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$. Also, find the length of the perpendicular from the given point to the line.

Answer

Given: Equation of line is $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$.
To find: coordinates of foot of the perpendicular from $(1,2,3)$ to the line. And find the length of the perpendicular.

Formula Used:

1. Equation of a line is

Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $b_{1}: b_{2}: b_{3}$ is the direction ratios of the line.
2. Distance between two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is
$\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}+\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)^{2}}$

Explanation:

Let
$\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}=\lambda$
So the foot of the perpendicular is $(3 \lambda+6,2 \lambda+7,-2 \lambda+7)$
Direction ratio of the line is $3: 2:-2$
Direction ratio of the perpendicular is
$\Rightarrow(3 \lambda+6-1):(2 \lambda+7-2):(-2 \lambda+7-3)$
$\Rightarrow(3 \lambda+5):(2 \lambda+5):(-2 \lambda+4)$
Since this is perpendicular to the line,
$3(3 \lambda+5)+2(2 \lambda+5)-2(-2 \lambda+4)=0$
$\Rightarrow 9 \lambda+15+4 \lambda+10+4 \lambda-8=0$
$\Rightarrow 17 \lambda=-17$
$\Rightarrow \lambda=-1$
So the foot of the perpendicular is $(3,5,9)$
Distance $=\sqrt{(3-1)^{2}+(5-2)^{2}+(9-3)^{2}}$
$=\sqrt{4+9+36}$
$=7$ units
Therefore, the foot of the perpendicular is $(3,5,9)$ and length of perpendicular is 7 units.

16. Question

Find the length and the foot of the perpendicular drawn from the point $(2,-1,5)$ to the line

$$
\frac{x-11}{10}=\frac{y+2}{-4}=\frac{z+8}{-11}
$$

Answer

Given: Equation of line is $\frac{x-11}{10}=\frac{y+2}{-4}=\frac{z+8}{-11}$.
To find: coordinates of foot of the perpendicular from $(2,-1,5)$ to the line. And find the length of the perpendicular.

Formula Used:

1. Equation of a line is

Cartesian form: $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{~b}_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{~b}_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $b_{1}: b_{2}: b_{3}$ is the direction ratios of the line.
2. Distance between two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is
$\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}+\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)^{2}}$

Explanation:

Let
$\frac{x-11}{10}=\frac{y+2}{-4}=\frac{z+8}{-11}=\lambda$
So the foot of the perpendicular is $(10 \lambda+11,-4 \lambda-2,-11 \lambda-8)$
Direction ratio of the line is $10:-4:-11$
Direction ratio of the perpendicular is
$\Rightarrow(10 \lambda+11-2):(-4 \lambda-2+1):(-11 \lambda-8-5)$
$\Rightarrow(10 \lambda+9):(-4 \lambda-1):(-11 \lambda-13)$
Since this is perpendicular to the line,
$10(10 \lambda+9)-4(-4 \lambda-1)-11(-11 \lambda-13)=0$
$\Rightarrow 100 \lambda+90+16 \lambda+4+121 \lambda+143=0$
$\Rightarrow 237 \lambda=-237$
$\Rightarrow \lambda=-1$
So the foot of the perpendicular is $(1,2,3)$
Distance $=\sqrt{(1-2)^{2}+(2+1)^{2}+(3-5)^{2}}$
$=\sqrt{1+9+4}$
$=\sqrt{ } 14$ units
Therefore, the foot of the perpendicular is $(1,2,3)$ and length of perpendicular is $\sqrt{ } 14$ units.

17. Question

Find the vector and Cartesian equations of the line passing through the points $A(3,4,-6)$ and $B(5,-2$, 7).

Answer

Given: line passes through the points $(3,4,-6)$ and $(5,-2,7)$
To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$

Cartesian form: $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{~b}_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{~b}_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ with $b_{1}: b_{2}: b_{3}$ being the direction ratios of the line.

Explanation:

Here, $\vec{a}=3 \hat{\imath}+4 \hat{\jmath}-6 \hat{k}$
The direction ratios of the line are $(3-5):(4+2):(-6-7)$
$\Rightarrow-2: 6:-13$
$\Rightarrow 2:-6: 13$
So, $\vec{b}=2 \hat{\imath}-6 \hat{\jmath}+13 \hat{k}$
Therefore,
Vector form:
$\overrightarrow{\mathrm{r}}=3 \hat{\imath}+4 \hat{\jmath}-6 \hat{\mathrm{k}}+\lambda(2 \hat{\imath}-6 \hat{\jmath}+13 \hat{k})$
Cartesian form:
$\frac{x-3}{2}=\frac{y-4}{-6}=\frac{z+6}{13}$

18. Question

Find the vector and Cartesian equations of the line passing through the points $A(2,-3,0)$ and $B(-2,4$, $3)$.

Answer

Given: line passes through the points (2, $-3,0$) and ($-2,4,3$)
To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{~b}_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{~b}_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ with $b_{1}: b_{2}: b_{3}$ being the direction ratios of the line.

Explanation:

Here, $\vec{a}=2 \hat{\imath}-3 \hat{j}$
The direction ratios of the line are $(2+2):(-3-4):(0-3)$
$\Rightarrow 4:-7:-3$
$\Rightarrow-4: 7: 3$
So, $\overrightarrow{\mathrm{b}}=-4 \hat{\imath}+7 \hat{\jmath}+3 \hat{k}$
Therefore,
Vector form:
$\overrightarrow{\mathrm{r}}=2 \hat{\imath}-3 \hat{\jmath}+\lambda(-4 \hat{\imath}+7 \hat{\jmath}+3 \hat{\mathrm{k}})$
Cartesian form:
$\frac{x-2}{-4}=\frac{y+3}{7}=\frac{z}{3}$

19. Question

Find the vector and Cartesian equations of the line joining the points whose position vectors are $(\hat{i}-2 \hat{j}+\hat{k})$ and $(\hat{i}+3 \hat{j}-2 \hat{k})$.

Answer

Given: line passes through the points whose position vectors are $(\hat{i}-2 \hat{j}+\hat{k})$ and $(\hat{i}+3 \hat{j}-2 \hat{k})$.
To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is
Vector form: $\vec{r}=\vec{a}+\lambda \vec{b}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ with $b_{1}: b_{2}: b_{3}$ being the direction ratios of the line.

Explanation:

Here, $\vec{a}=\hat{\imath}-2 \hat{\jmath}+\hat{k}$
The direction ratios of the line are $(1-1):(-2-3):(1+2)$
$\Rightarrow 0:-5: 3$
$\Rightarrow 0: 5:-3$
So, $\vec{b}=-5 \hat{\jmath}+3 \hat{k}$
Therefore,
Vector form:
$\overrightarrow{\mathrm{r}}=\hat{\mathrm{\imath}}-2 \hat{\mathrm{\jmath}}+\hat{\mathrm{k}}+\lambda(5 \hat{\mathrm{\jmath}}-3 \hat{\mathrm{k}})$

Cartesian form:
$\frac{x-1}{0}=\frac{y+2}{5}=\frac{z-1}{-3}$

20. Question

Find the vector equation of a line passing through the point $A(3,-2,1)$ and parallel to the line joining the points $B(-2,4,2)$ and $C(2,3,3)$. Also, find the Cartesian equations of the line.

Answer

Given: line passes through the point (3, $-2,1$) and is parallel to the line joining points $B(-2,4,2)$ and $C(2,3,3)$.

To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ with $b_{1}: b_{2}: b_{3}$ being the direction ratios of the line.

Explanation:

Here, $\vec{a}=3 \hat{\imath}-2 \hat{\jmath}+\hat{k}$
The direction ratios of the line are $(-2-2):(4-3):(2-3)$
$\Rightarrow-4: 1:-1$
$\Rightarrow 4:-1: 1$
So, $\vec{b}=4 \hat{\imath}-\hat{\jmath}+\hat{k}$
Therefore,
Vector form:
$\overrightarrow{\mathrm{r}}=3 \hat{\mathrm{\imath}}-2 \hat{\jmath}+\hat{\mathrm{k}}+\lambda(4 \hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}})$
Cartesian form:
$\frac{x-3}{4}=\frac{y+2}{-1}=\frac{z-1}{1}$

21. Question

Find the vector equation of a line passing through the point having the position vector $(\hat{i}+2 \hat{j}-3 \hat{k})$ and parallel to the line joining the points with position vectors $(\hat{i}-\hat{j}+5 \hat{k})$ and $(2 \hat{i}+3 \hat{j}-4 \hat{k})$.

Also, find the Cartesian equivalents of this equation.

Answer

Given: line passes through the point with position vector $\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$ and parallel to the line joining the points with position vectors $\hat{\imath}-\hat{\jmath}+5 \hat{k}$ and $2 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$.

To find: equation of line in vector and Cartesian forms
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ with $b_{1}: b_{2}: b_{3}$ being the direction ratios of the line.

Explanation:

Here, $\vec{a}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$
The direction ratios of the line are $(1-2):(-1-3):(5+4)$
$\Rightarrow-1:-4: 9$
$\Rightarrow 1: 4:-9$
So, $\vec{b}=\hat{\imath}+4 \hat{\jmath}-9 \hat{k}$
Therefore,
Vector form:
$\overrightarrow{\mathrm{r}}=\hat{\imath}+2 \hat{\jmath}-3 \hat{\mathrm{k}}+\lambda(\hat{\imath}+4 \hat{\jmath}-9 \hat{\mathrm{k}})$
Cartesian form:
$\frac{x-1}{1}=\frac{y-2}{4}=\frac{z+3}{-9}$

22. Question

Find the coordinates of the foot of the perpendicular drawn from the point $A(1,2,1)$ to the line joining the points $B(1,4,6)$ and $C(5,4,4)$.

Answer

Given: perpendicular drawn from point $A(1,2,1)$ to line joining points $B(1,4,6)$ and $C(5,4,4)$
To find: foot of perpendicular
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$

Cartesian form: $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{~b}_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{~b}_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ with $b_{1}: b_{2}: b_{3}$ being the direction ratios of the line.

If 2 lines of direction ratios $a_{1}: a_{2}: a_{3}$ and $b_{1}: b_{2}: b_{3}$ are perpendicular, then $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0$

Explanation:

$B(1,4,6)$ is a point on the line.
Therefore, $\vec{a}=\hat{\imath}+4 \hat{\jmath}+6 \hat{k}$
Also direction ratios of the line are $(1-5):(4-4):(6-4)$
$\Rightarrow-4: 0: 2$
$\Rightarrow-2: 0: 1$
So, equation of the line in Cartesian form is
$\frac{x-1}{-2}=\frac{y-4}{0}=\frac{z-6}{1}=\lambda$
Any point on the line will be of the form $(-2 \lambda+1,4, \lambda+6)$
So the foot of the perpendicular is of the form $(-2 \lambda+1,4, \lambda+6)$
The direction ratios of the perpendicular is
$(-2 \lambda+1-1):(4-2):(\lambda+6-1)$
$\Rightarrow(-2 \lambda): 2:(\lambda+5)$
From the direction ratio of the line and the direction ratio of its perpendicular, we have
$-2(-2 \lambda)+0+\lambda+5=0$
$\Rightarrow 4 \lambda+\lambda=-5$
$\Rightarrow \lambda=-1$
So, the foot of the perpendicular is $(3,4,5)$

23. Question

Find the coordinates of the foot of the perpendicular drawn from the point $A(1,8,4)$ to the line joining the points $B(0,-1,3)$ and $C(2,-3,-1)$.

Answer

Given: perpendicular drawn from point $A(1,8,4)$ to line joining points $B(0,-1,3)$ and $C(2,-3,-1)$
To find: foot of perpendicular

Formula Used: Equation of a line is

Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$

Cartesian form: $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{~b}_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{~b}_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ with $b_{1}: b_{2}: b_{3}$ being the direction ratios of the line.

If 2 lines of direction ratios $a_{1}: a_{2}: a_{3}$ and $b_{1}: b_{2}: b_{3}$ are perpendicular, then $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0$

Explanation:

$B(0,-1,3)$ is a point on the line.
Therefore, $\overrightarrow{\mathrm{a}}=-\hat{\jmath}+3 \hat{\mathrm{k}}$
Also direction ratios of the line are $(0-2):(-1+3):(3+1)$
$\Rightarrow-2: 2: 4$
$\Rightarrow-1: 1: 2$
So, equation of the line in Cartesian form is
$\frac{x}{-1}=\frac{y+1}{1}=\frac{z-3}{2}=\lambda$
Any point on the line will be of the form $(-\lambda, \lambda-1,2 \lambda+3)$
So the foot of the perpendicular is of the form $(-\lambda, \lambda-1,2 \lambda+3)$
The direction ratios of the perpendicular is
$(-\lambda-1):(\lambda-1-8):(2 \lambda+3-4)$
$\Rightarrow(-\lambda-1):(\lambda-9):(2 \lambda-1)$
From the direction ratio of the line and the direction ratio of its perpendicular, we have
$-1(-\lambda-1)+\lambda-9+2(2 \lambda-1)=0$
$\Rightarrow \lambda+1+\lambda-9+4 \lambda-2=0$
$\Rightarrow 6 \lambda=10$
$\Rightarrow \lambda=\frac{5}{3}$
So, the foot of the perpendicular is $\left(\frac{-5}{3}, \frac{2}{3}, \frac{19}{3}\right)$

24. Question

Find the image of the point $(0,2,3)$ in the line $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$.

Answer

Given: Equation of line is $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$.
To find: image of point $(0,2,3)$
Formula Used: Equation of a line is
Vector form: $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$
Cartesian form: $\frac{x-x_{1}}{b_{1}}=\frac{y-y_{1}}{b_{2}}=\frac{z-z_{1}}{b_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ with $b_{1}: b_{2}: b_{3}$ being the direction ratios of the line.

If 2 lines of direction ratios $a_{1}: a_{2}: a_{3}$ and $b_{1}: b_{2}: b_{3}$ are perpendicular, then $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0$
Mid-point of line segment joining $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is
$\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}}{2}\right)$
Explanation:
Let
$\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}=\lambda$
So the foot of the perpendicular is $(5 \lambda-3,2 \lambda+1,3 \lambda-4)$
The direction ratios of the perpendicular is
$(5 \lambda-3-0):(2 \lambda+1-2):(3 \lambda-4-3)$
$\Rightarrow(5 \lambda-3):(2 \lambda-1):(3 \lambda-7)$
Direction ratio of the line is $5: 2: 3$

From the direction ratio of the line and the direction ratio of its perpendicular, we have
$5(5 \lambda-3)+2(2 \lambda-1)+3(3 \lambda-7)=0$
$\Rightarrow 25 \lambda-15+4 \lambda-2+9 \lambda-21=0$
$\Rightarrow 38 \lambda=38$
$\Rightarrow \lambda=1$
So, the foot of the perpendicular is $(2,3,-1)$
The foot of the perpendicular is the mid-point of the line joining ($0,2,3$) and (a, β, γ)
So, we have
$\frac{\alpha+0}{2}=2 \Rightarrow \alpha=4$
$\frac{\beta+2}{2}=3 \Rightarrow \beta=4$
$\frac{\gamma+3}{2}=-1 \Rightarrow \gamma=-5$
So, the image is $(4,4,-5)$

25. Question

Find the image of the point $(5,9,3)$ in the line $\frac{x-1}{2}=\frac{y=2}{3}=\frac{z-3}{4}$.

Answer

Given: Equation of line is $\frac{x-1}{2}=\frac{y=2}{3}=\frac{z-3}{4}$.
To find: image of point $(5,9,3)$
Formula Used: Equation of a line is
Vector form: $\vec{r}=\vec{a}+\lambda \vec{b}$
Cartesian form: $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{~b}_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{~b}_{3}}=\lambda$
where $\vec{a}=x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k}$ is a point on the line and $\vec{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$ with $b_{1}: b_{2}: b_{3}$ being the direction ratios of the line.

If 2 lines of direction ratios $a_{1}: a_{2}: a_{3}$ and $b_{1}: b_{2}: b_{3}$ are perpendicular, then $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0$
Mid-point of line segment joining $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is
$\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}, \frac{\mathrm{z}_{1}+\mathrm{z}_{2}}{2}\right)$
Explanation:
Let
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\lambda$
So the foot of the perpendicular is $(2 \lambda+1,3 \lambda+2,4 \lambda+3)$
The direction ratios of the perpendicular is
$(2 \lambda+1-5):(3 \lambda+2-9):(4 \lambda+3-3)$
$\Rightarrow(2 \lambda-4):(3 \lambda-7):(4 \lambda)$
Direction ratio of the line is $2: 3: 4$

From the direction ratio of the line and the direction ratio of its perpendicular, we have
$2(2 \lambda-4)+3(3 \lambda-7)+4(4 \lambda)=0$
$\Rightarrow 4 \lambda-8+9 \lambda-21+16 \lambda=0$
$\Rightarrow 29 \lambda=29$
$\Rightarrow \lambda=1$
So, the foot of the perpendicular is $(3,5,7)$
The foot of the perpendicular is the mid-point of the line joining (5, 9, 3) and (a, β, γ)
So, we have
$\frac{\alpha+5}{2}=3 \Rightarrow \alpha=1$
$\frac{\beta+9}{2}=5 \Rightarrow \beta=1$
$\frac{\gamma+3}{2}=7 \Rightarrow \gamma=11$
So, the image is $(1,1,11)$

26. Question

Find the image of the point $(2,-1,5)$ in the line
$\overrightarrow{\mathrm{r}}=(11 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-8 \hat{\mathrm{k}})+\lambda(10 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-11 \hat{\mathrm{k}})$

Answer

Given: Point (2, $-1,5$)
Equation of line $=(11 \hat{\imath}-2 \hat{\jmath}-8 \hat{k})+\lambda(10 \hat{\imath}-4 \hat{\jmath}-11 \hat{k})$
The equation of line can be re-arranged as $\frac{x-11}{10}=\frac{x+2}{-4}=\frac{x+8}{-11}=r$
The general point on this line is
$(10 r+11,-4 r-2,-11 r-8)$
Let N be the foot of the perpendicular drawn from the point $P(2,1,-5)$ on the given line.
Then, this point is $N(10 r+11,-4 r-2,-11 r-8)$ for some fixed value of r.
D.r.'s of PN are $(10 r+9,-4 r-3,-11 r-3)$
D.r.'s of the given line is $10,-4,-11$.

Since, PN is perpendicular to the given line, we have,
$10(10 r+9)-4(-4 r-3)-11(-11 r-3)=0$
$100 r+90+16 r+12+121 r+33=0$
$237 \mathrm{r}=135$
$r=\frac{135}{237}$
Then, the image of the point is
$\frac{\alpha-11}{-11}=0, \frac{\beta+2}{7}=1, \frac{\gamma+8}{9}=1$
Therefore, the image is $(0,5,1)$.

Exercise 27B

1. Question

Show that the points $A(2,1,3), B(5,0,5)$ and $C(-4,3,-1)$ are collinear.

Answer

Given -
$A=(2,1,3)$
$B=(5,0,5)$
$C=(-4,3,-1)$
To prove - A, B and C are collinear
Formula to be used - If $P=(a, b, c)$ and $Q=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, then the direction ratios of the line $P Q$ is given by (($\left.\left.a^{\prime}-a\right),\left(b^{\prime}-b\right),\left(c^{\prime}-c\right)\right)$

The direction ratios of the line $A B$ can be given by
((5-2),(0-1),(5-3))
$=(3,-1,-2)$
Similarly, the direction ratios of the line BC can be given by
$((-4-5),(3-0),(-1-5))$
$=(-9,3,-6)$
Tip - If it is shown that direction ratios of $A B=\lambda$ times that of $B C$, where λ is any arbitrary constant, then the condition is sufficient to conclude that points A, B and C will be collinear.

So, d.r. of $A B$
$=(3,-1,-2)$
$=(-1 / 3) \times(-9,3,-6)$
$=(-1 / 3)$ Xd.r. of $B C$
Hence, A, B and C are collinear

2. Question

Show that the points $A(2,3,-4), B(1,-2,3)$ and $C(3,8,-11)$ are collinear.

Answer

Given -

$A=(2,3,-4)$
$B=(1,-2,3)$
$C=(3,8,-11)$
To prove - A, B and C are collinear
Formula to be used - If $P=(a, b, c)$ and $Q=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, then the direction ratios of the line $P Q$ is given by (($\left.\left.a^{\prime}-a\right),\left(b^{\prime}-b\right),\left(c^{\prime}-c\right)\right)$

The direction ratios of the line $A B$ can be given by
$((1-2),(-2-3),(3+4))$
$=(-1,-5,7)$
Similarly, the direction ratios of the line $B C$ can be given by
$((3-1),(8+2),(-11-3))$
$=(2,10,-14)$
Tip - If it is shown that direction ratios of $A B=\lambda$ times that of $B C$, where λ is any arbitrary constant, then the condition is sufficient to conclude that points A, B and C will be collinear.

So, d.r. of $A B$
$=(-1,-5,7)$
$=(-1 / 2) \times(2,10,-14)$
$=(-1 / 2)$ Xd.r. of $B C$

Hence, A, B and C are collinear

3. Question

Find the value of λ for which the points $A(2,5,1), B(1,2,-1)$ and $C(3, \lambda, 3)$ are collinear.

Answer

Given -

$\mathrm{A}=(2,5,1)$
$B=(1,2,-1)$
$C=(3, \lambda, 3)$
To find - The value of λ so that A, B and C are collinear

Formula to be used - If $P=(a, b, c)$ and $Q=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, then the direction ratios of the line $P Q$ is given by ((a'-a),(b'-b),(c'-c))

The direction ratios of the line $A B$ can be given by
((1-2),(2-5),(-1-1))
$=(-1,-3,-2)$
Similarly, the direction ratios of the line BC can be given by
$((3-1),(\lambda-2),(3+1))$
$=(2, \lambda-2,4)$
Tip - If it is shown that direction ratios of $A B=a$ times that of $B C$, where λ is any arbitrary constant, then the condition is sufficient to conclude that points A, B and C will be collinear.

So, d.r. of $A B$
$=(-1,-3,-2)$
$=(-1 / 2) \times(2, \lambda-2,4)$
$=(-1 / 2)$ Xd.r. of $B C$
Since, A, B and C are collinear,
$\therefore-\frac{1}{2}(\lambda-2)=-3$
$\Rightarrow \lambda-2=6$
$\Rightarrow \lambda=8$

4. Question

Find the values of λ and μ so that the points $A(3,2,-4), B(9,8,-10)$ and $C(\lambda, \mu-6)$ are collinear.

Answer

Given -

$A=(3,2,-4)$
$B=(9,8,-10)$
$C=(\lambda, \mu,-6)$
To find - The value of λ and μ so that A, B and C are collinear
Formula to be used - If $P=(a, b, c)$ and $Q=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, then the direction ratios of the line $P Q$ is given by ((a'-a),(b'-b),(c'-c))

The direction ratios of the line $A B$ can be given by
((9-3),(8-2),(-10+4))
$=(6,6,-6)$

Similarly, the direction ratios of the line BC can be given by
$((\lambda-9),(\mu-8),(-6+10))$
$=(\lambda-9, \mu-8,4)$
Tip - If it is shown that direction ratios of $A B=a$ times that of $B C$, where λ is any arbitrary constant, then the condition is sufficient to conclude that points A, B and C will be collinear.

So, d.r. of $A B$
$=(6,6,-6)$
$=(-6 / 4) \times(-4,-4,4)$
$=(-3 / 2)$ Xd.r. of $B C$
Since, A, B and C are collinear,
$\therefore-\frac{3}{2}(\lambda-9)=6$
$\Rightarrow \lambda-9=-4$
$\Rightarrow \lambda=5$
And,
$\therefore-\frac{3}{2}(\mu-8)=6$
$\Rightarrow \mu-8=-4$
$\Rightarrow \lambda=4$

5. Question

Find the values of λ and μ so that the points $A(-1,4,-2), B(\lambda, \mu 1)$ and $C(0,2,-1)$ are collinear.

