31. Probability Distribution

Exercise 31

1. Question

Find the mean (u), variance $\left(\sigma^{2}\right)$ and standard deviation (σ) for each of the following probability distributions:
(i)

(ii)

(iii)

	-3	-1	0	2
	0.2	0.4	0.3	0.1

(iv)

Answer
(i) Given :

To find : mean (u), variance (σ^{2}) and standard deviation (σ)
Formula used:

	x_{1}	x_{2}	x_{3}	x_{4}
0	(1)	(2)	(3)	(4)

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}$
Standard deviation $=\sqrt{E\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}}$
Mean $\left.=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)+\mathrm{x}_{4} \mathrm{P} \mathrm{(} \mathrm{x}_{4}\right)$
Mean $=\mathrm{E}(\mathrm{X})=0\left(\frac{1}{6}\right)+1\left(\frac{1}{2}\right)+2\left(\frac{3}{10}\right)+3\left(\frac{1}{30}\right)=0+\frac{1}{2}+\frac{6}{10}+\frac{3}{30}=\frac{15+18+3}{30}=\frac{36}{30}=\frac{6}{5}$
Mean $=E(X)=\frac{6}{5}=1.2$
$\mathrm{E}(\mathrm{X})^{2}=(1.2)^{2}=1.44$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)+\left(\mathrm{x}_{4}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{4}\right)$
$E\left(X^{2}\right)=(0)^{2}\left(\frac{1}{6}\right)+(1)^{2}\left(\frac{1}{2}\right)+(2)^{2}\left(\frac{3}{10}\right)+(3)^{2}\left(\frac{1}{30}\right)=0+\frac{1}{2}+\frac{12}{10}+\frac{9}{30}=\frac{15+36+9}{30}=\frac{60}{30}$
$E\left(X^{2}\right)=2$
Variance $=E\left(X^{2}\right)-E(X)^{2}=2-1.44=0.56$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=0.56$
Standard deviation $=\sqrt{E\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}}=\sqrt{0.56}=0.74$
Mean $=1.2$
Variance $=0.56$
Standard deviation $=0.74$
(ii) Given :

	1	2	3	4
	0.4	0.3	0.2	0.1

To find : mean (u), variance $\left(\sigma^{2}\right)$ and standard deviation (σ)
Formula used :

	x_{1}	x_{2}	x_{3}	x_{4}
()	$\left(\left(_{1}\right)\right.$	(2)	(3)	(4)

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}$
Standard deviation $=\sqrt{\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}}$

$$
\begin{aligned}
& \text { Mean }=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)+\mathrm{x}_{4} \mathrm{P}\left(\mathrm{x}_{4}\right) \\
& \text { Mean }=\mathrm{E}(\mathrm{X})=1(0.4)+2(0.3)+3(0.2)+4(0.1)=0.4+0.6+0.6+0.4=2 \\
& \text { Mean }=\mathrm{E}(\mathrm{X})=2 \\
& \mathrm{E}(\mathrm{X})^{2}=(2)^{2}=4 \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)+\left(\mathrm{x}_{4}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{4}\right) \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=(1)^{2}(0.4)+(2)^{2}(0.3)+(3)^{2}(0.2)+(4)^{2}(0.1)=0.4+1.2+1.8+1.6=5 \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=5
\end{aligned}
$$

Variance $=E\left(X^{2}\right)-E(X)^{2}=5-4=1$
Variance $=E\left(X^{2}\right)-E(X)^{2}=1$

Standard deviation $=\sqrt{\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}}=\sqrt{1}=1$
Mean $=2$
Variance $=1$
Standard deviation $=1$
(iii) Given :

To find : mean (u), variance $\left(\sigma^{2}\right)$ and standard deviation (σ)
Formula used :

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}$
Standard deviation $=\sqrt{E\left(X^{2}\right)-E(X)^{2}}$
Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)+\mathrm{x}_{4} \mathrm{P}\left(\mathrm{x}_{4}\right)$
Mean $=E(X)=-3(0.2)+(-1)(0.4)+0(0.3)+2(0.1)=-0.6-0.4+0+0.2=-0.8$
Mean $=E(X)=-0.8$
$\mathrm{E}(\mathrm{X})^{2}=(-0.8)^{2}=0.64$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)+\left(\mathrm{x}_{4}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{4}\right)$
$E\left(X^{2}\right)=(-3)^{2}(0.2)+(-1)^{2}(0.4)+(0)^{2}(0.3)+(2)^{2}(0.1)=1.8+0.4+0+0.4=2.6$
$E\left(X^{2}\right)=2.6$
Variance $=E\left(X^{2}\right)-E(X)^{2}=2.6-0.64=1.96$
Variance $=E\left(X^{2}\right)-E(X)^{2}=1.96$
Standard deviation $=\sqrt{\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}}=\sqrt{1.96}=1.4$
Mean $=-0.8$
Variance $=1.96$
Standard deviation $=1.4$
(iv) Given :

To find : mean (u), variance (σ^{2}) and standard deviation (σ)
Formula used :

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$
Standard deviation $=\sqrt{\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}}$
Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)+\mathrm{x}_{4} \mathrm{P}\left(\mathrm{x}_{4}\right)+\mathrm{x}_{5} \mathrm{P}\left(\mathrm{x}_{5}\right)$