Answer

Given -

$A=(-1,4,-2)$
$B=(\lambda, \mu, 1)$
$C=(0,2,-1)$
To find - The value of λ and μ so that A, B and C are collinear
Formula to be used - If $P=(a, b, c)$ and $Q=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, then the direction ratios of the line $P Q$ is given by (($\left.a^{\prime}-a\right),\left(b^{\prime}-b\right),\left(c^{\prime}-c\right)$)

The direction ratios of the line $A B$ can be given by
$((\lambda+1),(\mu-4),(1+2))$
$=(\lambda+1, \mu-4,3)$

Similarly, the direction ratios of the line BC can be given by
$((0-\lambda),(2-\mu),(-1-1))$
$=(-\lambda, 2-\mu,-2)$
Tip - If it is shown that direction ratios of $A B=a$ times that of $B C$, where λ is any arbitrary constant, then the condition is sufficient to conclude that points A, B and C will be collinear.

So, d.r. of $A B$
$=(\lambda+1, \mu-4,3)$
Say, a be an arbitrary constant such that d.r. of $A B=a X$ d.r. of $B C$
So, $3=a \times(-2)$
i.e. $a=-3 / 2$

Since, A, B and C are collinear,
$\therefore-\frac{3}{2}(-\lambda)=\lambda+1$
$\Rightarrow 3 \lambda=2 \lambda+2$
$\Rightarrow \lambda=2$
And,
$\therefore-\frac{3}{2}(2-\mu)=\mu-4$
$\Rightarrow-6+3 \mu=2 \mu-8$
$\Rightarrow \mu=-2$

6. Question

The position vectors of three points A, B and C are $(-4 \hat{i}+2 \hat{j}-3 \hat{k}),(\hat{i}+3 \hat{j}-2 \hat{k})$ and $(-9 \hat{i}+\hat{j}-4 \hat{k})$ respectively. show that points A, B and C are collinear.

Answer

Given -

$\vec{A}=-4 \hat{\imath}+2 \hat{\jmath}-3 \hat{k}$
$\vec{B}=\hat{\imath}+3 \hat{\jmath}-2 \hat{k}$
$\overrightarrow{\mathrm{C}}=-9 \hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}-4 \hat{\mathrm{k}}$
It can thus be written as:
$A=(-4,2,-3)$
$B=(1,3,-2)$
$C=(-9,1,-4)$
To prove - A, B and C are collinear
Formula to be used - If $P=(a, b, c)$ and $Q=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, then the direction ratios of the line $P Q$ is given by (($\left.\left.a^{\prime}-a\right),\left(b^{\prime}-b\right),\left(c^{\prime}-c\right)\right)$

The direction ratios of the line $A B$ can be given by
$((1+4),(3-2),(-2+3))$
$=(5,1,1)$
Similarly, the direction ratios of the line BC can be given by
$((-9-1),(1-3),(-4+2))$
$=(-10,-2,-2)$
Tip - If it is shown that direction ratios of $A B=\lambda$ times that of $B C$, where λ is any arbitrary constant, then the condition is sufficient to conclude that points A, B and C will be collinear.

So, d.r. of $A B$
$=(5,1,1)$
$=(-1 / 2) \times(-10,-2,-2)$
$=(-1 / 2)$ Xd.r. of $B C$

Hence, A, B and C are collinear

Exercise 27C

1. Question

Find the angle between each of the following pairs of lines:
$\overrightarrow{\mathrm{r}}=(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-5 \hat{\mathrm{k}})+\mu(3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})$

Answer

Given $-\overrightarrow{\mathrm{L}_{1}}=(3 \hat{\imath}+\hat{\jmath}-2 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\jmath}-2 \hat{\mathrm{k}})$
$\& \overrightarrow{\mathrm{~L}_{2}}=(2 \hat{\imath}-\hat{\jmath}-5 \hat{\mathrm{k}})+\mu(3 \hat{\imath}-5 \hat{\jmath}-4 \hat{\mathrm{k}})$
To find - Angle between the two pair of lines
Direction ratios of $L_{1}=(1,-1,-2)$
Direction ratios of $L_{2}=(3,-5,-4)$

Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime^{\prime 2}}+{b^{\prime 2}}^{\prime 2}+c^{\prime 2}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{1 \times 3+(-1) \times(-5)+(-2) \times(-4)}{\sqrt{1^{2}+1^{2}+2^{2}} \sqrt{3^{2}+5^{2}+4^{2}}}\right)$
$=\cos ^{-1}\left(\frac{3+5+8}{\sqrt{6} \sqrt{50}}\right)$
$=\cos ^{-1}\left(\frac{16}{5 \sqrt{6} \sqrt{2}}\right)$
$=\cos ^{-1}\left(\frac{8 \sqrt{3}}{15}\right)$

2. Question

Find the angle between each of the following pairs of lines:
$\overrightarrow{\mathrm{r}}=(3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+3 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=5 \hat{\mathrm{i}}+\mu(-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$

Answer

Given $-\overrightarrow{\mathrm{L}_{1}}=(3 \hat{\imath}-4 \hat{\jmath}+2 \hat{k})+\lambda(\hat{\imath}+3 \hat{k})$
$\& \overrightarrow{\mathrm{~L}_{2}}=(5 \hat{\imath})+\mu(-\hat{\imath}+\hat{\jmath}+\hat{\mathrm{k}})$
To find - Angle between the two pair of lines
Direction ratios of $L_{1}=(1,0,3)$
Direction ratios of $L_{2}=(-1,1,1)$
Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime^{2}}+{b^{\prime 2}}^{2}+c^{\prime 2}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{1 \times(-1)+0 \times 1+3 \times 1}{\sqrt{1^{2}+0^{2}+3^{2}} \sqrt{1^{2}+1^{2}+1^{2}}}\right)$
$=\cos ^{-1}\left(\frac{-1+3}{\sqrt{10} \sqrt{3}}\right)$
$=\cos ^{-1}\left(\frac{2}{\sqrt{30}}\right)$
$=\cos ^{-1}\left(\frac{\sqrt{30}}{15}\right)$

3. Question

Find the angle between each of the following pairs of lines:
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}-2 \hat{\mathrm{j}})+\lambda(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=3 \hat{\mathrm{k}}+\mu(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})$

Answer

Given $-\overrightarrow{\mathrm{L}_{1}}=(\hat{\mathrm{\imath}}-2 \hat{\jmath})+\lambda(2 \hat{\imath}-2 \hat{\jmath}+\hat{\mathrm{k}})$
$\& \overrightarrow{\mathrm{~L}_{2}}=(3 \hat{\mathrm{k}})+\mu(\hat{\imath}+2 \hat{\jmath}-2 \hat{\mathrm{k}})$
To find - Angle between the two pair of lines
Direction ratios of $L_{1}=(2,-2,1)$
Direction ratios of $L_{2}=(1,2,-2)$
Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime^{2}}+{b^{\prime 2}}^{\prime 2}+{c^{\prime}}^{2}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{2 \times 1+(-2) \times 2+1 \times(-2)}{\sqrt{2^{2}+2^{2}+1^{2}} \sqrt{1^{2}+2^{2}+2^{2}}}\right)$
$=\cos ^{-1}\left(\frac{2-4-2}{3 \times 3}\right)$
$=\cos ^{-1}\left(-\frac{4}{9}\right)$

4. Question

Find the angle between each of the following pairs of lines:
$\frac{x-1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$ and $\frac{x+3}{3}=\frac{y-2}{5}=\frac{z+5}{4}$
Answer
Given $-\overrightarrow{L_{1}}=\frac{x-1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$
$\& \overrightarrow{\mathrm{~L}_{2}}=\frac{\mathrm{x}+3}{3}=\frac{\mathrm{y}-2}{5}=\frac{\mathrm{z}+5}{4}$
To find - Angle between the two pair of lines
Direction ratios of $L_{1}=(1,1,2)$
Direction ratios of $L_{2}=(3,5,4)$
Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime^{\prime 2}}+\mathrm{b}^{\prime 2}+\mathrm{c}^{\prime 2}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{1 \times 3+1 \times 5+2 \times 4}{\sqrt{1^{2}+1^{2}+2^{2}} \sqrt{3^{2}+5^{2}+4^{2}}}\right)$
$=\cos ^{-1}\left(\frac{3+5+8}{\sqrt{6} \times \sqrt{50}}\right)$
$=\cos ^{-1}\left(\frac{8 \sqrt{3}}{15}\right)$

5. Question

Find the angle between each of the following pairs of lines:
$\frac{x-4}{4}=\frac{y+1}{4}=\frac{z-6}{5}$ and $\frac{x-5}{1}=\frac{2 y+5}{-2}=\frac{z-3}{1}$

Answer

Given $-\overrightarrow{L_{1}}=\frac{x-4}{4}=\frac{y+1}{3}=\frac{z-6}{5}$
$\& \overrightarrow{\mathrm{~L}_{2}}=\frac{\mathrm{x}-5}{1}=\frac{\mathrm{y}+5 / 2}{-1}=\frac{\mathrm{z}-3}{1}$
To find - Angle between the two pair of lines
Direction ratios of $L_{1}=(4,3,5)$
Direction ratios of $L_{2}=(1,-1,1)$
Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime 2}+b^{\prime 2}+{c^{\prime}}^{\prime 2}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{4 \times 1+3 \times(-1)+5 \times 1}{\sqrt{4^{2}+3^{2}+5^{2}} \sqrt{1^{2}+1^{2}+1^{2}}}\right)$
$=\cos ^{-1}\left(\frac{4-3+5}{5 \sqrt{2} \times \sqrt{3}}\right)$
$=\cos ^{-1}\left(\frac{6}{5 \sqrt{6}}\right)$
$=\cos ^{-1}\left(\frac{2 \sqrt{6}}{15}\right)$

6. Question

Find the angle between each of the following pairs of lines:

$$
\frac{3-x}{-2}=\frac{y+5}{1}=\frac{1-z}{3} \text { and } \frac{x}{3}=\frac{1-y}{-2}=\frac{z+2}{-1}
$$

Answer

Given $-\overrightarrow{\mathrm{L}_{1}}=\frac{\mathrm{x}-3}{2}=\frac{\mathrm{y}+5}{1}=\frac{z-1}{-3}$
$\& \overrightarrow{\mathrm{~L}_{2}}=\frac{\mathrm{x}}{3}=\frac{\mathrm{y}-1}{2}=\frac{\mathrm{z}+2}{-1}$
To find - Angle between the two pair of lines
Direction ratios of $L_{1}=(2,1,-3)$
Direction ratios of $L_{2}=(3,2,-1)$
Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime^{2}}+{b^{\prime 2}}^{\prime 2}+c^{\prime 2}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{2 \times 3+1 \times 2+(-3) \times(-1)}{\sqrt{2^{2}+1^{2}+3^{2}} \sqrt{3^{2}+2^{2}+1^{2}}}\right)$
$=\cos ^{-1}\left(\frac{6+2+3}{\sqrt{14} \times \sqrt{14}}\right)$
$=\cos ^{-1}\left(\frac{11}{14}\right)$

7. Question

Find the angle between each of the following pairs of lines:
$\frac{\mathrm{x}}{1}=\frac{\mathrm{z}}{-1}, \mathrm{y}=0$ and $\frac{\mathrm{x}}{3}=\frac{\mathrm{y}}{4}=\frac{\mathrm{z}}{5}$

Answer

Given $-\overrightarrow{\mathrm{L}_{1}}=\frac{\mathrm{x}}{1}=\frac{\mathrm{y}}{0}=\frac{\mathrm{z}}{-1}$
\& $\overrightarrow{\mathrm{L}_{2}}=\frac{\mathrm{x}}{3}=\frac{\mathrm{y}}{4}=\frac{\mathrm{z}}{5}$
To find - Angle between the two pair of lines
Direction ratios of $L_{1}=(1,0,-1)$
Direction ratios of $L_{2}=(3,4,5)$
Tip - If (a, b, c) be the direction ratios of the first line and ($a^{\prime}, b^{\prime}, c^{\prime}$) be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{{a^{\prime 2}}^{2}+b^{\prime 2}+c^{\prime 2}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{1 \times 3+0 \times 4+(-1) \times 5}{\sqrt{1^{2}+0^{2}+1^{2}} \sqrt{3^{2}+4^{2}+5^{2}}}\right)$
$=\cos ^{-1}\left(\frac{3-5}{5 \sqrt{2} \times \sqrt{2}}\right)$
$=\cos ^{-1}\left(\frac{1}{5}\right)$

8. Question

Find the angle between each of the following pairs of lines:

$$
\frac{5-x}{3}=\frac{y+3}{-2}, z=5 \text { and } \frac{x-1}{1}=\frac{1-y}{3}=\frac{z-5}{2}
$$

Answer

Given $-\overrightarrow{\mathrm{L}_{1}}=\frac{\mathrm{x}-5}{-3}=\frac{\mathrm{y}+3}{-2}=\frac{z-5}{0}$
\& $\overrightarrow{\mathrm{L}_{2}}=\frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}-1}{-3}=\frac{\mathrm{z}-5}{2}$
To find - Angle between the two pair of lines
Direction ratios of $L_{1}=(-3,-2,0)$
Direction ratios of $L_{2}=(1,-3,2)$

Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime^{\prime 2}}+{b^{\prime 2}}^{\prime 2}+c^{\prime 2}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{(-3) \times 1+(-2) \times(-3)+0 \times 2}{\sqrt{3^{2}+2^{2}+0^{2}} \sqrt{1^{2}+3^{2}+2^{2}}}\right)$
$=\cos ^{-1}\left(\frac{-3+6}{\sqrt{13} \times \sqrt{14}}\right)$
$=\cos ^{-1}\left(\frac{3}{\sqrt{182}}\right)$

9. Question

Show that the lines $\frac{x-3}{2}=\frac{y+1}{-3}=\frac{z-2}{4}$ and $\frac{x+2}{2}=\frac{y-4}{4}=\frac{z+5}{2}$ are perpendicular to each other.

Answer

Given $-\overrightarrow{\mathrm{L}_{1}}=\frac{\mathrm{x}-3}{2}=\frac{\mathrm{y}+1}{-3}=\frac{\mathrm{z}-2}{4}$
$\& \overrightarrow{\mathrm{~L}_{2}}=\frac{\mathrm{x}+2}{2}=\frac{\mathrm{y}-4}{4}=\frac{\mathrm{z}+5}{2}$
To prove - The lines are perpendicular to each other
Direction ratios of $L_{1}=(2,-3,4)$
Direction ratios of $L_{2}=(2,4,2)$
Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime^{2}}+{b^{\prime 2}}^{\prime 2}+c^{\prime 2}}}\right)$

The angle between the lines

$$
\begin{aligned}
& =\cos ^{-1}\left(\frac{2 \times 2+(-3) \times 4+4 \times 2}{\sqrt{2^{2}+3^{2}+4^{2}} \sqrt{2^{2}+4^{2}+2^{2}}}\right) \\
& =\cos ^{-1}\left(\frac{4-12+8}{\sqrt{29} \times \sqrt{24}}\right) \\
& =\cos ^{-1}(0)
\end{aligned}
$$

$=\frac{\pi}{2}$
Hence, the lines are perpendicular to each other.

10. Question

If the lines $\frac{\mathrm{x}-1}{-3}=\frac{\mathrm{y}-2}{2 \lambda}=\frac{\mathrm{z}-3}{2}$ and $\frac{\mathrm{x}-1}{3 \lambda}=\frac{\mathrm{y}-1}{1}=\frac{6-z}{5}$ are perpendicular to each other then find the value of λ.

Answer

Given $-\overrightarrow{\mathrm{L}_{1}}=\frac{\mathrm{x}-1}{-3}=\frac{\mathrm{y}-2}{2 \lambda}=\frac{\mathrm{z}-3}{2}$
$\& \overrightarrow{\mathrm{~L}_{2}}=\frac{\mathrm{x}-1}{3 \lambda}=\frac{\mathrm{y}-1}{1}=\frac{\mathrm{z}-6}{-5}$
To find - The value of λ
Direction ratios of $L_{1}=(-3,2 \lambda, 2)$
Direction ratios of $L_{2}=(3 \lambda, 1,-5)$
Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime^{\prime 2}+b^{\prime 2}+c^{\prime 2}}}}\right)$

Since the lines are perpendicular to each other,
The angle between the lines
$\Rightarrow \cos ^{-1}\left(\frac{(-3) \times 3 \lambda+2 \lambda \times 1+2 \times(-5)}{\sqrt{3^{2}+(2 \lambda)^{2}+2^{2}} \sqrt{(3 \lambda)^{2}+1^{2}+5^{2}}}\right)=\frac{\pi}{2}$
$\Rightarrow \cos ^{-1}\left(\frac{-9 \lambda+2 \lambda-10}{\sqrt{13+4 \lambda^{2}} \sqrt{9 \lambda^{2}+26}}\right)=\frac{\pi}{2}$
$\Rightarrow \cos ^{-1}\left(\frac{-7 \lambda-10}{\sqrt{13+4 \lambda^{2}} \sqrt{9 \lambda^{2}+26}}\right)=\frac{\pi}{2}$
$\Rightarrow\left(\frac{-7 \lambda-10}{\sqrt{13+4 \lambda^{2}} \sqrt{9 \lambda^{2}+26}}\right)=\cos \frac{\pi}{2}=0$
$\Rightarrow-7 \lambda-10=0$
$\Rightarrow \lambda=-\frac{10}{7}$

11. Question

Show that the lines $x=-y=2 z$ and $x+2=2 y-1=-z+1$ are perpendicular to each other.

HINT: The given lines are $\frac{x}{2}=\frac{y}{-2}=\frac{z}{1}$ and $\frac{x+2}{1}=\frac{y-1 / 2}{1}=\frac{z-1}{-2}$.

Answer

Given $-\overrightarrow{L_{1}}=\frac{x}{2}=\frac{y}{-2}=\frac{z}{1}$
$\& \overrightarrow{\mathrm{~L}_{2}}=\frac{\mathrm{x}+2}{2}=\frac{\mathrm{y}-1 / 2}{1}=\frac{\mathrm{z}-1}{-2}$
To prove - The lines are perpendicular to each other
Direction ratios of $L_{1}=(2,-2,1)$
Direction ratios of $L_{2}=(2,1,-2)$
Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime^{2}}+{b^{\prime 2}}^{\prime 2}+{c^{\prime 2}}^{2}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{2 \times 2+(-2) \times 1+1 \times(-2)}{\sqrt{2^{2}+2^{2}+1^{2}} \sqrt{1^{2}+1^{2}+2^{2}}}\right)$
$=\cos ^{-1}\left(\frac{4-2-2}{\sqrt{29} \times \sqrt{24}}\right)$
$=\cos ^{-1}(0)$
$=\frac{\pi}{2}$
Hence, the lines are perpendicular to each other.

12. Question

Find the angle between two lines whose direction ratios are
i. $2,1,2$ and $4,8,1$
ii. $5,-12,13$ and $-3,4,5$
iii. $1,1,2$ and $(\sqrt{3}-1),(-\sqrt{3}-1), 4$
iv. a, b, c and $(b-c),(c-a),(a-b)$

Answer

(i): Given - Direction ratios of $L_{1}=(2,1,2)$ \& Direction ratios of $L_{2}=(4,8,1)$

To find - Angle between the two pair of lines

Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime^{\prime 2}}+b^{\prime 2}+c^{\prime 2}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{2 \times 4+1 \times 8+2 \times 1}{\sqrt{2^{2}+1^{2}+2^{2}} \sqrt{4^{2}+8^{2}+1^{2}}}\right)$
$=\cos ^{-1}\left(\frac{8+8+2}{3 \times 9}\right)$
$=\cos ^{-1}\left(\frac{18}{27}\right)$
$=\cos ^{-1}\left(\frac{2}{3}\right)$
(ii): Given - Direction ratios of $L_{1}=(5,-12,13)$ \& Direction ratios of $L_{2}=(-3,4,5)$

To find - Angle between the two pair of lines
Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime 2}+b^{\prime 2}+c^{\prime 2}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{5 \times(-3)+(-12) \times 4+13 \times 5}{\sqrt{5^{2}+12^{2}+13^{2}} \sqrt{3^{2}+4^{2}+5^{2}}}\right)$
$=\cos ^{-1}\left(\frac{-15-48+65}{13 \sqrt{2} \times 5 \sqrt{2}}\right)$
$=\cos ^{-1}\left(\frac{2}{130}\right)$
$=\cos ^{-1}\left(\frac{1}{65}\right)$
(iii) Given - Direction ratios of $L_{1}=(1,1,2) \&$ Direction ratios of $L_{2}=(\sqrt{ } 3-1,-\sqrt{ } 3-1,4)$

To find - Angle between the two pair of lines
Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime 2}+{b^{\prime 2}}^{\prime 2}+{c^{\prime 2}}^{2}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{1 \times(\sqrt{3}-1)+1 \times(-\sqrt{3}-1)+2 \times 4}{\sqrt{1^{2}+1^{2}+2^{2}} \sqrt{(\sqrt{3}-1)^{2}+(-\sqrt{3}-1)^{2}+4^{2}}}\right)$
$=\cos ^{-1}\left(\frac{\sqrt{3}-1-\sqrt{3}-1+8}{\sqrt{6} \sqrt{24}}\right)$
$=\cos ^{-1}\left(\frac{1}{2}\right)$
$=\frac{\pi}{3}$
(iv) Given - Direction ratios of $L_{1}=(a, b, c) \&$ Direction ratios of $L_{2}=((b-c),(c-a),(a-b))$

To find - Angle between the two pair of lines
Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime^{\prime 2}+b^{\prime 2}+c^{\prime 2}}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{a \times(b-c)+b \times(c-a)+c \times(a-b)}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}}\right)$
$=\cos ^{-1}\left(\frac{0}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}}\right)$
$=\cos ^{-1}(0)$
$=\frac{\pi}{2}$

13. Question

If $A(1,2,3), B(4,5,7), C(-4,3,-6)$ and $D(2,9,2)$ are four given points then find the angle between the lines $A B$ and $C D$.

Answer

Given -

$A=(1,2,3)$
$B=(4,5,7)$
$C=(-4,3,-6)$
$D=(2,9,2)$

Formula to be used - If $P=(a, b, c)$ and $Q=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, then the direction ratios of the line $P Q$ is given by ((a'-a),(b'-b),(c'-c))

The direction ratios of the line $A B$ can be given by
((4-1),(5-2),(7-3))
$=(3,3,4)$
Similarly, the direction ratios of the line CD can be given by
$((2+4),(9-3),(2+6))$
$=(6,6,8)$
To find - Angle between the two pair of lines $A B$ and $C D$
Tip - If (a, b, c) be the direction ratios of the first line and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be that of the second, then the angle between these pair of lines is given by $\cos ^{-1}\left(\frac{a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}}{\sqrt{a^{2}+b^{2}+c^{2}} \times \sqrt{a^{\prime^{\prime 2}}+{b^{\prime 2}}^{\prime 2}+c^{\prime 2}}}\right)$

The angle between the lines
$=\cos ^{-1}\left(\frac{3 \times 6+3 \times 6+4 \times 8}{\sqrt{3^{2}+3^{2}+4^{2}} \sqrt{6^{2}+6^{2}+8^{2}}}\right)$
$=\cos ^{-1}\left(\frac{18+18+32}{\sqrt{34} \times 2 \sqrt{34}}\right)$
$=\cos ^{-1}\left(\frac{68}{2 \times 34}\right)$
$=\cos ^{-1} 1$
$=0$

Exercise 27D

1. Question

Find the shortest distance between the given lines.
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}})+\lambda(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$,
$\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})+\mu(3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$.

Answer

Given equations :

$\overline{\mathrm{r}}=(\hat{\imath}+\hat{\jmath})+\lambda(2 \hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(2 \hat{\imath}+\hat{\jmath}-\hat{\mathrm{k}})+\mu(3 \hat{\imath}-5 \hat{\jmath}+2 \hat{\mathrm{k}})$
To Find: d

Formula :

1. Cross Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\mathrm{\imath}}+\mathrm{a}_{2} \hat{\mathrm{\jmath}}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{1}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two lines:

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and
$\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer :

For given lines,
$\overline{\mathrm{r}}=(\hat{\imath}+\hat{\jmath})+\lambda(2 \hat{\imath}-\hat{\jmath}+\hat{k})$
$\overline{\mathrm{r}}=(2 \hat{\imath}+\hat{\jmath}-\hat{\mathrm{k}})+\mu(3 \hat{\imath}-5 \hat{\jmath}+2 \hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=\hat{\imath}+\hat{\jmath}$
$\overline{\mathrm{b}_{1}}=2 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+\hat{\mathrm{k}}$
$\overline{\mathrm{a}_{2}}=2 \hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}-\hat{\mathrm{k}}$
$\overline{\mathrm{b}_{2}}=3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{\mathrm{k}} \\ 2 & -1 & 1 \\ 3 & -5 & 2\end{array}\right|$
$=\hat{\imath}(-2+5)-\hat{\jmath}(4-3)+\hat{\mathrm{k}}(-10+3)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=3 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}-7 \hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{3^{2}+(-1)^{2}+(-7)^{2}}$
$=\sqrt{9+1+49}$
$=\sqrt{59}$
$\overline{a_{2}}-\overline{a_{1}}=(2-1) \hat{\imath}+(1-1) \hat{\jmath}+(-1-0) \hat{k}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=\hat{\mathrm{\imath}}+0 \hat{\mathrm{j}}-\hat{\mathrm{k}}$
Now,

$$
\begin{aligned}
& \left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(3 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}-7 \hat{\mathrm{k}}) \cdot(\hat{\mathrm{\imath}}+0 \hat{\jmath}-\hat{\mathrm{k}}) \\
& =(3 \times 1)+((-1) \times 0)+((-7) \times(-1)) \\
& =3+0+7 \\
& =10
\end{aligned}
$$

Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{10}{\sqrt{59}}\right|$

2. Question

Find the shortest distance between the given lines.

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}=(-4 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}) \\
& \overrightarrow{\mathrm{r}}=(-3 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})
\end{aligned}
$$

Given equations :

$$
\begin{aligned}
& \overline{\mathrm{r}}=(-4 \hat{\imath}+4 \hat{\jmath}+\hat{\mathrm{k}})+\lambda(\hat{\imath}+\hat{\jmath}-\hat{\mathrm{k}}) \\
& \overline{\mathrm{r}}=(-3 \hat{\imath}-8 \hat{\jmath}-3 \hat{k})+\mu(2 \hat{\imath}+3 \hat{\jmath}+3 \hat{k})
\end{aligned}
$$

To Find : d

Formula :

1. Cross Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two lines :

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and
$\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer :

For given lines,
$\overline{\mathrm{r}}=(-4 \hat{\imath}+4 \hat{\jmath}+\hat{\mathrm{k}})+\lambda(\hat{\mathrm{\imath}}+\hat{\jmath}-\hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(-3 \hat{\imath}-8 \hat{\jmath}-3 \hat{\mathrm{k}})+\mu(2 \hat{\imath}+3 \hat{\jmath}+3 \hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=-4 \hat{\imath}+4 \hat{\jmath}+\hat{k}$
$\overline{\mathrm{b}_{1}}=\hat{\imath}+\hat{\jmath}-\hat{\mathrm{k}}$
$\overline{a_{2}}=-3 \hat{\imath}-8 \hat{\jmath}-3 \hat{k}$
$\overline{\mathrm{b}_{2}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{\mathrm{k}} \\ 1 & 1 & -1 \\ 2 & 3 & 3\end{array}\right|$
$=\hat{\mathrm{\imath}}(3+3)-\hat{\mathrm{\jmath}}(3+2)+\hat{\mathrm{k}}(3-2)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=6 \hat{\mathrm{\imath}}-5 \hat{\mathrm{\jmath}}+\hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{6^{2}+(-5)^{2}+1^{2}}$
$=\sqrt{36+25+1}$
$=\sqrt{62}$
$\overline{a_{2}}-\overline{a_{1}}=(-3+4) \hat{\imath}+(-8-4) \hat{\jmath}+(-3-1) \hat{k}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=\hat{\imath}-12 \hat{\jmath}-4 \hat{\mathrm{k}}$
Now,

$$
\begin{aligned}
& \left(\overline{b_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(6 \hat{1}-5 \hat{\jmath}+\hat{\mathrm{k}}) \cdot(\hat{\mathrm{\imath}}-12 \hat{\jmath}-4 \hat{\mathrm{k}}) \\
& =(6 \times 1)+((-5) \times(-12))+(1 \times(-4)) \\
& =6+60-4 \\
& =62
\end{aligned}
$$

Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{62}{\sqrt{62}}\right|$
$d=\sqrt{62}$ units

3. Question

Find the shortest distance between the given lines.

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}) \\
& \overrightarrow{\mathrm{r}}=(4 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}})
\end{aligned}
$$

Answer

Given equations :

$\bar{r}=(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})+\lambda(\hat{\imath}-3 \hat{\jmath}+2 \hat{k})$
$\bar{r}=(4 \hat{\imath}+5 \hat{\jmath}+6 \hat{k})+\mu(2 \hat{\imath}+3 \hat{\jmath}+\hat{k})$
To Find : d

Formula :

1. Cross Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\mathrm{\jmath}}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two lines :

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and $\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

For given lines,
$\bar{r}=(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})+\lambda(\hat{\imath}-3 \hat{\jmath}+2 \hat{k})$
$\bar{r}=(4 \hat{\imath}+5 \hat{\jmath}+6 \hat{k})+\mu(2 \hat{\imath}+3 \hat{\jmath}+\hat{k})$
Here,
$\overline{a_{1}}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$\overline{\mathrm{b}_{1}}=\hat{\imath}-3 \hat{\jmath}+2 \hat{\mathrm{k}}$
$\overline{\mathrm{a}_{2}}=4 \hat{\imath}+5 \hat{\jmath}+6 \hat{k}$
$\overline{\mathrm{b}_{2}}=2 \hat{\imath}+3 \hat{\mathrm{\jmath}}+\hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{\mathrm{k}} \\ 1 & -3 & 2 \\ 2 & 3 & 1\end{array}\right|$
$=\hat{\imath}(-3-6)-\hat{\mathrm{j}}(1-4)+\hat{\mathrm{k}}(3+6)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=-9 \hat{\mathrm{\imath}}+3 \hat{\mathrm{\jmath}}+9 \hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{(-9)^{2}+3^{2}+9^{2}}$
$=\sqrt{81+9+81}$
$=\sqrt{171}$
$\overline{a_{2}}-\overline{a_{1}}=(4-1) \hat{\imath}+(5-2) \hat{\jmath}+(6-3) \hat{k}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
Now,

$$
\begin{aligned}
& \left(\overline{b_{1}} \times \overline{b_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(-9 \hat{\mathrm{i}}+3 \hat{\jmath}+9 \hat{\mathrm{k}}) \cdot(3 \hat{\imath}+3 \hat{\jmath}+3 \hat{\mathrm{k}}) \\
& =((-9) \times 3)+(3 \times 3)+(9 \times 3) \\
& =-27+9+27 \\
& =9
\end{aligned}
$$

Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{9}{\sqrt{171}}\right|$
$\therefore \mathrm{d}=\frac{9}{\sqrt{19} \cdot \sqrt{9}}$
$\therefore \mathrm{d}=\frac{3}{\sqrt{19}}$
$\therefore \mathrm{d}=\frac{3 \sqrt{19}}{19}$

4. Question

Find the shortest distance between the given lines.
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$,
$\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})$.
Answer

Given equations :

$\overline{\mathrm{r}}=(\hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}})+\lambda(\hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(2 \hat{\imath}-\hat{\jmath}-\hat{\mathrm{k}})+\mu(2 \hat{\imath}+\hat{\jmath}+2 \hat{\mathrm{k}})$
To Find : d

Formula :

1. Cross Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two lines:

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and
$\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer :

For given lines,
$\overline{\mathrm{r}}=(\hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}})+\lambda(\hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(2 \hat{\imath}-\hat{\jmath}-\hat{\mathrm{k}})+\mu(2 \hat{\imath}+\hat{\jmath}+2 \hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=\hat{\imath}+2 \hat{\jmath}+\hat{k}$
$\overline{\mathrm{b}_{1}}=\hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}}$
$\overline{\mathrm{a}_{2}}=2 \hat{\mathrm{i}}-\hat{\jmath}-\hat{\mathrm{k}}$
$\overline{b_{2}}=2 \hat{\imath}+\hat{\jmath}+2 \hat{k}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{\mathrm{k}} \\ 1 & -1 & 1 \\ 2 & 1 & 2\end{array}\right|$
$=\hat{\mathrm{\imath}}(-2-1)-\hat{\mathrm{j}}(2-2)+\hat{\mathrm{k}}(1+2)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=-3 \hat{\mathrm{i}}+0 \hat{\mathrm{\jmath}}+3 \hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{(-3)^{2}+0^{2}+3^{2}}$
$=\sqrt{9+0+9}$
$=\sqrt{18}$
$=3 \sqrt{ } 2$
$\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=(2-1) \hat{\imath}+(-1-2) \hat{\jmath}+(-1-1) \hat{\mathrm{k}}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=\hat{\mathrm{i}}-3 \hat{\mathrm{\jmath}}-2 \hat{\mathrm{k}}$
Now,
$\left(\overline{b_{1}} \times \overline{b_{2}}\right) \cdot\left(\overline{a_{2}}-\overline{a_{1}}\right)=(-3 \hat{\imath}+0 \hat{\jmath}+3 \hat{k}) \cdot(\hat{\imath}-3 \hat{\jmath}-2 \hat{k})$
$=((-3) \times 1)+(0 \times(-3))+(3 \times(-2))$
$=-3+0-6$
$=-9$
Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{-9}{3 \sqrt{2}}\right|$
$\therefore \mathrm{d}=\frac{3}{\sqrt{2}}$
$\therefore \mathrm{d}=\frac{3 \sqrt{2}}{2}$

5. Question

Find the shortest distance between the given lines.
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$,
$\overrightarrow{\mathrm{r}}=(3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})+\mu(-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+8 \hat{\mathrm{k}})$.

Answer

Given equations :

$\bar{r}=(\hat{\imath}+2 \hat{\jmath}-4 \hat{k})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$
$\overline{\mathrm{r}}=(3 \hat{\imath}+3 \hat{\jmath}-5 \hat{\mathrm{k}})+\mu(-2 \hat{\imath}+3 \hat{\jmath}+8 \hat{\mathrm{k}})$
To Find : d

Formula :

1. Cross Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two lines:

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and $\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer :

For given lines,
$\overline{\mathrm{r}}=(\hat{\imath}+2 \hat{\jmath}-4 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{\mathrm{k}})$
$\bar{r}=(3 \hat{\imath}+3 \hat{\jmath}-5 \hat{k})+\mu(-2 \hat{\imath}+3 \hat{\jmath}+8 \hat{k})$
Here,
$\overline{a_{1}}=\hat{\imath}+2 \hat{\jmath}-4 \hat{k}$
$\overline{\mathrm{b}_{1}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$
$\overline{a_{2}}=3 \hat{\imath}+3 \hat{\jmath}-5 \hat{k}$
$\overline{\mathrm{b}_{2}}=-2 \hat{\imath}+3 \hat{\jmath}+8 \hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 2 & 3 & 6 \\ -2 & 3 & 8\end{array}\right|$
$=\hat{\imath}(24-18)-\hat{\jmath}(16+12)+\hat{\mathrm{k}}(6-6)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=6 \hat{\mathrm{\imath}}-28 \hat{\mathrm{j}}+0 \hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{6^{2}+(-28)^{2}+0^{2}}$
$=\sqrt{36+784+9}$
$=\sqrt{820}$
$\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=(3-1) \hat{\mathrm{i}}+(3-2) \hat{\jmath}+(-5+4) \hat{\mathrm{k}}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=2 \hat{\mathrm{\imath}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$
Now,
$\left(\overline{b_{1}} \times \overline{b_{2}}\right) \cdot\left(\overline{a_{2}}-\overline{a_{1}}\right)=(6 \hat{\imath}-28 \hat{\jmath}+0 \hat{k}) \cdot(2 \hat{\imath}+\hat{\jmath}-\hat{k})$
$=(6 \times 2)+((-28) \times 1)+(0 \times(-1))$
$=12-28+0$
$=-16$
Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{-16}{\sqrt{820}}\right|$
$d=\frac{16}{\sqrt{820}}$ units

6. Question

Find the shortest distance between the given lines.
$\overrightarrow{\mathrm{r}}=(6 \hat{\mathrm{i}}+3 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}})$,
$\overrightarrow{\mathrm{r}}=(-9 \hat{\mathrm{i}}+\hat{\mathrm{j}}-10 \hat{\mathrm{k}})+\mu(4 \hat{\mathrm{i}}+\hat{\mathrm{j}}+6 \hat{\mathrm{k}})$.

Answer

Given equations :

$\overline{\mathrm{r}}=(6 \hat{\mathrm{\imath}}+3 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+4 \hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(-9 \hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}-10 \hat{\mathrm{k}})+\mu(4 \hat{\imath}+\hat{\jmath}+6 \hat{\mathrm{k}})$
To Find : d

Formula :

1. Cross Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two lines :

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and $\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer :

For given lines,
$\overline{\mathrm{r}}=(6 \hat{\mathrm{\imath}}+3 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}-\hat{\jmath}+4 \hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(-9 \hat{\imath}+\hat{\jmath}-10 \hat{\mathrm{k}})+\mu(4 \hat{\imath}+\hat{\jmath}+6 \hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=6 \hat{\imath}+3 \hat{k}$
$\overline{\mathrm{b}_{1}}=2 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}+4 \hat{\mathrm{k}}$
$\overline{a_{2}}=-9 \hat{\imath}+\hat{\jmath}-10 \hat{k}$
$\overline{\mathrm{b}_{2}}=4 \hat{\mathrm{i}}+\hat{\mathrm{j}}+6 \hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\ 2 & -1 & 4 \\ 4 & 1 & 6\end{array}\right|$
$=\hat{\mathrm{i}}(-6-4)-\hat{\mathrm{j}}(12-16)+\hat{\mathrm{k}}(2+4)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=-10 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{(-10)^{2}+4^{2}+6^{2}}$
$=\sqrt{100+16+36}$
$=\sqrt{152}$
$\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=(-9-6) \hat{\imath}+(1-0) \hat{\jmath}+(6-3) \hat{\mathrm{k}}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=-15 \hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}+3 \hat{\mathrm{k}}$
Now,
$\left(\overline{b_{1}} \times \overline{b_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(-10 \hat{\imath}+4 \hat{\jmath}+6 \hat{k}) \cdot(-15 \hat{\imath}+\hat{\jmath}+3 \hat{k})$
$=((-10) \times(-15))+(4 \times 1)+(6 \times 3)$
$=150+4+18$
$=172$
Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{172}{\sqrt{152}}\right|$
$\therefore \mathrm{d}=\frac{172}{2 \sqrt{38}}$
$\therefore \mathrm{d}=\frac{86}{\sqrt{38}}$
$d=\frac{86}{\sqrt{38}}$ units

7. Question

Find the shortest distance between the given lines.
$\overrightarrow{\mathrm{r}}=(3-\mathrm{t}) \hat{\mathrm{i}}+(4+2 \mathrm{t}) \hat{\mathrm{j}}+(\mathrm{t}-2) \hat{\mathrm{k}}$,

$$
\overrightarrow{\mathrm{r}}=(1+\mathrm{s}) \hat{\mathrm{i}}+(3 \mathrm{~s}-7) \hat{\mathrm{j}}+(2 \mathrm{~s}-2) \hat{\mathrm{k}}
$$

Answer

Given equations :

$\overline{\mathrm{r}}=(3-\mathrm{t}) \hat{\mathrm{\imath}}+(4+2 \mathrm{t}) \hat{\mathrm{\jmath}}+(\mathrm{t}-2) \hat{\mathrm{k}}$
$\overline{\mathrm{r}}=(1+\mathrm{s}) \hat{\mathrm{i}}+(3 \mathrm{~s}-7) \hat{\mathrm{j}}+(2 \mathrm{~s}-2) \hat{\mathrm{k}}$
To Find: d

Formula :

1. Cross Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two lines :

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and $\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer :

Given lines,
$\overline{\mathrm{r}}=(3-\mathrm{t}) \hat{\mathrm{\imath}}+(4+2 \mathrm{t}) \hat{\mathrm{\jmath}}+(\mathrm{t}-2) \hat{\mathrm{k}}$
$\overline{\mathrm{r}}=(1+\mathrm{s}) \hat{\imath}+(3 \mathrm{~s}-7) \hat{\mathrm{\jmath}}+(2 \mathrm{~s}-2) \hat{\mathrm{k}}$
Above equations can be written as
$\overline{\mathrm{r}}=(3 \hat{\imath}+4 \hat{\jmath}-2 \hat{\mathrm{k}})+\mathrm{t}(-\hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(\hat{\imath}-7 \hat{\jmath}-2 \hat{\mathrm{k}})+\mathrm{s}(\hat{\imath}+3 \hat{\jmath}+2 \hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=3 \hat{\imath}+4 \hat{\jmath}-2 \hat{k}$
$\overline{\mathrm{b}_{1}}=-\hat{\mathrm{\imath}}+2 \hat{\jmath}+\hat{\mathrm{k}}$
$\overline{a_{2}}=\hat{\imath}-7 \hat{\jmath}-2 \hat{k}$
$\overline{b_{2}}=\hat{\imath}+3 \hat{\jmath}+2 \hat{k}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{\mathrm{\imath}} & \hat{\jmath} & \hat{\mathrm{k}} \\ -1 & 2 & 1 \\ 1 & 3 & 2\end{array}\right|$
$=\hat{\imath}(4-3)-\hat{\jmath}(-2-1)+\hat{\mathrm{k}}(-3-2)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\hat{\mathrm{\imath}}+3 \hat{\mathrm{\jmath}}-5 \hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{1^{2}+3^{2}+(-5)^{2}}$
$=\sqrt{1+9+25}$
$=\sqrt{35}$
$\overline{a_{2}}-\overline{a_{1}}=(1-3) \hat{\imath}+(-7-4) \hat{\jmath}+(-2+2) \hat{k}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=-2 \hat{\mathrm{i}}-11 \hat{\mathrm{j}}+0 \hat{\mathrm{k}}$
Now,

$$
\begin{aligned}
& \left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(\hat{\imath}+3 \hat{\jmath}-5 \hat{\mathrm{k}}) \cdot(-2 \hat{\imath}-11 \hat{\jmath}+0 \hat{\mathrm{k}}) \\
& =(1 \times(-2))+(3 \times(-11))+((-5) \times 0) \\
& =-2-33+0 \\
& =-35
\end{aligned}
$$

Therefore, the shortest distance between the given lines is
$d=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{-35}{\sqrt{35}}\right|$
$\therefore \mathrm{d}=\sqrt{35}$
$d=\sqrt{35}$ units

8. Question

Find the shortest distance between the given lines.
$\overrightarrow{\mathrm{r}}=(\lambda-1) \hat{\mathrm{i}}+(\lambda+1) \hat{\mathrm{j}}-(\lambda+1) \hat{\mathrm{k}}$,
$\overrightarrow{\mathrm{r}}=(1-\mu) \hat{\mathrm{i}}+(2 \mu-1) \hat{\mathrm{j}}+(\mu+2) \hat{\mathrm{k}}$.

Answer

Given equations :

$\overline{\mathrm{r}}=(\lambda-1) \hat{\imath}+(\lambda+1) \hat{\mathrm{\jmath}}-(\lambda+1) \hat{\mathrm{k}}$
$\overline{\mathrm{r}}=(1-\mu) \hat{\imath}+(2 \mu-1) \hat{\jmath}+(\mu+2) \hat{\mathrm{k}}$
To Find : d

Formula :

1. Cross Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two lines :

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and
$\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$d=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer :

Given lines,
$\overline{\mathrm{r}}=(\lambda-1) \hat{\imath}+(\lambda+1) \hat{\jmath}-(\lambda+1) \hat{\mathrm{k}}$
$\overline{\mathrm{r}}=(1-\mu) \hat{\imath}+(2 \mu-1) \hat{\jmath}+(\mu+2) \hat{\mathrm{k}}$
Above equations can be written as
$\overline{\mathrm{r}}=(-\hat{\mathrm{\imath}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(\hat{\imath}-\hat{\jmath}+2 \hat{\mathrm{k}})+\mathrm{s}(-\hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=-\hat{\imath}+\hat{\jmath}-\hat{k}$
$\overline{\mathrm{b}_{1}}=\hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}-\hat{\mathrm{k}}$
$\overline{a_{2}}=\hat{\imath}-\hat{\jmath}+2 \hat{k}$
$\overline{\mathrm{b}_{2}}=-\hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{\mathrm{\imath}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 1 & -1 \\ -1 & 2 & 1\end{array}\right|$
$=\hat{\imath}(1+2)-\hat{\jmath}(1-1)+\hat{k}(2+1)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=3 \hat{\mathrm{\imath}}-0 \hat{\mathrm{\jmath}}+3 \hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{3^{2}+0^{2}+3^{2}}$
$=\sqrt{9+0+9}$
$=\sqrt{18}$
$=3 \sqrt{2}$
$\overline{a_{2}}-\overline{a_{1}}=(1+1) \hat{\imath}+(-1-1) \hat{\jmath}+(2+1) \hat{k}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
Now,

$$
\begin{aligned}
& \left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(3 \hat{\mathrm{i}}-0 \hat{\jmath}+3 \hat{\mathrm{k}}) \cdot(2 \hat{\imath}-2 \hat{\jmath}+3 \hat{\mathrm{k}}) \\
& =(3 \times 2)+(0 \times(-2))+(3 \times 3) \\
& =6+0+9 \\
& =15
\end{aligned}
$$

Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{15}{3 \sqrt{2}}\right|$
$\therefore \mathrm{d}=\frac{5}{\sqrt{2}}$
$\therefore \mathrm{d}=\frac{5 \sqrt{2}}{2}$
$d=\frac{5 \sqrt{2}}{2}$ units

9. Question

Compute the shortest distance between the lines $\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}})+\lambda(2 \hat{\mathrm{i}}-\hat{\mathrm{k}})$ and $\vec{r}=(2 \hat{i}-\hat{j})+\mu(\hat{i}-\hat{j}-\hat{k})$. Determine whether these lines intersect or not.

Answer

Given equations :

$\overline{\mathrm{r}}=(\hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}})+\lambda(2 \hat{\mathrm{\imath}}-\hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(2 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}})+\mu(\hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}-\hat{\mathrm{k}})$
To Find: d

Formula :

1. Cross Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\mathrm{\imath}}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{1}+\mathrm{a}_{2} \hat{\mathrm{\jmath}}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two lines:

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and
$\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}\right.}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer :

For given lines,
$\overline{\mathrm{r}}=(\hat{\mathrm{\imath}}-\hat{\jmath})+\lambda(2 \hat{\mathrm{i}}-\hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(2 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}})+\mu(\hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}-\hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=\hat{\imath}-\hat{\jmath}$
$\overline{\mathrm{b}_{1}}=2 \hat{\mathrm{i}}-\hat{\mathrm{k}}$
$\overline{\mathrm{a}_{2}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}$
$\overline{\mathrm{b}_{2}}=\hat{\mathrm{\imath}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{\mathrm{k}} \\ 2 & 0 & -1 \\ 1 & -1 & -1\end{array}\right|$
$=\hat{\imath}(0-1)-\hat{\jmath}(-2+1)+\hat{\mathrm{k}}(-2-0)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=-\hat{\mathrm{i}}+\hat{\mathrm{\jmath}}-2 \hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{(-1)^{2}+1^{2}+(-2)^{2}}$
$=\sqrt{1+1+4}$
$=\sqrt{6}$
$\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=(2-1) \hat{\mathrm{i}}+(-1+1) \hat{\jmath}+(0-0) \hat{\mathrm{k}}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=\hat{\mathrm{i}}+0 \hat{\mathrm{j}}+0 \hat{\mathrm{k}}$
Now,

$$
\begin{aligned}
& \left(\overline{b_{1}} \times \overline{b_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(-\hat{\mathrm{l}}+\hat{\jmath}-2 \hat{\mathrm{k}}) \cdot(\hat{\mathrm{\imath}}+0 \hat{\jmath}+0 \hat{\mathrm{k}}) \\
& =((-1) \times 1)+(1 \times 0)+((-2) \times 0) \\
& =-1+0+0 \\
& =-1
\end{aligned}
$$

Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{-1}{\sqrt{6}}\right|$
$\therefore \mathrm{d}=\frac{1}{\sqrt{6}}$
$\therefore \mathrm{d}=\frac{\sqrt{6}}{6}$
$d=\frac{\sqrt{6}}{6}$ units
As $d \neq 0$
Hence, the given lines do not intersect.

10. Question

Show that the $\vec{r}=(3 \hat{i}-15 \hat{j}+9 \hat{k})+\lambda(2 \hat{i}-7 \hat{j}+5 \hat{k})$, and $\vec{r}=(-\hat{i}+\hat{j}+9 \hat{k})+\mu$ $(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}})$ do not intersect.

Answer
Given equations :
$\overline{\mathrm{r}}=(3 \hat{\imath}-15 \hat{\jmath}+9 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}-7 \hat{\jmath}+5 \hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(-\hat{\imath}+\hat{\jmath}+9 \hat{\mathrm{k}})+\mu(2 \hat{\imath}+\hat{\jmath}-3 \hat{k})$
To Find: d

Formula :

1. Cross Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two lines:

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and
$\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer :

For given lines,
$\overline{\mathrm{r}}=(3 \hat{\imath}-15 \hat{\jmath}+9 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}-7 \hat{\jmath}+5 \hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(-\hat{\imath}+\hat{\jmath}+9 \hat{\mathrm{k}})+\mu(2 \hat{\imath}+\hat{\jmath}-3 \hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=3 \hat{\imath}-15 \hat{\jmath}+9 \hat{k}$
$\overline{\mathrm{b}_{1}}=2 \hat{\imath}-7 \hat{\jmath}+5 \hat{k}$
$\overline{\mathrm{a}_{2}}=-\hat{\imath}+\hat{\jmath}+9 \hat{k}$
$\overline{\mathrm{b}_{2}}=2 \hat{\imath}+\hat{\jmath}-3 \hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{\mathrm{k}} \\ 2 & -7 & 5 \\ 2 & 1 & -3\end{array}\right|$
$=\hat{\mathrm{i}}(21-5)-\hat{\mathrm{j}}(-6-10)+\hat{\mathrm{k}}(2+14)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=17 \hat{\mathrm{i}}+16 \hat{\mathrm{j}}+16 \hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{17^{2}+16^{2}+17^{2}}$
$=\sqrt{289+256+289}$
$=\sqrt{834}$
$\overline{a_{2}}-\overline{a_{1}}=(-1-3) \hat{\imath}+(1+15) \hat{\jmath}+(9-9) \hat{k}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=-4 \hat{\mathrm{\imath}}+16 \hat{\mathrm{j}}+0 \hat{\mathrm{k}}$
Now,

$$
\begin{aligned}
& \left(\overline{b_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(17 \hat{\imath}+16 \hat{\jmath}+16 \hat{\mathrm{k}}) \cdot(-4 \hat{\imath}+16 \hat{\jmath}+0 \hat{\mathrm{k}}) \\
& =(17 \times(-4))+(16 \times 16)+(16 \times 0) \\
& =-68+256+0 \\
& =188
\end{aligned}
$$

Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{188}{\sqrt{834}}\right|$
$\therefore \mathrm{d}=\frac{188}{\sqrt{834}}$ units
As $d \neq 0$
Hence, the given lines do not intersect.

11. Question

Show that the lines $\vec{r}=(2 \hat{i}-3 \hat{k})+\lambda(\hat{i}+2 j+3 \hat{k})$ and $\vec{r}=(2 \hat{i}+6 \hat{j}+3 \hat{k})+\mu$ $(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})$ intersect.

Also, find their point of intersection.

Answer

Given equations :

$\bar{r}=(2 \hat{\imath}-3 \hat{k})+\lambda(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})$
$\bar{r}=(2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k})+\mu(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k})$
To Find: d

Formula :

1. Cross Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{1}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two lines:

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and
$\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer :

For given lines,
$\overline{\mathrm{r}}=(2 \hat{\imath}-3 \hat{\mathrm{k}})+\lambda(\hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(2 \hat{\imath}+6 \hat{\jmath}+3 \hat{\mathrm{k}})+\mu(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=2 \hat{\imath}-3 \hat{k}$
$\overline{\mathrm{b}_{1}}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$\overline{a_{2}}=2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$
$\overline{\mathrm{b}_{2}}=2 \hat{\mathrm{\imath}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{1} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right|$
$=\hat{\imath}(12-9)-\hat{\jmath}(4-6)+\hat{\mathrm{k}}(3-4)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=3 \hat{\mathrm{\imath}}+2 \hat{\mathrm{\jmath}}-\hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{3^{2}+2^{2}+(-1)^{2}}$
$=\sqrt{9+4+1}$
$=\sqrt{14}$
$\overline{a_{2}}-\overline{a_{1}}=(2-2) \hat{\imath}+(6-0) \hat{\jmath}+(3+3) \hat{k}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=0 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$
Now,

$$
\begin{aligned}
& \left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(3 \hat{\imath}+2 \hat{\jmath}-\hat{\mathrm{k}}) \cdot(0 \hat{\imath}+6 \hat{\jmath}+6 \hat{\mathrm{k}}) \\
& =(3 \times 0)+(2 \times 6)+((-1) \times 6) \\
& =0+12-6 \\
& =6
\end{aligned}
$$

Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{6}{\sqrt{14}}\right|$
$\therefore \mathrm{d}=\frac{6}{\sqrt{14}}$ units
As $d \neq 0$
Hence, the given lines do not intersect.

12. Question

Show that the lines $\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=(4 \hat{\mathrm{i}}+\hat{\mathrm{j}})+\mu(5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$ intersect.

Also, find their point of intersection.

Answer

Given equations :

$\bar{r}=(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k})$
$\overline{\mathrm{r}}=(4 \hat{\imath}+\hat{\jmath})+\mu(5 \hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}})$
To Find: d

Formula :

1. Cross Product :

If $\overline{\mathrm{a}}$ \& $\overline{\mathrm{b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{i} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\mathrm{\jmath}}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two lines :

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and
$\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$d=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer:

For given lines,
$\overline{\mathrm{r}}=(\hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(4 \hat{\imath}+\hat{\jmath})+\mu(5 \hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$\overline{\mathrm{b}_{1}}=2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}}$
$\overline{a_{2}}=4 \hat{\imath}+\hat{\jmath}$
$\overline{\mathrm{b}_{2}}=5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{\mathrm{l}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & 3 & 4 \\ 5 & 2 & 1\end{array}\right|$
$=\hat{\imath}(3-8)-\hat{\jmath}(2-20)+\hat{\mathrm{k}}(4-15)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=-5 \hat{\mathrm{i}}+18 \hat{\mathrm{j}}-11 \hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{(-5)^{2}+18^{2}+(-11)^{2}}$
$=\sqrt{25+324+121}$
$=\sqrt{470}$
$\overline{a_{2}}-\overline{a_{1}}=(4-1) \hat{\imath}+(1-2) \hat{\jmath}+(0-3) \hat{k}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
Now,
$\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(-5 \hat{\imath}+18 \hat{\jmath}-11 \hat{\mathrm{k}}) \cdot(3 \hat{\mathrm{\imath}}-\hat{\jmath}-3 \hat{\mathrm{k}})$
$=((-5) \times 3)+(18 \times(-1))+((-11) \times(-3))$
$=-15-18+33$
$=0$
Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{0}{\sqrt{470}}\right|$
$\therefore \mathrm{d}=0$ units
As d $=0$
Hence, the given lines not intersect each other.
Now, to find point of intersection, let us convert given vector equations into Cartesian equations.
For that substituting $\overline{\mathrm{r}}=\mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\mathrm{f}}+\mathrm{zk}$ in given equations,
$\therefore \mathrm{L} 1: x \hat{\imath}+y \hat{\jmath}+z \hat{k}=(\hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}})$
$\therefore \mathrm{L} 2: \mathrm{x} \hat{\mathrm{\imath}}+\mathrm{y} \hat{\mathrm{\jmath}}+\mathrm{z} \hat{\mathrm{k}}=(4 \hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}})+\mu(5 \hat{\mathrm{\imath}}+2 \hat{\mathrm{\jmath}}+\mathrm{k})$
$\therefore \mathrm{L} 1:(\mathrm{x}-1) \hat{\mathrm{\imath}}+(\mathrm{y}-2) \hat{\mathrm{\jmath}}+(\mathrm{z}-3) \hat{\mathrm{k}}=2 \lambda \hat{\mathrm{\imath}}+3 \lambda \hat{\mathrm{\jmath}}+4 \lambda \hat{\mathrm{k}}$
$\therefore \mathrm{L} 2:(\mathrm{x}-4) \hat{\mathrm{\imath}}+(\mathrm{y}-1) \hat{\mathrm{\jmath}}+(\mathrm{z}-0) \hat{\mathrm{k}}=5 \mu \hat{\mathrm{i}}+2 \mu \hat{\jmath}+\mu \hat{\mathrm{k}}$
\therefore L1 $: \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}-2}{3}=\frac{\mathrm{z}-3}{4}=\lambda$
\therefore L2 $: \frac{x-4}{5}=\frac{y-1}{2}=\frac{z-0}{1}=\mu$
General point on L1 is
$\mathrm{x}_{1}=2 \lambda+1, \mathrm{y}_{1}=3 \lambda+2, \mathrm{z}_{1}=4 \lambda+3$
let, $P\left(x_{1}, y_{1}, z_{1}\right)$ be point of intersection of two given lines.
Therefore, point P satisfies equation of line L2.
$\therefore \frac{2 \lambda+1-4}{5}=\frac{3 \lambda+2-1}{2}=\frac{4 \lambda+3-0}{1}$
$\therefore \frac{2 \lambda-3}{5}=\frac{3 \lambda+1}{2}$
$\Rightarrow 4 \lambda-6=15 \lambda+5$
$\Rightarrow 11 \lambda=-11$
$\Rightarrow \lambda=-1$

Therefore, $x_{1}=2(-1)+1, y_{1}=3(-1)+2, z_{1}=4(-1)+3$
$\Rightarrow \mathrm{x}_{1}=-1, \mathrm{y}_{1}=-1, \mathrm{z}_{1}=-1$
Hence point of intersection of given lines is ($-1,-1,-1$).

13. Question

Find the shortest distance between the lines L_{1} and L_{2} whose vector equations are
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=(3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$.
HINT: The given lines are parallel.

Answer

Given equations :

$\overline{\mathrm{r}}=(\hat{\imath}+2 \hat{\jmath}-4 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(3 \hat{\imath}+3 \hat{\jmath}-5 \hat{k})+\mu(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$

To Find : d

Formula :

1. Cross Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two parallel lines:

The shortest distance between the parallel lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}}$ and
$\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}}$ is given by,
$d=\left|\frac{\left.\mid \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right) \times \overline{\mathrm{b}} \mid}{|\overline{\mathrm{b}}|}\right|$

Answer :

For given lines,
$\bar{r}=(\hat{\imath}+2 \hat{\jmath}-4 \hat{k})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$
$\bar{r}=(3 \hat{\imath}+3 \hat{\jmath}-5 \hat{k})+\mu(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$
Here,
$\overline{a_{1}}=\hat{\imath}+2 \hat{\jmath}-4 \hat{k}$
$\overline{\mathrm{b}_{1}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$
$\overline{a_{2}}=3 \hat{\imath}+3 \hat{\jmath}-5 \hat{k}$
$\overline{\mathrm{b}_{2}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$
As $\overline{b_{1}}=\overline{b_{2}}=\bar{b}$ (say), given lines are parallel to each other.
Therefore,
$\overline{\mathrm{b}}=2 \hat{\mathrm{\imath}}+3 \hat{\mathrm{\jmath}}+6 \hat{\mathrm{k}}$
$\therefore|\overline{\mathrm{b}}|=\sqrt{2^{2}+3^{2}+6^{2}}$
$=\sqrt{4+9+36}$
$=\sqrt{49}$
$=7$
$\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=(3-1) \hat{\mathrm{\imath}}+(3-2) \hat{\jmath}+(-5+4) \hat{\mathrm{k}}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$
$\left(\overline{a_{2}}-\overline{a_{1}}\right) \times \bar{b}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 2 & 1 & -1 \\ 2 & 3 & 6\end{array}\right|$
$=\hat{\mathrm{\imath}}(6+3)-\hat{\mathrm{j}}(12+2)+\hat{\mathrm{k}}(6-2)$
$\therefore\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right) \times \overline{\mathrm{b}}=9 \hat{\mathrm{\imath}}-14 \hat{\mathrm{\jmath}}+4 \hat{\mathrm{k}}$
$\therefore\left|\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right) \times \overline{\mathrm{b}}\right|=\sqrt{9^{2}+(-14)^{2}+4^{2}}$
$=\sqrt{81+196+16}$
$=\sqrt{293}$
Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left|\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right) \times \overline{\mathrm{b}}\right|}{|\overline{\mathrm{b}}|}\right|$
$\therefore \mathrm{d}=\left|\frac{\sqrt{293}}{7}\right|$
$d=\frac{\sqrt{293}}{7}$ units

14. Question

Find the distance between the parallel lines L_{1} and L_{2} whose vector equations are
$\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$, and $\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$.

Answer

Given equations :

$\bar{r}=(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})+\lambda(\hat{\imath}-\hat{\jmath}+\hat{k})$
$\overline{\mathrm{r}}=(2 \hat{\imath}-\hat{\jmath}-\hat{\mathrm{k}})+\mu(\hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}})$
To Find : d

Formula :

1. Cross Product:

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

2. Dot Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\mathrm{\imath}}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

3. Shortest distance between two parallel lines:

The shortest distance between the parallel lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}}$ and $\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}}$ is given by,
$\mathrm{d}=\left|\frac{\left|\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right) \times \overline{\mathrm{b}}\right|}{|\overline{\mathrm{b}}|}\right|$

Answer :

For given lines,
$\overline{\mathrm{r}}=(\hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}})+\lambda(\hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(2 \hat{\imath}-\hat{\jmath}-\hat{\mathrm{k}})+\mu(\hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$\overline{\mathrm{a}_{2}}=2 \hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}-\hat{\mathrm{k}}$
$\bar{b}=\hat{\imath}-\hat{\jmath}+\hat{k}$
$\therefore|\overline{\mathrm{b}}|=\sqrt{1^{2}+(-1)^{2}+1^{2}}$
$=\sqrt{1+1+1}$
$=\sqrt{3}$
$\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=(2-1) \hat{\imath}+(-1-2) \hat{\jmath}+(-1-3) \hat{\mathrm{k}}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=\hat{\mathrm{\imath}}-3 \hat{\mathrm{\jmath}}-4 \hat{\mathrm{k}}$
$\left(\overline{a_{2}}-\overline{a_{1}}\right) \times \bar{b}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 1 & -3 & -4 \\ 1 & -1 & 1\end{array}\right|$
$=\hat{\imath}(-3-4)-\hat{\jmath}(1+4)+\hat{\mathrm{k}}(-1+3)$
$\therefore\left(\overline{a_{2}}-\overline{a_{1}}\right) \times \overline{\mathrm{b}}=-7 \hat{\imath}-5 \hat{\jmath}+2 \hat{k}$
$\therefore\left|\left(\overline{a_{2}}-\overline{a_{1}}\right) \times \overline{\mathrm{b}}\right|=\sqrt{(-7)^{2}+(-5)^{2}+2^{2}}$
$=\sqrt{49+25+4}$
$=\sqrt{78}$

Therefore, the shortest distance between the given lines is
$d=\left|\frac{\left|\left(\overline{a_{2}}-\overline{a_{1}}\right) \times \bar{b}\right|}{|\bar{b}|}\right|$
$\therefore d=\left|\frac{\sqrt{78}}{\sqrt{3}}\right|$
$\therefore \mathrm{d}=\sqrt{26}$
$d=\sqrt{26}$ units

15. Question

Find the vector equation of a line passing through the point $(2,3,2)$ and parallel to the line $\vec{r}=(-2 \hat{i}+3 \hat{j})+\lambda(2 \hat{i}-3 \hat{j}+6 \hat{k})$. Also, find the distance between these lines.

HINT: The given line is
$L_{1}: \vec{r}=(-2 \hat{i}+3 \hat{j})+\lambda(2 \hat{i}-3 \hat{j}+6 \hat{k})$.
The required line is
$L_{2}: \overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$.
Now, find the distance between the parallel lines L_{1} and L_{2}.

Answer

Given : point $A \equiv(2,3,2)$
Equation of line $: \bar{r}=(-2 \hat{\imath}+3 \hat{\jmath})+\lambda(2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k})$
To Find : i) equation of line
ii) distance d

Formulae :

1. Equation of line :

Equation of line passing through point $A\left(a_{1}, a_{2}, a_{3}\right)$ and parallel to vector $\bar{b}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ is given by
$\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$
Where, $\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\mathrm{\imath}}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$

2. Cross Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

3. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\bar{b}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

4. Shortest distance between two parallel lines:

The shortest distance between the parallel lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}}$ and $\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}}$ is given by,
$\mathrm{d}=\left|\frac{\left|\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right) \times \overline{\mathrm{b}}\right|}{|\overline{\mathrm{b}}|}\right|$

Answer :

As the required line is parallel to the line
$\overline{\mathrm{r}}=(-2 \hat{\imath}+3 \hat{\jmath})+\lambda(2 \hat{\imath}-3 \hat{\jmath}+6 \hat{\mathrm{k}})$
Therefore, the vector parallel to the required line is
$\overline{\mathrm{b}}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$
Given point $\mathrm{A} \equiv(2,3,2)$
$\therefore \overline{\mathrm{a}}=2 \hat{\mathrm{\imath}}+3 \hat{\mathrm{\jmath}}+2 \hat{\mathrm{k}}$
Therefore, equation of line passing through A and parallel to $\overline{\mathrm{b}}$ is
$\overline{\mathrm{r}}=\overline{\mathrm{a}}+\mu \overline{\mathrm{b}}$
$\therefore \overline{\mathrm{r}}=(2 \hat{\imath}+3 \hat{\jmath}+2 \hat{\mathrm{k}})+\mu(2 \hat{\imath}-3 \hat{\jmath}+6 \hat{\mathrm{k}})$
Now, to calculate distance between above line and given line,
$\bar{r}=(2 \hat{\imath}+3 \hat{\jmath}+2 \hat{k})+\mu(2 \hat{\imath}-3 \hat{\jmath}+6 \hat{k})$
$\overline{\mathrm{r}}=(-2 \hat{\imath}+3 \hat{\jmath})+\lambda(2 \hat{\imath}-3 \hat{\jmath}+6 \hat{\mathrm{k}})$
Here,

$$
\begin{aligned}
& \overline{a_{1}}=2 \hat{\imath}+3 \hat{\jmath}+2 \hat{k} \\
& \overline{a_{2}}=-2 \hat{\imath}+3 \hat{\jmath} \\
& \overline{\mathrm{~b}}=2 \hat{\imath}-3 \hat{\jmath}+6 \hat{\mathrm{k}} \\
& \therefore|\overline{\mathrm{~b}}|=\sqrt{2^{2}+(-3)^{2}+6^{2}} \\
& =\sqrt{4+9+36} \\
& =\sqrt{49} \\
& =7
\end{aligned}
$$

$$
\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=(-2-2) \hat{\imath}+(3-3) \hat{\jmath}+(0-2) \hat{\mathrm{k}}
$$

$$
\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=-4 \hat{\mathrm{l}}+0 \hat{\mathrm{\jmath}}-2 \hat{\mathrm{k}}
$$

$$
\left(\overline{a_{2}}-\overline{a_{1}}\right) \times \bar{b}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-4 & 0 & -2 \\
2 & -3 & 6
\end{array}\right|
$$

$$
=\hat{\mathrm{i}}(0-6)-\hat{\jmath}(-24+4)+\hat{\mathrm{k}}(12-0)
$$

$$
\therefore\left(\overline{a_{2}}-\overline{a_{1}}\right) \times \bar{b}=-6 \hat{\imath}+20 \hat{\jmath}+12 \hat{k}
$$

$$
\therefore\left|\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right) \times \overline{\mathrm{b}}\right|=\sqrt{(-6)^{2}+20^{2}+12^{2}}
$$

$$
=\sqrt{36+400+144}
$$

$$
=\sqrt{580}
$$

Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left|\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right) \times \overline{\mathrm{b}}\right|}{|\overline{\mathrm{b}}|}\right|$
$\therefore \mathrm{d}=\left|\frac{\sqrt{580}}{7}\right|$
$\therefore \mathrm{d}=\frac{\sqrt{580}}{7}$
$d=\frac{\sqrt{580}}{7}$ units

16. Question

Write the vector equation of each of the following lines and hence determine the distance between them :

$$
\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6} \text { and } \frac{x-3}{4}=\frac{y-3}{6}=\frac{z+5}{12} .
$$

HINT: The given lines are

$$
\begin{aligned}
& \mathrm{L}_{1}: \overrightarrow{\mathrm{r}}=(-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}})+\lambda(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}) \\
& \mathrm{L}_{2}: \overrightarrow{\mathrm{r}}=(3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})+2 \mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})
\end{aligned}
$$

Now, find the distance between the parallel lines L_{1} and L_{2}.

Answer

Given : Cartesian equations of lines
L1 : $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}$
L2: $\frac{x-3}{4}=\frac{y-3}{6}=\frac{z+5}{12}$
To Find : i) vector equations of given lines
ii) distance d

Formulae:

1. Equation of line:

Equation of line passing through point $A\left(a_{1}, a_{2}, a_{3}\right)$ and having direction ratios $\left(b_{1}, b_{2}, b_{3}\right)$ is $\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$

Where, $\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
And $\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$

2. Cross Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\mathrm{\jmath}}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

3. Dot Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

4. Shortest distance between two parallel lines :

The shortest distance between the parallel lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}}$ and
$\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}}$ is given by,
$\mathrm{d}=\left|\frac{\left|\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right) \times \overline{\mathrm{b}}\right|}{|\overline{\mathrm{b}}|}\right|$

Answer :

Given Cartesian equations of lines
L1: $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}$
Line L1 is passing through point $(1,2,-4)$ and has direction ratios $(2,3,6)$
Therefore, vector equation of line L1 is
$\overline{\mathrm{r}}=(\hat{\imath}+2 \hat{\jmath}-4 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{\mathrm{k}})$
And
L2: $\frac{x-3}{4}=\frac{y-3}{6}=\frac{z+5}{12}$
Line $L 2$ is passing through point $(3,3,-5)$ and has direction ratios $(4,6,12)$
Therefore, vector equation of line L2 is
$\overline{\mathrm{r}}=(3 \hat{\imath}+3 \hat{\jmath}-5 \hat{\mathrm{k}})+\mu(4 \hat{\imath}+6 \hat{\jmath}+12 \hat{k})$
$\therefore \overline{\mathrm{r}}=(3 \hat{\mathrm{\imath}}+3 \hat{\mathrm{\jmath}}-5 \hat{\mathrm{k}})+2 \mu(2 \hat{\mathrm{\imath}}+3 \hat{\mathrm{\jmath}}+6 \hat{\mathrm{k}})$
Now, to calculate distance between the lines,
$\overline{\mathrm{r}}=(\hat{\imath}+2 \hat{\jmath}-4 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(3 \hat{\mathrm{\imath}}+3 \hat{\mathrm{\jmath}}-5 \hat{\mathrm{k}})+2 \mu(2 \hat{\mathrm{\imath}}+3 \hat{\jmath}+6 \hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=\hat{\imath}+2 \hat{\jmath}-4 \hat{k}$
$\overline{\mathrm{b}_{1}}=2 \hat{\mathrm{\imath}}+3 \hat{\mathrm{\jmath}}+6 \hat{\mathrm{k}}$
$\overline{a_{2}}=3 \hat{\imath}+3 \hat{\jmath}-5 \hat{k}$
$\overline{\mathrm{b}_{2}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$
As $\overline{b_{1}}=\overline{b_{2}}=\bar{b}$ (say), given lines are parallel to each other.
Therefore,
$\overline{\mathrm{b}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{\jmath}}+6 \hat{\mathrm{k}}$
$\therefore|\overline{\mathrm{b}}|=\sqrt{2^{2}+3^{2}+6^{2}}$
$=\sqrt{4+9+36}$
$=\sqrt{49}$
$=7$
$\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=(3-1) \hat{\imath}+(3-2) \hat{\jmath}+(-5+4) \hat{\mathrm{k}}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$
$\left(\overline{a_{2}}-\overline{a_{1}}\right) \times \bar{b}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 2 & 1 & -1 \\ 2 & 3 & 6\end{array}\right|$
$=\hat{\imath}(6+3)-\hat{\jmath}(12+2)+\hat{\mathrm{k}}(6-2)$
$\therefore\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right) \times \overline{\mathrm{b}}=9 \hat{\mathrm{\imath}}-14 \hat{\jmath}+4 \hat{\mathrm{k}}$
$\therefore\left|\left(\overline{a_{2}}-\overline{a_{1}}\right) \times \overline{\mathrm{b}}\right|=\sqrt{9^{2}+(-14)^{2}+4^{2}}$
$=\sqrt{81+196+16}$
$=\sqrt{293}$
Therefore, the shortest distance between the given lines is
$d=\left|\frac{\left.\mid \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right) \times \overline{\mathrm{b}} \mid}{|\overline{\mathrm{b}}|}\right|$
$\therefore \mathrm{d}=\left|\frac{\sqrt{293}}{7}\right|$
$d=\frac{\sqrt{293}}{7}$ units

17. Question

Write the vector equation of the following lines and hence find the shortest distance between them :
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}$.

Answer

Given: Cartesian equations of lines
L1: $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
L2: $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}$
To Find : i) vector equations of given lines
ii) distance d

Formulae:

1. Equation of line :

Equation of line passing through point $A\left(a_{1}, a_{2}, a_{3}\right)$ and having direction ratios $\left(b_{1}, b_{2}, b_{3}\right)$ is
$\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$
Where, $\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
And $\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$

2. Cross Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

3. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

4. Shortest distance between two lines :

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and $\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$d=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer:

Given Cartesian equations of lines
L1: $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
Line $L 1$ is passing through point $(1,2,3)$ and has direction ratios $(2,3,4)$
Therefore, vector equation of line L1 is
$\overline{\mathrm{r}}=(\hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}})$
And
L2: $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}$
Line $L 2$ is passing through point $(2,3,5)$ and has direction ratios $(3,4,5)$
Therefore, vector equation of line L2 is
$\overline{\mathrm{r}}=(3 \hat{\imath}+3 \hat{\jmath}+5 \hat{\mathrm{k}})+\mu(3 \hat{\imath}+4 \hat{\jmath}+5 \hat{\mathrm{k}})$
Now, to calculate distance between the lines,
$\overline{\mathrm{r}}=(\hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(3 \hat{\imath}+3 \hat{\jmath}+5 \hat{k})+\mu(3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k})$
Here,
$\overline{a_{1}}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$\overline{\mathrm{b}_{1}}=2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}}$
$\overline{a_{2}}=3 \hat{\imath}+3 \hat{\jmath}+5 \hat{k}$
$\overline{\mathrm{b}_{2}}=3 \hat{\mathrm{\imath}}+4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{\mathrm{k}} \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|$
$=\hat{\mathrm{i}}(15-16)-\hat{\mathrm{j}}(10-12)+\hat{\mathrm{k}}(8-9)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=-\hat{\mathrm{\imath}}+2 \hat{\mathrm{\jmath}}-\hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{(-1)^{2}+2^{2}+(-1)^{2}}$
$=\sqrt{1+4+1}$
$=\sqrt{6}$
$\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=(3-1) \hat{\imath}+(3-2) \hat{\jmath}+(5-3) \hat{k}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
Now,

$$
\begin{aligned}
& \left(\overline{b_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(-\hat{\imath}+2 \hat{\jmath}-\hat{\mathrm{k}}) \cdot(2 \hat{\mathrm{\imath}}+\hat{\jmath}+2 \hat{\mathrm{k}}) \\
& =((-1) \times 2)+(2 \times 1)+((-1) \times 2) \\
& =-2+2-2 \\
& =-2
\end{aligned}
$$

Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{-2}{\sqrt{6}}\right|$
$\therefore \mathrm{d}=\frac{2}{\sqrt{3} \cdot \sqrt{2}}$
$\therefore \mathrm{d}=\frac{\sqrt{2}}{\sqrt{3}}$
$\therefore \mathrm{d}=\sqrt{\frac{2}{3}}$
$d=\sqrt{\frac{2}{3}}$ units

18. Question

Find the shortest distance between the lines given below:

$$
\frac{\mathrm{x}-1}{-1}=\frac{\mathrm{y}+2}{1}=\frac{\mathrm{z}-3}{-2} \text { and } \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+1}{2} \frac{\mathrm{z}+1}{-2}
$$

Answer

Given : Cartesian equations of lines
L1: $\frac{x-1}{-1}=\frac{y+2}{1}=\frac{z-3}{-2}$
L2: $\frac{x-1}{2}=\frac{y+1}{2}=\frac{z+1}{-2}$
To Find : distance d

Formulae:

1. Equation of line:

Equation of line passing through point $A\left(a_{1}, a_{2}, a_{3}\right)$ and having direction ratios $\left(b_{1}, b_{2}, b_{3}\right)$ is $\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$

Where, $\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
And $\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$

2. Cross Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

3. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\mathrm{\imath}}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

4. Shortest distance between two lines :

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and
$\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer :

Given Cartesian equations of lines
L1: $\frac{x-1}{-1}=\frac{y+2}{1}=\frac{z-3}{-2}$
Line L 1 is passing through point $(1,-2,3)$ and has direction ratios $(-1,1,-2)$
Therefore, vector equation of line L1 is
$\overline{\mathrm{r}}=(\hat{\imath}-2 \hat{\jmath}+3 \hat{\mathrm{k}})+\lambda(-\hat{\imath}+\hat{\jmath}-2 \hat{\mathrm{k}})$
And
L2 : $\frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+1}{2}=\frac{\mathrm{z}+1}{-2}$
Line L 2 is passing through point ($1,-1,-1$) and has direction ratios (2, 2, -2)
Therefore, vector equation of line L2 is
$\overline{\mathrm{r}}=(\hat{\mathrm{\imath}}-\hat{\mathrm{\jmath}}-\hat{\mathrm{k}})+\mu(2 \hat{\imath}+2 \hat{\jmath}-2 \hat{\mathrm{k}})$
Now, to calculate distance between the lines,
$\overline{\mathrm{r}}=(\hat{\imath}-2 \hat{\jmath}+3 \hat{\mathrm{k}})+\lambda(-\hat{\imath}+\hat{\jmath}-2 \hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(\hat{\mathrm{\imath}}-\hat{\jmath}-\hat{\mathrm{k}})+\mu(2 \hat{\imath}+2 \hat{\jmath}-2 \hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k}$
$\overline{\mathrm{b}_{1}}=-\hat{\imath}+\hat{\jmath}-2 \hat{\mathrm{k}}$
$\overline{a_{2}}=\hat{\imath}-\hat{\jmath}-\hat{k}$
$\overline{\mathrm{b}_{2}}=2 \hat{\imath}+2 \hat{\jmath}-2 \hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{\mathrm{\imath}} & \hat{\jmath} & \hat{\mathrm{k}} \\ -1 & 1 & -2 \\ 2 & 2 & -2\end{array}\right|$
$=\hat{\imath}(-2+4)-\hat{\jmath}(2+4)+\hat{\mathrm{k}}(-2-2)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=2 \hat{\mathrm{\imath}}-6 \hat{\mathrm{\jmath}}-4 \hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{2^{2}+(-6)^{2}+(-4)^{2}}$
$=\sqrt{4+36+16}$
$=\sqrt{56}$
$\overline{a_{2}}-\overline{a_{1}}=(1-1) \hat{\imath}+(-1+2) \hat{\jmath}+(-1-3) \hat{k}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=0 \hat{\mathrm{i}}+\hat{\mathrm{\jmath}}-4 \hat{\mathrm{k}}$
Now,

$$
\begin{aligned}
& \left(\overline{b_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(2 \hat{\imath}-6 \hat{\jmath}-4 \hat{\mathrm{k}}) \cdot(0 \hat{\imath}+\hat{\jmath}-4 \hat{\mathrm{k}}) \\
& =(2 \times 0)+((-6) \times 1)+((-4) \times(-4)) \\
& =0-6+16 \\
& =10
\end{aligned}
$$

Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{10}{\sqrt{56}}\right|$
$\therefore \mathrm{d}=\frac{10}{\sqrt{56}}$
$d=\frac{10}{\sqrt{56}}$ units

19. Question

Find the shortest distance between the lines given below:
$\frac{x-12}{-9}=\frac{y-1}{4}=\frac{z-5}{2}$ and $\frac{x-23}{-6}=\frac{y-10}{-4}=\frac{z-25}{3}$.
HINT: Change the given equations in vector form.

Answer

Given : Cartesian equations of lines
L1 : $\frac{x-12}{-9}=\frac{y-1}{4}=\frac{z-5}{2}$

L2 : $\frac{x-23}{-6}=\frac{y-10}{-4}=\frac{z-23}{3}$
To Find : distance d

Formulae :

1. Equation of line:

Equation of line passing through point $A\left(a_{1}, a_{2}, a_{3}\right)$ and having direction ratios $\left(b_{1}, b_{2}, b_{3}\right)$ is $\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$

Where, $\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\mathrm{\imath}}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
And $\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$

2. Cross Product :

If $\bar{a} \& \bar{b}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

3. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\imath}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

4. Shortest distance between two lines :

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and $\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer :

Given Cartesian equations of lines

L1 : $\frac{x-12}{-9}=\frac{y-1}{4}=\frac{z-5}{2}$
Line L1 is passing through point $(12,1,5)$ and has direction ratios $(-9,4,2)$
Therefore, vector equation of line L1 is
$\overline{\mathrm{r}}=(12 \hat{\imath}+\hat{\jmath}+5 \hat{\mathrm{k}})+\lambda(-9 \hat{\imath}+4 \hat{\jmath}+2 \hat{\mathrm{k}})$
And
L2 : $\frac{x-23}{-6}=\frac{y-10}{-4}=\frac{z-23}{3}$
Line L2 is passing through point $(23,10,23)$ and has direction ratios $(-6,-4,3)$
Therefore, vector equation of line L2 is
$\overline{\mathrm{r}}=(23 \hat{\imath}+10 \hat{\jmath}+23 \hat{k})+\mu(-6 \hat{\imath}-4 \hat{\jmath}+3 \hat{k})$
Now, to calculate distance between the lines,
$\overline{\mathrm{r}}=(12 \hat{\imath}+\hat{\jmath}+5 \hat{\mathrm{k}})+\lambda(-9 \hat{\imath}+4 \hat{\jmath}+2 \hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(23 \hat{\imath}+10 \hat{\jmath}+23 \hat{k})+\mu(-6 \hat{\imath}-4 \hat{\jmath}+3 \hat{k})$
Here,
$\overline{a_{1}}=12 \hat{\imath}+\hat{\jmath}+5 \hat{k}$
$\overline{\mathrm{b}_{1}}=-9 \hat{\imath}+4 \hat{\jmath}+2 \hat{k}$
$\overline{a_{2}}=23 \hat{\imath}+10 \hat{\jmath}+23 \hat{k}$
$\overline{b_{2}}=-6 \hat{\imath}-4 \hat{\jmath}+3 \hat{k}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\ -9 & 4 & 2 \\ -6 & -4 & 3\end{array}\right|$
$=\hat{\mathrm{\imath}}(12+8)-\hat{\mathrm{\jmath}}(-27+12)+\hat{\mathrm{k}}(36+24)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=20 \hat{\mathrm{\imath}}+15 \hat{\mathrm{\jmath}}+60 \hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{20^{2}+15^{2}+60^{2}}$
$=\sqrt{400+225+3600}$
$=\sqrt{4225}$
$\overline{a_{2}}-\overline{a_{1}}=(23-12) \hat{\imath}+(10-1) \hat{\jmath}+(23-5) \hat{k}$
$\therefore \overline{a_{2}}-\overline{a_{1}}=11 \hat{\imath}+9 \hat{\jmath}+18 \hat{k}$
Now,
$\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(20 \hat{\imath}+15 \hat{\jmath}+60 \hat{\mathrm{k}}) \cdot(11 \hat{\imath}+9 \hat{\jmath}+18 \hat{\mathrm{k}})$
$=(20 \times 11)+(15 \times 9)+(60 \times 18)$
$=220+135+1080$
$=1435$
Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{1435}{65}\right|$
$\therefore \mathrm{d}=\frac{287}{13}$
$d=\frac{287}{13}$ units

Exercise 27E

1. Question

Find the length and the equations of the line of shortest distance between the lines given by:

$$
\frac{x-3}{3}=\frac{y-8}{-1}=z-3 \text { and } \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4} .
$$

Answer

Given : Cartesian equations of lines
L1: $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$
L2 : $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$

Formulae :

1. Condition for perpendicularity :

If line L1 has direction ratios $\left(a_{1}, a_{2}, a_{3}\right)$ and that of line $L 2$ are (b_{1}, b_{2}, b_{3}) then lines L1 and L2 will be perpendicular to each other if
$\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)=0$

2. Distance formula :

Distance between two points $A \equiv\left(a_{1}, a_{2}, a_{3}\right)$ and $B \equiv\left(b_{1}, b_{2}, b_{3}\right)$ is given by,
$\mathrm{d}=\sqrt{\left(\mathrm{a}_{1}-\mathrm{b}_{1}\right)^{2}+\left(\mathrm{a}_{2}-\mathrm{b}_{2}\right)^{2}+\left(\mathrm{a}_{3}-\mathrm{b}_{3}\right)^{2}}$

3. Equation of line :

Equation of line passing through points $A \equiv\left(x_{1}, y_{1}, z_{1}\right)$ and $B \equiv\left(x_{2}, y_{2}, z_{2}\right)$ is given by,
$\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{1}-\mathrm{x}_{2}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{y}_{1}-\mathrm{y}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}_{1}-\mathrm{z}_{2}}$

Answer :

Given equations of lines
L1: $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$
L2: $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$
Direction ratios of $L 1$ and $L 2$ are $(3,-1,1)$ and ($-3,2,4$) respectively.
Let, general point on line L 1 is $\mathrm{P} \equiv\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$
$x_{1}=3 s+3, y_{1}=-s+8, z_{1}=s+3$
and let, general point on line $L 2$ is $Q \equiv\left(x_{2}, y_{2}, z_{2}\right)$
$x_{2}=-3 t-3, y_{2}=2 t-7, z_{2}=4 t+6$
$\therefore \overline{\mathrm{PQ}}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \hat{\imath}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) \hat{\jmath}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) \hat{\mathrm{k}}$
$=(-3 t-3-3 s-3) \hat{\imath}+(2 t-7+s-8) \hat{\jmath}+(4 t+6-s-3) \hat{k}$
$\therefore \overline{\mathrm{PQ}}=(-3 \mathrm{t}-3 \mathrm{~s}-6) \hat{\imath}+(2 \mathrm{t}+\mathrm{s}-15) \hat{\mathrm{\jmath}}+(4 \mathrm{t}-\mathrm{s}+3) \hat{\mathrm{k}}$
Direction ratios of $\overline{\mathrm{PQ}}$ are $((-3 t-3 s-6),(2 t+s-15),(4 t-s+3))$
$P Q$ will be the shortest distance if it perpendicular to both the given lines
Therefore, by the condition of perpendicularity,
$3(-3 t-3 s-6)-1(2 t+s-15)+1(4 t-s+3)=0$ and
$-3(-3 t-3 s-6)+2(2 t+s-15)+4(4 t-s+3)=0$
$\Rightarrow-9 \mathrm{t}-9 \mathrm{~s}-18-2 \mathrm{t}-\mathrm{s}+15+4 \mathrm{t}-\mathrm{s}+3=0$ and
$9 t+9 s+18+4 t+2 s-30+16 t-4 s+12=0$
$\Rightarrow-7 \mathrm{t}-11 \mathrm{~s}=0$ and
$29 t+7 s=0$
Solving above two equations, we get,
$\mathrm{t}=0$ and $\mathrm{s}=0$
therefore,
$P \equiv(3,8,3)$ and $Q \equiv(-3,-7,6)$
Now, distance between points P and Q is
$d=\sqrt{(3+3)^{2}+(8+7)^{2}+(3-6)^{2}}$
$=\sqrt{(6)^{2}+(15)^{2}+(-3)^{2}}$
$=\sqrt{36+225+9}$
$=\sqrt{270}$
$=3 \sqrt{30}$
Therefore, the shortest distance between two given lines is
$d=3 \sqrt{30}$ units
Now, equation of line passing through points P and Q is,
$\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{1}-\mathrm{x}_{2}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{y}_{1}-\mathrm{y}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}_{1}-\mathrm{z}_{2}}$
$\therefore \frac{x-3}{3+3}=\frac{y-8}{8+7}=\frac{z-3}{3-6}$
$\therefore \frac{\mathrm{x}-3}{6}=\frac{\mathrm{y}-8}{15}=\frac{\mathrm{z}-3}{-3}$
$\therefore \frac{\mathrm{x}-3}{2}=\frac{\mathrm{y}-8}{5}=\frac{\mathrm{z}-3}{-1}$
Therefore, equation of line of shortest distance between two given lines is
$\frac{x-3}{2}=\frac{y-8}{5}=\frac{z-3}{-1}$

2. Question

Find the length and the equations of the line of shortest distance between the lines given by:
$\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1}$ and $\frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$.

Answer

Given : Cartesian equations of lines
L1 : $\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1}$
L2: $\frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$

Formulae :

1. Condition for perpendicularity :

If line L1 has direction ratios (a_{1}, a_{2}, a_{3}) and that of line L2 are (b_{1}, b_{2}, b_{3}) then lines L1 and L2 will be perpendicular to each other if
$\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)=0$

2. Distance formula :

Distance between two points $A \equiv\left(a_{1}, a_{2}, a_{3}\right)$ and $B \equiv\left(b_{1}, b_{2}, b_{3}\right)$ is given by,
$\mathrm{d}=\sqrt{\left(\mathrm{a}_{1}-\mathrm{b}_{1}\right)^{2}+\left(\mathrm{a}_{2}-\mathrm{b}_{2}\right)^{2}+\left(\mathrm{a}_{3}-\mathrm{b}_{3}\right)^{2}}$

3. Equation of line :

Equation of line passing through points $A \equiv\left(x_{1}, y_{1}, z_{1}\right)$ and $B \equiv\left(x_{2}, y_{2}, z_{2}\right)$ is given by, $\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{1}-\mathrm{x}_{2}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{y}_{1}-\mathrm{y}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}_{1}-\mathrm{z}_{2}}$

Answer :

Given equations of lines
L1 : $\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1}$
L2: $\frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$
Direction ratios of L 1 and L 2 are $(-1,2,1)$ and $(1,3,2)$ respectively.
Let, general point on line $L 1$ is $P \equiv\left(x_{1}, y_{1}, z_{1}\right)$
$\mathrm{x}_{1}=-\mathrm{s}+3, \mathrm{y}_{1}=2 \mathrm{~s}+4, \mathrm{z}_{1}=\mathrm{s}-2$
and let, general point on line $L 2$ is $Q \equiv\left(x_{2}, y_{2}, z_{2}\right)$
$\mathrm{x}_{2}=\mathrm{t}+1, \mathrm{y}_{2}=3 \mathrm{t}-7, \mathrm{z}_{2}=2 \mathrm{t}-2$
$\therefore \overline{\mathrm{PQ}}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \hat{\imath}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) \hat{\jmath}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) \hat{\mathrm{k}}$
$=(t+1+s-3) \hat{\imath}+(3 t-7-2 s-4) \hat{\jmath}+(2 t-2-s+2) \hat{k}$
$\therefore \overline{\mathrm{PQ}}=(\mathrm{t}+\mathrm{s}-2) \hat{\imath}+(3 \mathrm{t}-2 \mathrm{~s}-11) \hat{\jmath}+(2 \mathrm{t}-\mathrm{s}) \hat{\mathrm{k}}$
Direction ratios of $\overline{\mathrm{PQ}}$ are $((\mathrm{t}+\mathrm{s}-2),(3 \mathrm{t}-2 \mathrm{~s}-11),(2 \mathrm{t}-\mathrm{s}))$
$P Q$ will be the shortest distance if it perpendicular to both the given lines
Therefore, by the condition of perpendicularity,
$-1(t+s-2)+2(3 t-2 s-11)+1(2 t-s)=0$ and
$1(t+s-2)+3(3 t-2 s-11)+2(2 t-s)=0$
$\Rightarrow-\mathrm{t}-\mathrm{s}+2+6 \mathrm{t}-4 \mathrm{~s}-22+2 \mathrm{t}-\mathrm{s}=0$ and
$\mathrm{t}+\mathrm{s}-2+9 \mathrm{t}-6 \mathrm{~s}-33+4 \mathrm{t}-2 \mathrm{~s}=0$
$\Rightarrow 7 \mathrm{t}-6 \mathrm{~s}=20$ and
$14 \mathrm{t}-7 \mathrm{~s}=35$
Solving above two equations, we get,
$\mathrm{t}=2$ and $\mathrm{s}=-1$
therefore,
$P \equiv(4,2,-3)$ and $Q \equiv(3,-1,2)$
Now, distance between points P and Q is
$\mathrm{d}=\sqrt{(4-3)^{2}+(2+1)^{2}+(-3-2)^{2}}$
$=\sqrt{(1)^{2}+(3)^{2}+(-5)^{2}}$
$=\sqrt{1+9+25}$
$=\sqrt{35}$
Therefore, the shortest distance between two given lines is
$d=\sqrt{35}$ units
Now, equation of line passing through points P and Q is,
$\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{1}-\mathrm{x}_{2}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{y}_{1}-\mathrm{y}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}_{1}-\mathrm{z}_{2}}$
$\therefore \frac{\mathrm{x}-4}{4-3}=\frac{\mathrm{y}-2}{2+1}=\frac{\mathrm{z}+3}{-3-2}$
$\therefore \frac{\mathrm{x}-4}{1}=\frac{\mathrm{y}-2}{3}=\frac{\mathrm{z}+3}{-5}$
$\therefore \frac{\mathrm{x}-4}{-1}=\frac{\mathrm{y}-2}{-3}=\frac{\mathrm{z}+3}{5}$

Therefore, equation of line of shortest distance between two given lines is
$\frac{x-4}{-1}=\frac{y-2}{-3}=\frac{z+3}{5}$

3. Question

Find the length and the equations of the line of shortest distance between the lines given by:

$$
\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3} \text { and } \frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}
$$

Answer

Given: Cartesian equations of lines
L1 : $\frac{\mathrm{x}+1}{2}=\frac{\mathrm{y}-1}{1}=\frac{\mathrm{z}-9}{-3}$
L2: $\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}$

Formulae :

1. Condition for perpendicularity :

If line $L 1$ has direction ratios $\left(a_{1}, a_{2}, a_{3}\right)$ and that of line $L 2$ are $\left(b_{1}, b_{2}, b_{3}\right)$ then lines $L 1$ and $L 2$ will be perpendicular to each other if
$\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)=0$

2. Distance formula :

Distance between two points $A \equiv\left(a_{1}, a_{2}, a_{3}\right)$ and $B \equiv\left(b_{1}, b_{2}, b_{3}\right)$ is given by, $\mathrm{d}=\sqrt{\left(\mathrm{a}_{1}-\mathrm{b}_{1}\right)^{2}+\left(\mathrm{a}_{2}-\mathrm{b}_{2}\right)^{2}+\left(\mathrm{a}_{3}-\mathrm{b}_{3}\right)^{2}}$

3. Equation of line:

Equation of line passing through points $A \equiv\left(x_{1}, y_{1}, z_{1}\right)$ and $B \equiv\left(x_{2}, y_{2}, z_{2}\right)$ is given by,
$\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{1}-\mathrm{x}_{2}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{y}_{1}-\mathrm{y}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}_{1}-\mathrm{z}_{2}}$

Answer :

Given equations of lines
L1 : $\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}$
L2 : $\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}$
Direction ratios of $L 1$ and $L 2$ are $(2,1,-3)$ and $(2,-7,5)$ respectively.

Let, general point on line $L 1$ is $P \equiv\left(x_{1}, y_{1}, z_{1}\right)$
$\mathrm{x}_{1}=2 \mathrm{~s}-1, \mathrm{y}_{1}=\mathrm{s}+1, \mathrm{z}_{1}=-3 \mathrm{~s}+9$
and let, general point on line $L 2$ is $Q \equiv\left(x_{2}, y_{2}, z_{2}\right)$
$x_{2}=2 t+3, y_{2}=-7 t-15, z_{2}=5 t+9$
$\therefore \overline{\mathrm{PQ}}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \hat{\mathrm{\imath}}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) \hat{\mathrm{\jmath}}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) \hat{\mathrm{k}}$
$=(5 \mathrm{t}+9-2 \mathrm{~s}+1) \hat{\imath}+(-7 \mathrm{t}-15-\mathrm{s}-1) \hat{\jmath}+(5 \mathrm{t}+9+3 \mathrm{~s}-9) \hat{\mathrm{k}}$
$\therefore \overline{\mathrm{PQ}}=(5 \mathrm{t}-2 \mathrm{~s}+10) \hat{\mathrm{\imath}}+(-7 \mathrm{t}-\mathrm{s}-16) \hat{\jmath}+(5 \mathrm{t}+3 \mathrm{~s}) \hat{\mathrm{k}}$
Direction ratios of $\overline{\mathrm{PQ}}$ are $((5 \mathrm{t}-2 \mathrm{~s}+10),(-7 \mathrm{t}-\mathrm{s}-16),(5 \mathrm{t}+3 \mathrm{~s}))$
$P Q$ will be the shortest distance if it perpendicular to both the given lines
Therefore, by the condition of perpendicularity,
$2(5 t-2 s+10)+1(-7 t-s-16)-3(5 t+3 s)=0$ and
$2(5 t-2 s+10)-7(-7 t-s-16)+5(5 t+3 s)=0$
$\Rightarrow 10 \mathrm{t}-4 \mathrm{~s}+20-7 \mathrm{t}-\mathrm{s}-16-15 \mathrm{t}-9 \mathrm{~s}=0$ and
$10 t-4 s+20+49 t+7 s+112+25 t+15 s=0$
$\Rightarrow-12 t-14 s=-4$ and
$84 t+18 s=-132$
Solving above two equations, we get,
$t=-2$ and $s=2$
therefore,
$P \equiv(3,3,3)$ and $Q \equiv(-1,-1,-1)$
Now, distance between points P and Q is
$\mathrm{d}=\sqrt{(3+1)^{2}+(3+1)^{2}+(3+1)^{2}}$
$=\sqrt{(4)^{2}+(4)^{2}+(4)^{2}}$
$=\sqrt{16+16+16}$
$=\sqrt{48}$
$=4 \sqrt{3}$
Therefore, the shortest distance between two given lines is
$d=4 \sqrt{3}$ units

Now, equation of line passing through points P and Q is,
$\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{1}-\mathrm{x}_{2}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{y}_{1}-\mathrm{y}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}_{1}-\mathrm{z}_{2}}$
$\therefore \frac{\mathrm{x}-3}{3+1}=\frac{\mathrm{y}-3}{3+1}=\frac{\mathrm{z}-3}{3+1}$
$\therefore \frac{x-3}{4}=\frac{y-3}{4}=\frac{z-3}{4}$
$\therefore \mathrm{x}-3=\mathrm{y}-3=\mathrm{z}-3$
$\Rightarrow \mathrm{x}=\mathrm{y}=\mathrm{z}$
Therefore, equation of line of shortest distance between two given lines is
$x=y=z$

4. Question

Find the length and the equations of the line of shortest distance between the lines given by:

$$
\frac{x-6}{3}=\frac{y-7}{-1}=\frac{z-4}{1} \text { and } \frac{x}{-3}=\frac{y+9}{2}=\frac{z-2}{4}
$$

Answer

Given : Cartesian equations of lines
L1: $\frac{x-6}{3}=\frac{y-7}{-1}=\frac{z-4}{1}$
L2: $\frac{x}{-3}=\frac{y+9}{2}=\frac{z-2}{4}$

Formulae :

1. Condition for perpendicularity :

If line L1 has direction ratios $\left(a_{1}, a_{2}, a_{3}\right)$ and that of line L2 are (b_{1}, b_{2}, b_{3}) then lines L1 and L2 will be perpendicular to each other if
$\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)=0$

2. Distance formula :

Distance between two points $A \equiv\left(a_{1}, a_{2}, a_{3}\right)$ and $B \equiv\left(b_{1}, b_{2}, b_{3}\right)$ is given by,
$\mathrm{d}=\sqrt{\left(\mathrm{a}_{1}-\mathrm{b}_{1}\right)^{2}+\left(\mathrm{a}_{2}-\mathrm{b}_{2}\right)^{2}+\left(\mathrm{a}_{3}-\mathrm{b}_{3}\right)^{2}}$

3. Equation of line :

Equation of line passing through points $A \equiv\left(x_{1}, y_{1}, z_{1}\right)$ and $B \equiv\left(x_{2}, y_{2}, z_{2}\right)$ is given by,
$\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{1}-\mathrm{x}_{2}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{y}_{1}-\mathrm{y}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}_{1}-\mathrm{z}_{2}}$

Answer :

Given equations of lines
L1: $\frac{x-6}{3}=\frac{y-7}{-1}=\frac{z-4}{1}$
L2: $\frac{x}{-3}=\frac{y+9}{2}=\frac{z-2}{4}$
Direction ratios of L1 and L2 are (3, $-1,1$) and ($-3,2,4$) respectively.
Let, general point on line L 1 is $\mathrm{P} \equiv\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$
$x_{1}=3 s+6, y_{1}=-s+7, z_{1}=s+4$
and let, general point on line $L 2$ is $Q \equiv\left(x_{2}, y_{2}, z_{2}\right)$
$\mathrm{x}_{2}=-3 \mathrm{t}, \mathrm{y}_{2}=2 \mathrm{t}-9, \mathrm{z}_{2}=4 \mathrm{t}+2$
$\therefore \overline{\mathrm{PQ}}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \hat{\mathrm{\imath}}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) \hat{\mathrm{\jmath}}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) \hat{\mathrm{k}}$
$=(-3 t-3 s-6) \hat{\imath}+(2 t-9+s-7) \hat{\jmath}+(4 t+2-s-4) \hat{k}$
$\therefore \overline{\mathrm{PQ}}=(-3 \mathrm{t}-3 \mathrm{~s}-6) \hat{\imath}+(2 \mathrm{t}+\mathrm{s}-16) \hat{\jmath}+(4 \mathrm{t}-\mathrm{s}-2) \hat{\mathrm{k}}$
Direction ratios of $\overline{\mathrm{PQ}}$ are $((-3 t-3 s-6),(2 t+s-16),(4 t-s-2))$
$P Q$ will be the shortest distance if it perpendicular to both the given lines
Therefore, by the condition of perpendicularity,
$3(-3 t-3 s-6)-1(2 t+s-16)+1(4 t-s-2)=0$ and
$-3(-3 t-3 s-6)+2(2 t+s-16)+4(4 t-s-2)=0$
$\Rightarrow-9 \mathrm{t}-9 \mathrm{~s}-18-2 \mathrm{t}-\mathrm{s}+16+4 \mathrm{t}-\mathrm{s}-2=0$ and
$9 t+9 s+18+4 t+2 s-32+16 t-4 s-8=0$
$\Rightarrow-7 \mathrm{t}-11 \mathrm{~s}=4$ and
$29 t+7 s=-22$
Solving above two equations, we get,
$\mathrm{t}=1$ and $\mathrm{s}=-1$
therefore,
$P \equiv(3,8,3)$ and $Q \equiv(-3,-7,6)$
Now, distance between points P and Q is
$\mathrm{d}=\sqrt{(3+3)^{2}+(8+7)^{2}+(3-6)^{2}}$
$=\sqrt{(6)^{2}+(15)^{2}+(-3)^{2}}$
$=\sqrt{36+225+9}$
$=\sqrt{270}$
$=3 \sqrt{30}$
Therefore, the shortest distance between two given lines is
$d=3 \sqrt{30}$ units
Now, equation of line passing through points P and Q is,
$\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{1}-\mathrm{x}_{2}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{y}_{1}-\mathrm{y}_{2}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}_{1}-\mathrm{z}_{2}}$
$\therefore \frac{\mathrm{x}-3}{3+3}=\frac{\mathrm{y}-8}{8+7}=\frac{\mathrm{z}-3}{3-6}$
$\therefore \frac{\mathrm{x}-3}{6}=\frac{\mathrm{y}-8}{15}=\frac{\mathrm{z}-3}{-3}$
$\therefore \frac{\mathrm{x}-3}{2}=\frac{\mathrm{y}-8}{5}=\frac{\mathrm{z}-3}{-1}$
Therefore, equation of line of shortest distance between two given lines is
$\frac{x-3}{2}=\frac{y-8}{5}=\frac{z-3}{-1}$

5. Question

Show that the lines $\frac{x}{1}=\frac{y-2}{2}=\frac{z+3}{3}$ and $\frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$ intersect and find their point of intersection.

Answer

Given : Cartesian equations of lines
L1 : $\frac{x}{1}=\frac{y-2}{2}=\frac{z+3}{3}$
L2: $\frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$
To Find : distance d

Formulae :

1. Equation of line :

Equation of line passing through point $A\left(a_{1}, a_{2}, a_{3}\right)$ and having direction ratios $\left(b_{1}, b_{2}, b_{3}\right)$ is $\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$

Where, $\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
And $\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$

2. Cross Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\mathrm{\imath}}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\bar{a} \times \bar{b}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$

3. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

4. Shortest distance between two lines :

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and
$\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$d=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer:

Given Cartesian equations of lines
L1: $\frac{x}{1}=\frac{y-2}{2}=\frac{z+3}{3}$
Line $L 1$ is passing through point $(0,2,-3)$ and has direction ratios $(1,2,3)$
Therefore, vector equation of line L1 is
$\overline{\mathrm{r}}=(0 \hat{\imath}+2 \hat{\jmath}-3 \hat{\mathrm{k}})+\lambda(\hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}})$
And
L2: $\frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$
Line $L 2$ is passing through point $(2,6,3)$ and has direction ratios $(2,3,4)$
Therefore, vector equation of line L2 is
$\overline{\mathrm{r}}=(2 \hat{\imath}+6 \hat{\jmath}+3 \hat{\mathrm{k}})+\mu(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}})$
Now, to calculate distance between the lines,
$\bar{r}=(0 \hat{\imath}+2 \hat{\jmath}-3 \hat{k})+\lambda(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})$
$\overline{\mathrm{r}}=(2 \hat{\imath}+6 \hat{\jmath}+3 \hat{\mathrm{k}})+\mu(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=0 \hat{\imath}+2 \hat{\jmath}-3 \hat{k}$
$\overline{b_{1}}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
$\overline{a_{2}}=2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$
$\overline{\mathrm{b}_{2}}=2 \hat{\imath}+3 \hat{\jmath}+4 \hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{\mathrm{k}} \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right|$
$=\hat{\imath}(8-9)-\hat{\jmath}(4-6)+\hat{k}(3-4)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=-\hat{\mathrm{\imath}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{(-1)^{2}+2^{2}+(-1)^{2}}$
$=\sqrt{1+4+1}$
$=\sqrt{6}$
$\overline{a_{2}}-\overline{a_{1}}=(2-0) \hat{\imath}+(6-2) \hat{\jmath}+(3+3) \hat{k}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=2 \hat{\mathrm{\imath}}+4 \hat{\jmath}+6 \hat{\mathrm{k}}$
Now,

$$
\begin{aligned}
& \left(\overline{b_{1}} \times \overline{b_{2}}\right) \cdot\left(\overline{a_{2}}-\overline{a_{1}}\right)=(-\hat{\imath}+2 \hat{\jmath}-\hat{k}) \cdot(2 \hat{\imath}+4 \hat{\jmath}+6 \hat{k}) \\
& =((-1) \times 2)+(2 \times 4)+((-1) \times 6)
\end{aligned}
$$

$=-2+8-6$
$=0$
Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{0}{\sqrt{14}}\right|$
$\therefore \mathrm{d}=0$ units
As d $=0$
Hence, given lines intersect each other.
Now, general point on L1 is
$\mathrm{x}_{1}=\lambda, \mathrm{y}_{1}=2 \lambda+2, \mathrm{z}_{1}=3 \lambda-3$
let, $P\left(x_{1}, y_{1}, z_{1}\right)$ be point of intersection of two given lines.
Therefore, point P satisfies equation of line $L 2$.
$\therefore \frac{\lambda-2}{2}=\frac{2 \lambda+2-6}{3}=\frac{3 \lambda-3-3}{4}$
$\therefore \frac{\lambda-2}{2}=\frac{2 \lambda-4}{3}$
$\Rightarrow 3 \lambda-6=4 \lambda-8$
$\Rightarrow \lambda=2$
Therefore, $x_{1}=2, y_{1}=2(2)+2, z_{1}=3(2)-3$
$\Rightarrow \mathrm{x}_{1}=2, \mathrm{y}_{1}=6, \mathrm{z}_{1}=3$
Hence point of intersection of given lines is $(2,6,3)$.

6. Question

Show that the lines $\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-1}{5}$ and $\frac{x-2}{2}=\frac{y-1}{3}=\frac{z+1}{-2}$ do not intersect each other.

Answer

Given: Cartesian equations of lines
L1 : $\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-1}{5}$

L2: $\frac{\mathrm{x}-2}{2}=\frac{\mathrm{y}-1}{3}=\frac{\mathrm{z}+1}{-2}$
To Find : distance d

Formulae :

1. Equation of line:

Equation of line passing through point $A\left(a_{1}, a_{2}, a_{3}\right)$ and having direction ratios $\left(b_{1}, b_{2}, b_{3}\right)$ is $\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$

Where, $\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\mathrm{\imath}}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
And $\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\jmath}+\mathrm{b}_{3} \hat{\mathrm{k}}$

2. Cross Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\bar{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\mathrm{\jmath}}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\jmath} & \hat{\mathrm{k}} \\ \mathrm{a}_{1} & \mathrm{a}_{2} & \mathrm{a}_{3} \\ \mathrm{~b}_{1} & \mathrm{~b}_{2} & \mathrm{~b}_{3}\end{array}\right|$

3. Dot Product :

If $\overline{\mathrm{a}} \& \overline{\mathrm{~b}}$ are two vectors
$\overline{\mathrm{a}}=\mathrm{a}_{1} \hat{\imath}+\mathrm{a}_{2} \hat{\jmath}+\mathrm{a}_{3} \hat{\mathrm{k}}$
$\overline{\mathrm{b}}=\mathrm{b}_{1} \hat{\mathrm{\imath}}+\mathrm{b}_{2} \hat{\mathrm{\jmath}}+\mathrm{b}_{3} \hat{\mathrm{k}}$
then,
$\overline{\mathrm{a}} . \overline{\mathrm{b}}=\left(\mathrm{a}_{1} \times \mathrm{b}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{b}_{2}\right)+\left(\mathrm{a}_{3} \times \mathrm{b}_{3}\right)$

4. Shortest distance between two lines :

The shortest distance between the skew lines $\overline{\mathrm{r}}=\overline{\mathrm{a}_{1}}+\lambda \overline{\mathrm{b}_{1}}$ and
$\overline{\mathrm{r}}=\overline{\mathrm{a}_{2}}+\lambda \overline{\mathrm{b}_{2}}$ is given by,
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$

Answer :

Given Cartesian equations of lines

L1: $\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-1}{5}$
Line L1 is passing through point ($1,-1,1$) and has direction ratios ($3,2,5$)
Therefore, vector equation of line L1 is
$\overline{\mathrm{r}}=(\hat{\mathrm{\imath}}-\hat{\jmath}+\hat{\mathrm{k}})+\lambda(3 \hat{\imath}+2 \hat{\jmath}+5 \hat{\mathrm{k}})$
And
L2 : $\frac{\mathrm{x}-2}{2}=\frac{\mathrm{y}-1}{3}=\frac{\mathrm{z}+1}{-2}$
Line $L 2$ is passing through point $(2,1,-1)$ and has direction ratios ($2,3,-2$)
Therefore, vector equation of line L2 is
$\overline{\mathrm{r}}=(2 \hat{\imath}+\hat{\jmath}-\hat{\mathrm{k}})+\mu(2 \hat{\imath}+3 \hat{\jmath}-2 \hat{\mathrm{k}})$
Now, to calculate distance between the lines,
$\overline{\mathrm{r}}=(\hat{\mathrm{\imath}}-\hat{\jmath}+\hat{\mathrm{k}})+\lambda(3 \hat{\imath}+2 \hat{\jmath}+5 \hat{\mathrm{k}})$
$\overline{\mathrm{r}}=(2 \hat{\imath}+\hat{\jmath}-\hat{\mathrm{k}})+\mu(2 \hat{\imath}+3 \hat{\jmath}-2 \hat{\mathrm{k}})$
Here,
$\overline{a_{1}}=\hat{\imath}-\hat{\jmath}+\hat{k}$
$\overline{\mathrm{b}_{1}}=3 \hat{\mathrm{\imath}}+2 \hat{\mathrm{\jmath}}+5 \hat{\mathrm{k}}$
$\overline{a_{2}}=2 \hat{\imath}+\hat{\jmath}-\hat{k}$
$\overline{\mathrm{b}_{2}}=2 \hat{\imath}+3 \hat{\jmath}-2 \hat{\mathrm{k}}$
Therefore,
$\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=\left|\begin{array}{ccc}\hat{\mathrm{\imath}} & \hat{\jmath} & \hat{\mathrm{k}} \\ 3 & 2 & 5 \\ 2 & 3 & -2\end{array}\right|$
$=\hat{\imath}(-4-15)-\hat{\jmath}(-6-10)+\hat{\mathrm{k}}(9-4)$
$\therefore \overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}=-19 \hat{\mathrm{\imath}}+16 \hat{\mathrm{\jmath}}+5 \hat{\mathrm{k}}$
$\therefore\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|=\sqrt{(-19)^{2}+16^{2}+5^{2}}$
$=\sqrt{361+256+25}$
$=\sqrt{642}$
$\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=(2-1) \hat{\mathrm{i}}+(1+1) \hat{\mathrm{\jmath}}+(-1-1) \hat{\mathrm{k}}$
$\therefore \overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}=\hat{\mathrm{\imath}}+2 \hat{\mathrm{\jmath}}-2 \hat{\mathrm{k}}$
Now,
$\left(\overline{b_{1}} \times \overline{b_{2}}\right) \cdot\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)=(-19 \hat{\imath}+16 \hat{\jmath}+5 \hat{k}) \cdot(\hat{\imath}+2 \hat{\jmath}-2 \hat{\mathrm{k}})$
$=((-19) \times 1)+(16 \times 2)+(5 \times(-2))$
$=-19+32-10$
$=3$
Therefore, the shortest distance between the given lines is
$\mathrm{d}=\left|\frac{\left(\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right) \cdot\left(\overline{\left(\overline{\mathrm{a}_{2}}-\overline{\mathrm{a}_{1}}\right)}\right.}{\left|\overline{\mathrm{b}_{1}} \times \overline{\mathrm{b}_{2}}\right|}\right|$
$\therefore \mathrm{d}=\left|\frac{3}{\sqrt{642}}\right|$
$\therefore \mathrm{d}=\frac{3}{\sqrt{642}}$ units
As $d \neq 0$
Hence, given lines do not intersect each other.

Exercise 27F

1. Question

If a line has direction ratios $2,-1,-2$ then what are its direction cosines?

Answer

Given : A line has direction ratios 2, -1, -2
To find: Direction cosines of the line
Formula used: If $(1, m, n)$ are the direction ratios of a given line then direction cosines are given by $\frac{1}{\sqrt{1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}}, \frac{m}{\sqrt{1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}}, \frac{n}{\sqrt{1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}}$

Here $\mathrm{I}=2, \mathrm{~m}=-1, \mathrm{n}=-2$
Direction cosines of the line with direction ratios $2,-1,-2$ is

$$
\begin{aligned}
& \frac{2}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}, \frac{-1}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}}, \frac{-2}{\sqrt{2^{2}+(-1)^{2}+(-2)^{2}}} \\
& =\frac{2}{\sqrt{4+1+4}}, \frac{-1}{\sqrt{4+1+4}}, \frac{-2}{\sqrt{4+1+4}}=\frac{2}{\sqrt{9}}, \frac{-1}{\sqrt{9}}, \frac{-2}{\sqrt{9}} \\
& =\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}
\end{aligned}
$$

Direction cosines of the line with direction ratios $2,-1,-2$ is $\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$

2. Question

Find the direction cosines of the line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$.

Answer

Given : A line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$.
To find: Direction cosines of the line
Formula used : If a line is given by $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}$ then direction cosines are given by $\frac{1}{\sqrt{1^{2}+m^{2}+n^{2}}}$ $, \frac{m}{\sqrt{1^{2}+m^{2}+n^{2}}}, \frac{n}{\sqrt{1^{2}+m^{2}+n^{2}}}$

The line is $\frac{x-4}{-2}=\frac{y-0}{6}=\frac{z-1}{-3}$
Here $\mathrm{I}=-2, \mathrm{~m}=6, \mathrm{n}=-3$
Direction cosines of the line $\frac{x-4}{-2}=\frac{y-0}{6}=\frac{z-1}{-3}$ is
$\frac{-2}{\sqrt{(-2)^{2}+(6)^{2}+(-3)^{2}}}, \frac{6}{\sqrt{(-2)^{2}+(6)^{2}+(-3)^{2}}}, \frac{-3}{\sqrt{(-2)^{2}+(6)^{2}+(-3)^{2}}}$
$=\frac{-2}{\sqrt{4+36+9}}, \frac{6}{\sqrt{4+36+9}}, \frac{-3}{\sqrt{4+36+9}}=\frac{-2}{\sqrt{49}}, \frac{6}{\sqrt{49}}, \frac{-3}{\sqrt{49}}$
$=\frac{-2}{7}, \frac{6}{7}, \frac{-3}{7}$
Direction cosines of the line $\frac{x-4}{-2}=\frac{y-0}{6}=\frac{z-1}{-3}$ is $\frac{-2}{7}, \frac{6}{7}, \frac{-3}{7}$

3. Question

If the equations of a line are $\frac{3-x}{-3}=\frac{y+2}{-2}=\frac{z+2}{6}$, find the direction cosines of a line parallel to the given line.

Answer

Given : A line $\frac{3-x}{-3}=\frac{y+2}{-2}=\frac{z+2}{6}$,
To find : Direction cosines of the line parallel to $\frac{3-x}{-3}=\frac{y+2}{-2}=\frac{z+2}{6}$,

Formula used : If a line is given by $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}$ then direction cosines are given by $\frac{1}{\sqrt{1^{2}+m^{2}+n^{2}}}$ $, \frac{m}{\sqrt{1^{2}+m^{2}+n^{2}}}, \frac{n}{\sqrt{1^{2}+m^{2}+n^{2}}}$

The line is $\frac{x-3}{3}=\frac{y+2}{-2}=\frac{z+2}{6}$
Parallel lines have same direction ratios and direction cosines
Here $I=3, m=-2, n=6$
Direction cosines of the line $\frac{x-3}{3}=\frac{y+2}{-2}=\frac{z+2}{6}$ is
$\frac{3}{\sqrt{(3)^{2}+(-2)^{2}+(6)^{2}}}, \frac{-2}{\sqrt{(3)^{2}+(-2)^{2}+(6)^{2}}}, \frac{6}{\sqrt{(3)^{2}+(-2)^{2}+(6)^{2}}}$
$=\frac{3}{\sqrt{9+4+36}}, \frac{-2}{\sqrt{9+4+36}}, \frac{6}{\sqrt{9+4+36}}=\frac{3}{\sqrt{49}}, \frac{-2}{\sqrt{49}}, \frac{6}{\sqrt{49}}$
$=\frac{3}{7}, \frac{-2}{7}, \frac{6}{7}$
Direction cosines of the line parallel to the line $\frac{x-3}{-3}=\frac{y+2}{-2}=\frac{z+2}{6}$ is
$\frac{3}{7}, \frac{-2}{7}, \frac{6}{7}$

4. Question

Write the equations of a line parallel to the line $\frac{x-2}{-3}=\frac{y+3}{2}=\frac{z+5}{6}$ and passing through the point (1, $-2,3$).

Answer

Given : A line $\frac{x-2}{-3}=\frac{y+3}{2}=\frac{z+5}{6}$
To find : equations of a line parallel to the line $\frac{x-2}{-3}=\frac{y+3}{2}=\frac{z+5}{6}$ and passing through the point (1, $-2,3$).

Formula used: If a line is given by $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}$ then equation of parallel
line passing through the point (p, q, r) is given by $\frac{x-p}{1}=\frac{y-q}{m}=\frac{z-r}{n}$
Here $\mathrm{I}=-3, \mathrm{~m}=2, \mathrm{n}=6$ and $\mathrm{p}=1, \mathrm{q}=-2, \mathrm{r}=3$
The line parallel to the line $\frac{x-2}{-3}=\frac{y+3}{2}=\frac{z+5}{6}$ and passing through the point $(1,-2,3)$
is given by
$\frac{x-1}{-3}=\frac{y-(-2)}{2}=\frac{z-3}{6}$
$\frac{x-1}{-3}=\frac{y+2}{2}=\frac{z-3}{6}$
The line parallel to the line $\frac{x-2}{-3}=\frac{y+3}{2}=\frac{z+5}{6}$ and passing through the point
$(1,-2,3)$ is given by $\frac{x-1}{-3}=\frac{y+2}{2}=\frac{z-3}{6}$

5. Question

Find the Cartesian equations of the line which passes through the point $(-2,4,-5)$ and which is parallel to the line $\frac{x+3}{3}=\frac{4-y}{5}=\frac{z+8}{6}$.

Answer

Given : A line $\frac{x+3}{3}=\frac{4-y}{5}=\frac{z+8}{6}$.
To find : equations of a line parallel to the line $\frac{x+3}{3}=\frac{4-y}{5}=\frac{z+8}{6}$.
and passing through the point $(-2,4,-5)$.
Formula used : If a line is given by $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}$ then equation of parallel line passing through the point (p, q, r) is given by $\frac{x-p}{l}=\frac{y-q}{m}=\frac{z-r}{n}$

The given line is $\frac{x+3}{3}=\frac{y-4}{-5}=\frac{z+8}{6}$
Here $\mathrm{l}=3, \mathrm{~m}=-5, \mathrm{n}=6$ and $\mathrm{p}=-2, \mathrm{q}=4, \mathrm{r}=-5$
The line parallel to the line $\frac{x+3}{3}=\frac{4-y}{5}=\frac{z+8}{6}$. and passing through the point
$(-2,4,-5)$ is given by
$\frac{x-(-2)}{3}=\frac{y-4}{-5}=\frac{z+5}{6}$
$\frac{x+2}{3}=\frac{y-4}{-5}=\frac{z+5}{6}$
The line parallel to the line $\frac{x+3}{3}=\frac{4-y}{5}=\frac{z+8}{6}$. and passing through the point
$(-2,4,-5)$ is given by $\frac{x+2}{3}=\frac{y-4}{-5}=\frac{z+5}{6}$

6. Question

Write the vector equation of a line whose Cartesian equations are $\frac{x-5}{3}=\frac{y+4}{7}=\frac{6-z}{2}$.

Answer

Given : A line $\frac{x-5}{3}=\frac{y+4}{7}=\frac{6-z}{2}$.
To find : vector equation of a line $\frac{x-5}{3}=\frac{y+4}{7}=\frac{6-z}{2}$.
Formula used: If a line is given by $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}=\lambda$ then vector equation of the line is given by $\vec{r}=\mathrm{a} \vec{\imath}+\mathrm{b} \vec{\jmath}+\mathrm{c} \vec{k}+\lambda(\vec{l}+\mathrm{m} \vec{\jmath}+\mathrm{n} \vec{k})$

Here $a=5, b=-4, c=6$ and $I=3, m=7, n=-2$
Substituting the above values, we get
$\vec{r}=5 \vec{\imath}-4 \vec{\jmath}+6 \vec{k}+\lambda(3 \vec{\imath}+7 \vec{\jmath}-2 \vec{k})$
The vector equation of a line $\frac{x-5}{3}=\frac{y+4}{7}=\frac{6-z}{2}$. is given by
$\vec{r}=5 \vec{\imath}-4 \vec{\jmath}+6 \vec{k}+\lambda(3 \vec{\imath}+7 \vec{\jmath}-2 \vec{k})$

7. Question

The Cartesian equations of a line are $\frac{3-x}{5}=\frac{y+4}{7}=\frac{2 z-6}{4}$. Write the vector equation of the line.

Answer

Given : A line $\frac{3-x}{5}=\frac{y+4}{7}=\frac{2 z-6}{4}$.
To find : vector equation of a line $\frac{3-x}{5}=\frac{y+4}{7}=\frac{2 z-6}{4}$.
Formula used: If a line is given by $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}=\lambda$ then vector equation of the line is given by $\vec{r}=\mathrm{a} \vec{l}+\mathrm{b} \vec{\jmath}+\mathrm{c} \vec{k}+\lambda(\vec{l}+\mathrm{m} \vec{\jmath}+\mathrm{n} \vec{k})$

The given line is $\frac{x-3}{-5}=\frac{y+4}{7}=\frac{z-3}{2}$
Here $a=3, b=-4, c=3$ and $I=-5, m=7, n=2$

Substituting the above values, we get
$\vec{r}=3 \vec{\imath}-4 \vec{\jmath}+3 \vec{k}+\lambda(-5 \vec{\imath}+7 \vec{\jmath}+2 \vec{k})$
The vector equation of a line is given by $\frac{x-3}{-5}=\frac{y+4}{7}=\frac{z-3}{2}$
$\vec{r}=3 \vec{\imath}-4 \vec{\jmath}+3 \vec{k}+\lambda(-5 \vec{\imath}+7 \vec{\jmath}+2 \vec{k})$

8. Question

Write the vector equation of a line passing through the point ($1,-1,2$) and parallel to the line whose equations are $\frac{x-3}{1}=\frac{y-1}{2}=\frac{z+1}{-2}$.

Answer

Given : A line $\frac{x-3}{1}=\frac{y-1}{2}=\frac{z+1}{-2}$.
To find : vector equation of a line passing through the point ($1,-1,2$) and parallel
to the line whose equations are $\frac{x-3}{1}=\frac{y-1}{2}=\frac{z+1}{-2}$.
Formula used : If a line is parallel to $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}$ and passing through the point (p, q, r) then vector equation of the line is given by $\vec{r}=\mathrm{p} \vec{l}+\mathrm{q} \vec{\jmath}+\mathrm{r} \vec{k}+\lambda(\vec{l}+\mathrm{m} \vec{\jmath}+\mathrm{n} \vec{k})$

The given line is $\frac{x-3}{1}=\frac{y-1}{2}=\frac{z+1}{-2}$
Here $\mathrm{p}=1, \mathrm{q}=-1, \mathrm{c}=2$ and $\mathrm{I}=1, \mathrm{~m}=2, \mathrm{n}=2$
Substituting the above values, we get
$\vec{r}=1 \vec{l}-1 \vec{\jmath}+2 \vec{k}+\lambda(1 \vec{\imath}+2 \vec{\jmath}+2 \vec{k})$
The vector equation of a line passing through the point $(1,-1,2)$ and
parallel to the line whose equations are $\frac{x-3}{1}=\frac{y-1}{2}=\frac{z+1}{-2}$. is given by
$\vec{r}=\vec{\imath}-\vec{\jmath}+2 \vec{k}+\lambda(\vec{\imath}+2 \vec{\jmath}+2 \vec{k})$

9. Question

If $P(1,5,4)$ and $Q(4,1,-2)$ be two given points, find the direction ratios of $P Q$.

Answer

Given: $P(1,5,4)$ and $Q(4,1,-2)$ be two given points
To find : direction ratios of PQ

Formula used : if $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ be two given points then direction
ratios of $P Q$ is given by $x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}$
$\mathrm{x}_{1}=1, \mathrm{y}_{1}=5, \mathrm{z}_{1}=4$ and $\mathrm{x}_{2}=4, \mathrm{y}_{2}=1, \mathrm{z}_{2}=-2$
Direction ratios of PQ is given by $x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}$
Direction ratios of PQ is given by $4-1,1-5,-2-4$
Direction ratios of $P Q$ is given by $3,-4,-6$
Direction ratios of $P Q$ is given by $3,-4,-6$

10. Question

The equations of a line are $\frac{4-x}{2}=\frac{y+3}{2}=\frac{z+2}{1}$. Find the direction cosines of a line parallel to this line.

Answer

Given : A line $\frac{4-x}{2}=\frac{y+3}{2}=\frac{z+2}{1}$.
To find : Direction cosines of the line parallel to $\frac{4-x}{2}=\frac{y+3}{2}=\frac{z+2}{1}$.
Formula used : If a line is given by $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}$ then direction cosines are given by $\frac{1}{\sqrt{1^{2}+m^{2}+n^{2}}}$
$, \frac{m}{\sqrt{1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}}, \frac{\mathrm{n}}{\sqrt{1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}}$
The line is $\frac{x-4}{-2}=\frac{y+3}{2}=\frac{z+2}{1}$
Parallel lines have same direction ratios and direction cosines
Here $I=-2, m=2, n=1$
Direction cosines of the line $\frac{x-4}{-2}=\frac{y+3}{2}=\frac{z+2}{1}$ is
$\frac{-2}{\sqrt{(-2)^{2}+(2)^{2}+(1)^{2}}}, \frac{2}{\sqrt{(-2)^{2}+(2)^{2}+(1)^{2}}}, \frac{1}{\sqrt{(-2)^{2}+(2)^{2}+(1)^{2}}}$
$=\frac{-2}{\sqrt{4+4+1}}, \frac{2}{\sqrt{4+4+1}}, \frac{1}{\sqrt{4+4+1}}=\frac{-2}{\sqrt{9}}, \frac{2}{\sqrt{9}}, \frac{1}{\sqrt{9}}$
$=\frac{-2}{3}, \frac{2}{3}, \frac{1}{3}$
Direction cosines of the line parallel to the line $\frac{x-4}{-2}=\frac{y+3}{2}=\frac{z+2}{1}$ is
$\frac{-2}{3}, \frac{2}{3}, \frac{1}{3}$

11. Question

The Cartesian equations of a line are $\frac{x-1}{2}=\frac{y+2}{3}=\frac{5-z}{1}$. Find its vector equation.

Answer

Given : A line $\frac{x-1}{2}=\frac{y+2}{3}=\frac{5-z}{1}$.
To find : vector equation of a line $\frac{x-1}{2}=\frac{y+2}{3}=\frac{5-z}{1}$.
Formula used: If a line is given by $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}=\lambda$ then vector equation of the line is given by $\vec{r}=\mathrm{a} \vec{\imath}+\mathrm{b} \vec{\jmath}+\mathrm{c} \vec{k}+\lambda(\vec{l}+\mathrm{m} \vec{\jmath}+\mathrm{n} \vec{k})$

The given line is $\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-5}{-1}$
Here $\mathrm{a}=1, \mathrm{~b}=-2, \mathrm{c}=5$ and $\mathrm{I}=2, \mathrm{~m}=3, \mathrm{n}=-1$
Substituting the above values, we get
$\vec{r}=1 \vec{\imath}-2 \vec{\jmath}+5 \vec{k}+\lambda(2 \vec{\imath}+3 \vec{\jmath}-1 \vec{k})$
The vector equation of a line $\frac{x-1}{2}=\frac{y+2}{3}=\frac{5-z}{1}$. is given by
$\vec{r}=1 \vec{\imath}-2 \vec{\jmath}+5 \vec{k}+\lambda(2 \vec{\imath}+3 \vec{\jmath}-1 \vec{k})$

12. Question

Find the vector equation of a line passing through the point $(1,2,3)$ and parallel to the vector $(3 \hat{i}+2 \hat{j}-2 \hat{k})$.

Answer

Given : A vector $(3 \hat{i}+2 \hat{j}-2 \hat{k})$.
To find : vector equation of a line passing through the point $(1,2,3)$ and parallel to the vector $(3 \hat{i}+2 \hat{j}-2 \hat{k})$.

Formula used: If a line is parallel to the vector $(\vec{l}+m \vec{\jmath}+n \vec{k})$
and passing through the point (p, q, r) then vector equation of the line is given by $\vec{r}=\mathrm{p} \vec{\imath}+\mathrm{q} \vec{\jmath}+\mathrm{r} \vec{k}+\lambda(\vec{l}+\mathrm{m} \vec{\jmath}+\mathrm{n} \vec{k})$

Here $\mathrm{p}=1, \mathrm{q}=2, \mathrm{c}=3$ and $\mathrm{I}=3, \mathrm{~m}=2, \mathrm{n}=-2$
Substituting the above values, we get
$\vec{r}=1 \vec{\imath}+2 \vec{\jmath}+3 \vec{k}+\lambda(3 \vec{\imath}+2 \vec{\jmath}-2 \vec{k})$
The vector equation of a line passing through the point $(1,2,3)$ and
parallel to the vector $(3 \hat{i}+2 \hat{j}-2 \hat{k})$. is $\vec{r}=\vec{\imath}+2 \vec{\jmath}+3 \vec{k}+\lambda(3 \vec{\imath}+2 \vec{\jmath}-2 \vec{k})$

13. Question

The vector equation of a line is $\vec{r}=(2 \hat{i}+\hat{j}-4 \hat{k})+\lambda(\hat{i}-\hat{j}-\hat{k})$. Find its Cartesian equation.

Answer

Given : The vector equation of a line is $\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-4 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$.
To find : Cartesian equation of the line
Formula used : If the vector equation of the line is given by
$\vec{r}=\mathrm{p} \vec{l}+\mathrm{q} \vec{\jmath}+\mathrm{r} \vec{k}+\lambda(\vec{l}+\mathrm{m} \vec{\jmath}+\mathrm{n} \vec{k})$ then its Cartesian equation is given by
$\frac{\mathrm{x}-\mathrm{p}}{\mathrm{l}}=\frac{\mathrm{y}-\mathrm{q}}{\mathrm{m}}=\frac{\mathrm{z}-\mathrm{r}}{\mathrm{n}}$
The vector equation of a line is $\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-4 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$.
Here $p=2, q=1, r=-4$ and $\mathrm{I}=1, \mathrm{~m}=-1, \mathrm{n}=-1$
Cartesian equation is given by
$\frac{\mathrm{x}-2}{1}=\frac{\mathrm{y}-1}{-1}=\frac{\mathrm{z}-(-4)}{-1}$
$\frac{x-2}{1}=\frac{y-1}{-1}=\frac{z+4}{-1}$
Cartesian equation of the line is given by $\frac{x-2}{1}=\frac{y-1}{-1}=\frac{z+4}{-1}$

14. Question

Find the Cartesian equation of a line which passes through the point ($-2,4,-5$) and which is parallel to the line $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.

Answer

Given : A line $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.

To find : cartesian equations of a line parallel to the line $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.
and passing through the point ($-2,4,-5$).
Formula used : If a line is given by $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}$ then equation of parallel line passing through the point (p, q, r) is given by $\frac{x-p}{l}=\frac{y-q}{m}=\frac{z-r}{n}$

The given line is $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$
Here $\mathrm{I}=3, \mathrm{~m}=5, \mathrm{n}=6$ and $\mathrm{p}=-2, \mathrm{q}=4, \mathrm{r}=-5$
The line parallel to the line $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$. and passing through the point
$(-2,4,-5)$ is given by
$\frac{x-(-2)}{3}=\frac{y-4}{5}=\frac{z-(-5)}{6}$
$\frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}$
The line parallel to the line $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$. and passing through the point
$(-2,4,-5)$ is given by $\frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}$

15. Question

Find the Cartesian equation of a line which passes through the point having position vector $(2 \hat{i}-\hat{j}+4 \hat{k})$ and is in the direction of the vector $(\hat{i}+2 \hat{j}-\hat{k})$.

Answer

Given : A line which passes through the point having position vector $(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}})$
and is in the direction of the vector $(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})$.
To find: cartesian equations of a line
Formula used: If a line which passes through the point having position vector $\mathrm{p} \vec{\imath}+\mathrm{q} \vec{\jmath}+\mathrm{r} \vec{k}$ and is in the direction of the vector $\vec{\imath}+\mathrm{m} \vec{\jmath}+\mathrm{n} \vec{k}$ then its Cartesian equation is given by
$\frac{x-p}{l}=\frac{y-q}{m}=\frac{z-r}{n}$
A line which passes through the point having position vector $(2 \hat{i}-\hat{j}+4 \hat{k})$
and is in the direction of the vector $(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})$.
Here $\mathrm{I}=1, \mathrm{~m}=2, \mathrm{n}=-1$ and $\mathrm{p}=2, \mathrm{q}=-1, \mathrm{r}=4$
$\frac{x-2}{1}=\frac{y-(-1)}{2}=\frac{z-4}{-1}$
$\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-4}{-1}$
The Cartesian equation of a line which passes through the point having position vector $(2 \hat{i}-\hat{j}+4 \hat{k})$ and is in the direction of the vector $(\hat{i}+2 \hat{j}-\hat{k})$. is $\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-4}{-1}$

16. Question

Find the angle between the lines $\vec{r}=(2 \hat{i}-5 \hat{j}+\hat{k})+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and $\overrightarrow{\mathrm{r}}=(7 \hat{\mathrm{i}}-6 \hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$.

Answer

Given : the lines $\vec{r}=(2 \hat{i}-5 \hat{j}+\hat{k})+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and $\vec{r}=(7 \hat{i}-6 \hat{k})+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$.
To find: angle between the lines
Formula used: If the lines are $\mathrm{a} \vec{\imath}+\mathrm{b} \vec{\jmath}+\mathrm{c} \vec{k}+\lambda(\mathrm{p} \vec{\imath}+\mathrm{q} \vec{\jmath}+\mathrm{r} \vec{k})$ and $\mathrm{d} \vec{\imath}+\mathrm{e} \vec{\jmath}+\mathrm{f} \vec{k}+$
$\lambda(\vec{l}+\mathrm{m} \vec{\jmath}+\mathrm{n} \vec{k})$ then the angle between the lines ' θ ' is given by
$\theta=\cos ^{-1} \frac{p l+q m+r n}{\sqrt{p^{2}+q^{2}+r^{2}} \sqrt{l^{2}+m^{2}+n^{2}}}$
the lines $\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=(7 \hat{\mathrm{i}}-6 \hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$.
Here $p=3, q=2, r=6$ and $I=1, m=2, n=2$
$\theta=\cos ^{-1} \frac{3(1)+2(2)+6(2)}{\sqrt{3^{2}+2^{2}+6^{2}} \sqrt{1^{2}+2^{2}+2^{2}}}=\cos ^{-1} \frac{3+4+12}{\sqrt{9+4+36} \sqrt{1+4+4}}$
$\theta=\cos ^{-1} \frac{3+4+12}{\sqrt{49} \sqrt{9}}=\cos ^{-1} \frac{19}{7 \times 3}=\cos ^{-1} \frac{19}{21}$
$\theta=\cos ^{-1} \frac{19}{21}$
The angle between the lines $\vec{r}=(2 \hat{i}-5 \hat{j}+\hat{k})+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and
$\overrightarrow{\mathrm{r}}=(7 \hat{\mathrm{i}}-6 \hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$. is $\cos ^{-1} \frac{19}{21}$

17. Question

Find the angle between the lines $\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and $\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$.

Answer

Given : the lines $\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and $\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$.
To find : angle between the lines
Formula used : If the lines are $\frac{x-a}{p}=\frac{y-b}{q}=\frac{z-c}{r}$ and $\frac{x-c}{l}=\frac{y-d}{m}=\frac{z-e}{n}$
then the angle between the lines ' θ ' is given by
$\theta=\cos ^{-1} \frac{p l+q m+r n}{\sqrt{p^{2}+q^{2}+r^{2}} \sqrt{l^{2}+m^{2}+n^{2}}}$
The lines are $\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and $\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$.
Here $p=3, q=5, r=4$ and $I=1, m=1, n=2$
$\theta=\cos ^{-1} \frac{3(1)+5(1)+4(2)}{\sqrt{3^{2}+5^{2}+4^{2}} \sqrt{1^{2}+1^{2}+2^{2}}}=\cos ^{-1} \frac{3+5+8}{\sqrt{9+25+16} \sqrt{1+1+4}}$
$\theta=\cos ^{-1} \frac{3+5+8}{\sqrt{50} \sqrt{6}}=\cos ^{-1} \frac{16}{10 \sqrt{3}}=\cos ^{-1} \frac{8}{5 \sqrt{3}}$
$\theta=\cos ^{-1} \frac{8 \sqrt{3}}{15}$
The angle between the lines $\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and $\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$.
is $\cos ^{-1} \frac{8 \sqrt{3}}{15}$

18. Question

Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are at right angles.

Given : the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$.
To prove : the lines are at right angles.
Formula used: If the lines are $\frac{x-a}{p}=\frac{y-b}{q}=\frac{z-c}{r}$ and $\frac{x-c}{l}=\frac{y-d}{m}=\frac{z-e}{n}$
then the angle between the lines ' θ ' is given by
$\theta=\cos ^{-1} \frac{p l+q m+r n}{\sqrt{p^{2}+q^{2}+r^{2}} \sqrt{l^{2}+m^{2}+n^{2}}}$
The lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$.
Here $\mathrm{p}=7, \mathrm{q}=-5, \mathrm{r}=1$ and $\mathrm{I}=1, \mathrm{~m}=2, \mathrm{n}=3$
$\theta=\cos ^{-1} \frac{7(1)+(-5)(2)+1(3)}{\sqrt{7^{2}+(-5)^{2}+1} \sqrt{1^{2}+2^{2}+3^{2}}}=\cos ^{-1} \frac{7-10+3}{\sqrt{49+25+1} \sqrt{1+4+9}}$
$\theta=\cos ^{-1} \frac{0}{\sqrt{75} \sqrt{14}}=\cos ^{-1} 0=90^{\circ}$
$\theta=90^{\circ}$
The Lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are at right angles.

19. Question

The direction ratios of a line are $2,6,-9$. What are its direction cosines?

Answer

Given : A line has direction ratios 2, 6, -9
To find : Direction cosines of the line
Formula used : If $(1, m, n)$ are the direction ratios of a given line then direction cosines are given by
$\frac{1}{\sqrt{1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}}, \frac{m}{\sqrt{1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}}, \frac{\mathrm{n}}{\sqrt{1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}}$
Here $\mathrm{I}=2, \mathrm{~m}=6, \mathrm{n}=-9$
Direction cosines of the line with direction ratios $2,6,-9$ is

$$
\begin{aligned}
& \frac{2}{\sqrt{2^{2}+6^{2}+(-9)^{2}}}, \frac{6}{\sqrt{2^{2}+6^{2}+(-9)^{2}}}, \frac{-9}{\sqrt{2^{2}+6^{2}+(-9)^{2}}} \\
& =\frac{2}{\sqrt{4+36+81}}, \frac{6}{\sqrt{4+36+81}}, \frac{-9}{\sqrt{4+36+81}}=\frac{2}{\sqrt{121}}, \frac{6}{\sqrt{121}}, \frac{-9}{\sqrt{121}} \\
& =\frac{2}{11}, \frac{6}{11}, \frac{-9}{11}
\end{aligned}
$$

Direction cosines of the line with direction ratios $2,6,-9$ is $\frac{2}{11}, \frac{6}{11}, \frac{-9}{11}$

20. Question

A line makes angles $90^{\circ}, 135^{\circ}$ and 45° with the positive directions of x-axis, y-axis and z-axis respectively. what are the direction cosines of the line?

Answer

Given: A line makes angles $90^{\circ}, 135^{\circ}$ and 45° with the positive directions of x-axis, y-axis and z-axis respectively.

To find: Direction cosines of the line
Formula used: If a line makes angles a°, β^{0} and γ^{0} with the positive directions of x-axis, y-axis and z-axis respectively. then direction cosines are given by $\cos \alpha, \cos \left(180^{\circ}-\beta\right), \cos \left(180^{\circ}-\gamma\right)$
$a=90^{\circ}, \beta=135^{\circ}$ and $\gamma=45^{\circ}$
Direction cosines of the line is
$\cos 90^{\circ}, \cos \left(180^{\circ}-135^{\circ}\right), \cos \left(180^{\circ}-45^{\circ}\right)$
$\cos 90^{\circ}, \cos 45^{\circ}, \cos \left(135^{\circ}\right)$
$0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
Direction cosines of the line is $0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

21. Question

What are the direction cosines of the y-axis?

Answer

To find : Direction cosines of the y - axis
Formula used : If a line makes angles a°, β^{0} and γ^{0} with the positive directions of x-axis, y - $a x i s$ and z -axis respectively. then direction cosines are given by $\cos \alpha, \cos \beta, \cos \gamma$
y-axis makes 90° with the x and z axes
$a=90^{\circ}, \beta=0^{\circ}$ and $y=90^{\circ}$
Direction cosines of the line is
$\cos 90^{\circ}, \cos 0^{\circ}, \cos 90^{\circ}$
0, 1, 0
Direction cosines of the line is $0,1,0$

22. Question

What are the direction cosines of the vector $(2 \hat{i}+\hat{j}-2 \hat{k})$?

Answer

Given : A vector $(2 \hat{i}+\hat{j}-2 \hat{k})$?
To find: Direction cosines of the vector
Formula used: If a vector is $l \vec{\imath}+m \vec{\jmath}+n \vec{k}$ then direction cosines are given by $\frac{1}{\sqrt{1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}}$, $\frac{\mathrm{m}}{\sqrt{1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}}, \frac{\mathrm{n}}{\sqrt{1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}}$

Here $\mathrm{I}=2, \mathrm{~m}=1, \mathrm{n}=-2$
Direction cosines of the line with direction ratios $2,1,-2$ is
$\frac{2}{\sqrt{2^{2}+(1)^{2}+(-2)^{2}}}, \frac{1}{\sqrt{2^{2}+(1)^{2}+(-2)^{2}}}, \frac{-2}{\sqrt{2^{2}+(1)^{2}+(-2)^{2}}}$
$=\frac{2}{\sqrt{4+1+4}}, \frac{1}{\sqrt{4+1+4}}, \frac{-2}{\sqrt{4+1+4}}=\frac{2}{\sqrt{9}}, \frac{1}{\sqrt{9}}, \frac{-2}{\sqrt{9}}$
$=\frac{2}{3}, \frac{1}{3}, \frac{-2}{3}$
Direction cosines of the vector is $\frac{2}{3}, \frac{1}{3}, \frac{-2}{3}$

23. Question

What is the angle between the vector $\overrightarrow{\mathrm{r}}=(4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+\hat{\mathrm{k}})$ and the x -axis?

Answer

Given : the vector $\overrightarrow{\mathrm{r}}=(4 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+\hat{\mathrm{k}})$
To find : angle between the vector and the x-axis
Formula used: If the vector $\vec{l}+m \vec{\jmath}+n \vec{k}$ and x-axis then the angle between the lines ' θ ' is given by
$\theta=\cos ^{-1} \frac{l}{\sqrt{l^{2}+m^{2}+n^{2}}}$
Here $\mathrm{I}=4, \mathrm{~m}=8, \mathrm{n}=1$
$\theta=\cos ^{-1} \frac{4}{\sqrt{4^{2}+8^{2}+1^{2}}}=\cos ^{-1} \frac{4}{\sqrt{16+64+1}}$
$\theta=\cos ^{-1} \frac{4}{\sqrt{81}}=\cos ^{-1} \frac{4}{9}$
$\theta=\cos ^{-1} \frac{4}{9}$
The angle between the vector and the x-axis is $\cos ^{-1} \frac{4}{9}$

Objective Questions

1. Question

The direction ratios of two lines are 3, 2, -6 and $1,2,2$, respectively. The acute angle between these lines is
A. $\cos ^{-1}\left(\frac{5}{18}\right)$
B. $\cos ^{-1}\left(\frac{3}{20}\right)$
C. $\cos ^{-1}\left(\frac{5}{21}\right)$
D. $\cos ^{-1}\left(\frac{8}{21}\right)$

Answer

Direction ratio are given implies that we can write the parallel vector towards that line, lets consider the first parallel vector to be $|\vec{a}|=3 \hat{\imath}+2 \hat{\jmath}-6 \hat{k}$ and second parallel vector be $|\overrightarrow{\mathrm{b}}|=\hat{\imath}+2 \hat{\jmath}+2 \hat{\mathrm{k}}$.

For the angle, we can use the formula $\cos \alpha=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \times|\vec{b}|}$
For that, we need to find the magnitude of these vectors
$|\vec{a}|=\sqrt{3^{2}+2^{2}+(-6)^{2}}$
$=7$
$|\overrightarrow{\mathrm{b}}|=\sqrt{1+2^{2}+2^{2}}$
$=3$
$\cos \alpha=\frac{(3 \hat{\imath}+2 \hat{\jmath}-6 \hat{\mathrm{k}}) \cdot(\hat{\mathrm{\imath}}+2 \hat{\mathrm{\jmath}}+2 \hat{\mathrm{k}})}{7 \times 3}$
$\cos \alpha=\frac{3+4-12}{21}$
$\cos \alpha=\frac{-5}{21}$
$\alpha=\cos ^{-1}\left(-\frac{5}{21}\right)$
The negative sign does not affect anything in cosine as cosine is positive in the fourth quadrant.
$\alpha=\cos ^{-1}\left(\frac{5}{21}\right)$

2. Question

The direction ratios of two lines are a, b, c and $(b-c),(c-a),(a-b)$ respectively. The angle between these lines is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
c. $\frac{\pi}{4}$
D. $\frac{3 \pi}{4}$

Answer

Direction ratio are given implies that we can write the parallel vector towards that line, lets consider the first parallel vector to be $|\vec{a}|=a \hat{1}+b \hat{\jmath}+c \hat{k}$ and second parallel vector be
$|\vec{b}|=(b-c) \hat{\imath}+(c-a) \hat{\jmath}+(a-b) \hat{k}$.
For the angle, we can use the formula $\cos \alpha=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \times|\vec{b}|}$
For that, we need to find the magnitude of these vectors
$|\vec{a}|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+(\mathrm{c})^{2}}$
$=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}$
$|\vec{b}|=\sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}$
$=\sqrt{2\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{ab}-\mathrm{bc}-\mathrm{ca}\right)}$
$\cos \alpha=\frac{(a \hat{1}+b \hat{\jmath}+c \hat{k}) \cdot((b-c) \hat{\imath}+(c-a) \hat{\jmath}+(a-b) \hat{k})}{\sqrt{2\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)} \times \sqrt{a^{2}+b^{2}+c^{2}}}$
$\cos \alpha=\frac{a b-a c+b c-b a+c a-c b}{\sqrt{2\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{ab}-\mathrm{bc}-\mathrm{ca}\right)} \times \sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}$
0
$\cos \alpha=\frac{}{\sqrt{2\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)} \times \sqrt{a^{2}+b^{2}+c^{2}}}$
$\alpha=\cos ^{-1}(0)$
$\alpha=\frac{\pi}{2}$

3. Question

The angle between the lines $\frac{x-2}{2}=\frac{y-1}{7}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{2}=\frac{z-5}{4}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\cos ^{-1}\left(\frac{3}{8}\right)$

Answer

Direction ratio are given implies that we can write the parallel vector towards those line, lets consider first parallel vector to be $|\overrightarrow{\mathrm{a}}|=2 \hat{\imath}+7 \hat{\jmath}-3 \hat{\mathrm{k}}$ and second parallel vector be $|\overrightarrow{\mathrm{b}}|=-\hat{\imath}+2 \hat{\jmath}+4 \hat{\mathrm{k}}$.

For the angle we can use the formula $\cos \alpha=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \times|\vec{b}|}$
For that we need to find magnitude of these vectors
$|\vec{a}|=\sqrt{3^{2}+2^{2}+(7)^{2}}$
$=\sqrt{62}$
$|\overrightarrow{\mathrm{b}}|=\sqrt{1+2^{2}+4^{2}}$
$=\sqrt{21}$
$\cos \alpha=\frac{(2 \hat{\imath}+7 \hat{\jmath}-3 \hat{\mathrm{k}}) \cdot(-\hat{\mathrm{\imath}}+2 \hat{\mathrm{\jmath}}+4 \hat{\mathrm{k}})}{\sqrt{21} \times \sqrt{62}}$
$\cos \alpha=\frac{-2+14-12}{\sqrt{21} \times \sqrt{62}}$
$\cos \alpha=\frac{0}{\sqrt{21} \times \sqrt{62}}$
$\alpha=\cos ^{-1} 0$
Negative sign does not affect anything in cosine as cosine is positive in fourth quadrant
$\alpha=\frac{\pi}{2}$

4. Question

If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular to each other then $\mathrm{k}=$?
A. $\frac{-5}{7}$
B. $\frac{5}{7}$
c. $\frac{10}{7}$
D. $\frac{-10}{7}$

Answer

If the lines are perpendicular to each other then the angle between these lines will be $\frac{\pi}{2}$, me the cosine will be 0
$\vec{a}=-3 \hat{\imath}+2 k \hat{\jmath}+2 \hat{k}$
$|\vec{a}|=\sqrt{3^{2}+(2 \mathrm{k})^{2}+2^{2}}$
$=\sqrt{13+4 \mathrm{k}^{2}}$
$\vec{b}=3 k \hat{\imath}+\hat{\jmath}-5 \hat{k}$
$|\overrightarrow{\mathrm{b}}|=\sqrt{(3 \mathrm{k})^{2}+1+5^{2}}$
$=\sqrt{9 \mathrm{k}^{2}+26}$
$\cos \left(\frac{\pi}{2}\right)=\frac{(3 \mathrm{k} \hat{\imath}+\hat{\jmath}-5 \hat{\mathrm{k}}) \cdot(-3 \hat{\mathrm{\imath}}+2 \mathrm{k} \hat{\jmath}+2 \hat{\mathrm{k}})}{\sqrt{13+4 \mathrm{k}^{2}} \times \sqrt{9 \mathrm{k}^{2}+26}}$
$0=\frac{-9 \mathrm{k}+2 \mathrm{k}-10}{\sqrt{13+4 \mathrm{k}^{2}} \times \sqrt{9 \mathrm{k}^{2}+26}}$
$k=-\frac{10}{7}$

5. Question

A line passes through the points $A(2,-1,4)$ and $B(1,2,-2)$. The equations of the line $A B$ are
A. $\frac{\mathrm{x}-2}{-1}=\frac{\mathrm{y}+1}{2}=\frac{\mathrm{z}-4}{-6}$
B. $\frac{x+2}{-1}=\frac{y+1}{2}=\frac{z-4}{6}$
C. $\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-4}{6}$
D. none of these

Answer

To write the equation of a line we need a parallel vector and a fixed point through which the line is passing

Parallel vector $=((2-1) \hat{\imath}+(-1-2) \hat{\jmath}+(4+2) \hat{k})$
$=\hat{\imath}-3 \hat{\jmath}+6 \hat{k}$
Or $=-(\hat{\imath}-3 \hat{\jmath}+6 \hat{k})$
Fixed point is $2 \hat{\imath}-\hat{\jmath}+4 k^{\wedge}$

Equation

$\frac{x-2}{1}=\frac{y-(-1)}{-3}=\frac{z-4}{6}$
$\frac{x-2}{1}=\frac{y+1}{-3}=\frac{z-4}{6}$
Or
$\frac{x-2}{-1}=\frac{y+1}{3}=\frac{z-4}{-6}$

6. Question

The angle between the lines $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$ is
A. $\cos ^{-1}\left(\frac{3}{4}\right)$
B. $\cos ^{-1}\left(\frac{5}{6}\right)$
C. $\cos ^{-1}\left(\frac{2}{3}\right)$
D. $\frac{\pi}{3}$

Answer

Direction cosine of the lines are given $2 \hat{\imath}+2 \hat{\jmath}+k^{\wedge}$ and $4 \hat{\imath}+\hat{\jmath}+8 k^{\wedge}$ $\vec{a}=2 \hat{\imath}+2 \hat{\jmath}+\hat{k}$
$|\vec{a}|=\sqrt{2^{2}+2^{2}+1}$
$|\vec{a}|=3$
$\overrightarrow{\mathrm{b}}=4 \hat{\mathrm{\imath}}+\hat{\mathrm{\jmath}}+8 \hat{\mathrm{k}}$
$|\overrightarrow{\mathrm{b}}|=\sqrt{4^{2}+1+8^{2}}$
$=9$
$\cos \alpha=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \times|\vec{b}|}$
$\cos \alpha=\frac{(2 \hat{\imath}+2 \hat{\jmath}+\hat{k}) \cdot(4 \hat{\imath}+\hat{\jmath}+8 \hat{k})}{3 \times 9}$
$\cos \alpha=\frac{8+8+2}{27}$
$\cos \alpha=\frac{2}{3}$

7. Question

The angle between the lines $\vec{r}=(3 \hat{i}+\hat{j}-2 \hat{k})+\lambda(\hat{i}-\hat{j}-2 \hat{k})$ and $\vec{r}=(2 \hat{i}-\hat{j}-5 \hat{k})+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})$ is
A. $\cos ^{-1}\left(\frac{8 \sqrt{3}}{15}\right)$
B. $\cos ^{-1}\left(\frac{6 \sqrt{2}}{5}\right)$
C. $\cos ^{-1}\left(\frac{5 \sqrt{3}}{8}\right)$
D. $\cos ^{-1}\left(\frac{5 \sqrt{2}}{6}\right)$

Answer

Let $\vec{a}=\hat{\imath}-\hat{\jmath}-2 \hat{k}$ and $\vec{b}=3 \hat{i}-5 \hat{\jmath}-4 \hat{k}$ and $|\vec{a}|=\sqrt{1+1+2^{2}}=\sqrt{6}$
$|\overrightarrow{\mathrm{b}}|=\sqrt{3^{2}+5^{2}+4^{2}}=5 \sqrt{2}$
$\cos \alpha=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \times|\vec{b}|}$
$\cos \alpha=\frac{(3 \hat{\imath}-5 \hat{\jmath}-4 \hat{k}) \cdot(\hat{\imath}-\hat{\jmath}-2 \hat{k})}{5 \sqrt{2} \times \sqrt{6}}$
$\cos \alpha=\frac{3+5+8}{5 \sqrt{12}}$
$\cos \alpha=\frac{8 \sqrt{3}}{15}$

8. Question

A line is perpendicular to two lines having direction ratios $1,-2,-2$ and $0,2,1$. The direction cosines of the line are
A. $\frac{-2}{3}, \frac{1}{3}, \frac{2}{3}$
B. $\frac{2}{3}, \frac{1}{3}, \frac{-1}{3}$
C. $\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}$
D. none of these

Answer

If a line is perpendicular to two given lines we can find out the parallel vector by cross product of the given two vectors.
$\vec{a}=\hat{\imath}-2 \hat{\jmath}-2 \hat{k}$
$\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\vec{a} \times \vec{b}=(\hat{\imath}-2 \hat{\jmath}-2 \hat{k}) \times(2 \hat{\jmath}+\hat{k})$
$=2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
So the direction cosines are
$\widehat{\mathrm{n}}=\frac{1}{\sqrt{2^{2}+1+2^{2}}}$
$\widehat{\mathrm{n}}=\frac{1}{3}$
Direction cosine
$\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$

9. Question

A line passes through the point $A(5,-2,4)$ and it is parallel to vector $(2 \hat{i}-\hat{j}+3 \hat{k})$. The vector equation of the line is
A. $\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})$
B. $\overrightarrow{\mathrm{r}}=(5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
c. $\overrightarrow{\mathrm{r}} \cdot(5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})=\sqrt{14}$
D. none of these

Answer

Fixed point is $5 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}$ and parallel vector is $2 \hat{\imath}-\hat{\jmath}+3 \hat{k}$
Equation $5 \hat{\imath}-2 \hat{\jmath}+4 \hat{\mathrm{k}}+\alpha(2 \hat{\imath}-\hat{\jmath}+3 \hat{k})$

10. Question

The Cartesian equations of a line are $\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-5}{-1}$. Its vector equation is
A. $\overrightarrow{\mathrm{r}}=(-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}})$
B. $\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})$
c. $\overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})$
D. none of these

Answer

Dixed point ($1,-2,5$) and the parallel vector is $2 \hat{\imath}+3 \hat{j}-\hat{k}$
Equation $\left(\hat{i}-2 \hat{\jmath}+5 k^{\wedge}\right)+a(2 \hat{\imath}+3 \hat{\jmath}-\hat{k})$

11. Question

A line passes through the pointA $(-2,4,-5)$ and is parallel to the line $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$. The vector equation of the line is
A. $\overrightarrow{\mathrm{r}}=(-3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-8 \hat{\mathrm{k}})+\lambda(-2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})$
B. $r=(-2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k})+\lambda(3 \hat{\imath}+5 \hat{\jmath}+6 \hat{k})$
c. $\overrightarrow{\mathrm{r}}=(3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})+\lambda(-2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})$
D. none of these

Answer

Fixed point is $-2 \hat{i}+4 \hat{j}-5 \hat{k}$ and the parallel vector is $3 \hat{i}+5 \hat{j}+6 \hat{k}$
Equation is $r=(-2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k})+\lambda(3 \hat{\imath}+5 \hat{\jmath}+6 \hat{k})$

12. Question

The coordinates of the point where the line through the points $A(5,1,6)$ and $B(3,4,1)$ crosses the $y z$-plane is
A. $(0,17,-13)$
B. $\left(0, \frac{-17}{2}, \frac{13}{2}\right)$
C. $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$
D. none of these

Answer

We first need to find the equation of a line passing through the two given points taking fixed point as $5 \hat{\imath}+\hat{\jmath}+6 \hat{k}$
and the parallel vector will be $(5-3) \hat{\imath}+(1-4) \hat{\jmath}+(6-1) \hat{k}=2 \hat{\imath}-3 \hat{\jmath}+5 \hat{k}$
equation of the line in cartesian form
$\frac{x-5}{2}=\frac{y-1}{-3}=\frac{z-6}{5}$
Assume above equation to be equal to k, a constant
$\frac{x-5}{2}=\frac{y-1}{-3}=\frac{z-6}{5}=k$
And y-z plane have x-coordinate as zero we may get
$\frac{0-5}{2}=\frac{y-1}{-3}=\frac{z-6}{5}=k$
$\mathrm{k}=-\frac{5}{2}$
Now we can find y and z
$\frac{y-1}{-3}=-\frac{5}{2}$
$y-1=\frac{15}{2}$
$y=\frac{17}{2}$
$\frac{z-6}{5}=-\frac{5}{2}$
$z-6=-\frac{25}{2}$
$z=-\frac{13}{2}$
The coordinate where the line meets y-z plane is $\left(0, \frac{17}{2},-\frac{13}{2}\right)$

13. Question

The vector equation of the x -axis is given by
A. $\overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}$
B. $\overrightarrow{\mathrm{r}}=\hat{\mathrm{j}}+\hat{\mathrm{k}}$
C. $\overrightarrow{\mathrm{r}}=\lambda \hat{\mathrm{i}}$
D. none of these

Answer

Vector equation need a fixed point and a parallel vector
For x-axis fixed point can be anything ranging from negative to positive including origin
And parallel vector is \hat{i}
Equation would be $\lambda \hat{\imath}$

14. Question

The Cartesian equations of a lines are $\frac{x-2}{2}=\frac{y+1}{3}=\frac{z-3}{-2}$. What is its vector equation?
A. $\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
B. $\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})$
C. $\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})$
D. none of these

Answer

Fixed point is $2 \hat{\imath}-\hat{\jmath}+3 \hat{k}$ and the vector is $2 \hat{\imath}+3 \hat{\jmath}-2 \hat{k}$
Equation $(2 \hat{\imath}-\hat{\jmath}+3 \hat{k})+\lambda(2 \hat{\imath}+3 \hat{\jmath}-2 \hat{k})$

15. Question

The angle between two lines having direction ratios $1,1,2$ and $(\sqrt{3}-1),(-\sqrt{3}-1), 4$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer

Let $\overrightarrow{\mathrm{a}}=\hat{\mathrm{\imath}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=(\sqrt{3}-1) \hat{\imath}+(-\sqrt{3}-1) \hat{\jmath}+4 \hat{\mathrm{k}}$
$|\vec{a}|=\sqrt{6}|\vec{b}|=\sqrt{(4-2 \sqrt{3})+(4+2 \sqrt{3})+16}=2 \sqrt{6}$
$\cos \alpha=\frac{(\hat{\imath}+\hat{\jmath}+2 \hat{k}) \cdot((\sqrt{3}-1) \hat{\imath}+(-\sqrt{3}-1) \hat{\jmath}+4 \hat{k})}{\sqrt{6} \times 2 \sqrt{6}}$
$\cos \alpha=\frac{\sqrt{3}-1-\sqrt{3}-1+8}{12}$
$\cos \alpha=\frac{1}{2}$
$\alpha=60^{\circ}$

16. Question

The straight line $\frac{x-2}{3}=\frac{y-3}{1}=\frac{z+1}{0}$ is
A. parallel to the x-axis
B. parallel to the y-axis
C. parallel to the z-axis
D. perpendicular to the z-axis

Answer

It is perpendicular to z-axis because $\cos 90^{\circ}$ is 0 which implies that it makes 90° with z-axis

If a line makes angles a, β and γ with the x-axis, y-axis and z-axis respectively then ($\sin ^{2} a+\sin ^{2} \beta$ $\left.+\sin ^{2} \gamma\right)=$?
A. 1
B. 3
C. 2
D. $\frac{3}{2}$

Answer

$\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=1-\cos ^{2} \alpha+1-\cos \beta+1-\cos ^{2} \gamma$
$=3-\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)$
($\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma$) is the square of the direction ratios of all three axes which is always equal to 1
$=3-1$
$=2$

18. Question

If (a_{1}, b_{1}, c_{1}) and (a_{2}, b_{2}, c_{2}) be the direction ratios of two parallel lines then
A. $a_{1}=a_{2}, b_{1}=b_{2}, c_{1}=c_{2}$
B. $\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
C. $a_{1}^{2}+b_{1}^{2}+c_{1}^{2}=a_{2}^{2}+b_{2}^{2}+c_{2}^{2}$
D. $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$

Answer

We know that if there is two parallel lines then their direction ratios must have a relation
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$

19. Question

If the points $A(-1,3,2), B(-4,2,-2)$ and $C(5,5, \lambda)$ are collinear then the value of λ is
A. 5
B. 7
C. 8
D. 10

Answer
Determinant of these point should be zero
$\left|\begin{array}{ccc}-1 & 3 & 2 \\ -4 & 2 & -2 \\ 5 & 5 & \lambda\end{array}\right|=0$
$-1(2 \lambda+10)-3(-4 \lambda+10)+2(-20-10)=0$
$10 \lambda-10-30-60=0$
$\lambda=10$