Mean $=E(X)=-2(0.1)+(-1)(0.2)+0(0.4)+1(0.2)+2(0.1)$
Mean $=E(X)=-0.2-0.2+0+0.2+0.2=0$
Mean $=E(X)=0$
$\mathrm{E}(\mathrm{X})^{2}=(0)^{2}=0$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)+\left(\mathrm{x}_{4}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{4}\right)+\left(\mathrm{x}_{5}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{5}\right)$
$E\left(X^{2}\right)=(-2)^{2}(0.1)+(-1)^{2}(0.2)+(0)^{2}(0.4)+(1)^{2}(0.2)+(2)^{2}(0.1)$
$E\left(X^{2}\right)=0.4+0.2+0+0.2+0.4=1.2$
$E\left(X^{2}\right)=1.2$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=1.2-0=1.2$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=1.2$
Standard deviation $=\sqrt{\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}}=\sqrt{1.2}=1.095$
Mean $=0$
Variance $=1.2$
Standard deviation $=1.095$

2. Question

Find the mean and variance of the number of heads when two coins are tossed simultaneously.

Answer

Given : Two coins are tossed simultaneously
To find : mean (u), variance (σ^{2})
Formula used :

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)$
When two coins are tossed simultaneously,
Total possible outcomes $=\Pi T, T H, H T, H H$ where H denotes head and T denotes tail.
$P(0)=\frac{1}{4}($ zero heads $=1[T T])$
$P(1)=\frac{2}{4}$ (one heads $=2[\mathrm{HT}, \mathrm{TH}]$)
$P(2)=\frac{1}{4}$ (two heads $=1[H H]$)
The probability distribution table is as follows,

$$
\begin{aligned}
& \text { Mean }=\mathrm{E}(\mathrm{X})=0\left(\frac{1}{4}\right)+1\left(\frac{2}{4}\right)+2\left(\frac{1}{4}\right)=0+\frac{2}{4}+\frac{2}{4}=\frac{4}{4}=1 \\
& \text { Mean }=\mathrm{E}(\mathrm{X})=1 \\
& \mathrm{E}(\mathrm{X})^{2}=(1)^{2}=1 \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right) \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=(0)^{2}\left(\frac{1}{4}\right)+(1)^{2}\left(\frac{2}{4}\right)+(2)^{2}\left(\frac{1}{4}\right)=0+\frac{2}{4}+\frac{4}{4}=\frac{6}{4}=\frac{3}{2}=1.5 \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=1.5
\end{aligned}
$$

Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=1.5-1=0.5$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=0.5$
Mean $=1$
Variance $=0.5$

3. Question

Find the mean and variance of the number of tails when three coins are tossed simultaneously.

Answer

Given : Three coins are tossed simultaneously
To find : mean (u) and variance (σ^{2})
Formula used :

	x_{1}	x_{2}	x_{3}	x_{4}
()	(1)	(2)	(3)	(4)

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$
Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)$
When three coins are tossed simultaneously,
Total possible outcomes $=\mathrm{TT}, \mathrm{TTH}, \mathrm{THT}, \mathrm{HTT}, \mathrm{THH}, \mathrm{HTH}, \mathrm{HHT}, \mathrm{HHH}$ where H denotes head and T denotes tail.
$P(0)=\frac{1}{8}($ zero tails $=1[\mathrm{HHH}])$
$P(1)=\frac{3}{8}($ one tail $=3[H T H, T H H, H H T])$
$\mathrm{P}(2)=\frac{3}{8}($ two tail $=3[\mathrm{HTT}, \mathrm{THT}, \mathrm{TH}])$
$P(3)=\frac{1}{8}($ three tails $=1[T T])$
The probability distribution table is as follows,

$$
\begin{aligned}
& \text { Mean }=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)+\mathrm{x}_{4} \mathrm{P}\left(\mathrm{x}_{4}\right) \\
& \text { Mean }=\mathrm{E}(\mathrm{X})=0\left(\frac{1}{8}\right)+1\left(\frac{3}{8}\right)+2\left(\frac{3}{8}\right)+3\left(\frac{1}{8}\right)=0+\frac{3}{8}+\frac{6}{8}+\frac{3}{8}=\frac{3+6+3}{8}=\frac{12}{8}=\frac{3}{2} \\
& \text { Mean }=\mathrm{E}(\mathrm{X})=\frac{3}{2}=1.5 \\
& \mathrm{E}(\mathrm{X})^{2}=(1.5)^{2}=2.25 \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)+\left(\mathrm{x}_{4}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{4}\right) \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=(0)^{2}\left(\frac{1}{8}\right)+(1)^{2}\left(\frac{3}{8}\right)+(2)^{2}\left(\frac{3}{8}\right)+(3)^{2}\left(\frac{1}{8}\right)=0+\frac{3}{8}+\frac{12}{8}+\frac{9}{8}=\frac{3+12+9}{8}=\frac{24}{8}=3 \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=3
\end{aligned}
$$

Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=3-2.25=0.75$
Variance $=E\left(X^{2}\right)-E(X)^{2}=0.75$
Mean $=1.5$
Variance $=0.75$

4. Question

A die is tossed twice. 'Getting an odd number on a toss' is considered a success. Find the probability distribution of a number of successes. Also, find the mean and variance of the number of successes.

Answer

Given : A die is tossed twice and 'Getting an odd number on a toss' is considered a success.
To find : probability distribution of the number of successes and mean (u) and variance (σ^{2}) Formula used :

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$
Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)$

When a die is tossed twice,
Total possible outcomes =
$\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
'Getting an odd number on a toss' is considered a success.
$P(0)=\frac{9}{36}=\frac{1}{4}($ zero odd numbers $=9)$
$P(1)=\frac{18}{36}=\frac{1}{2}($ one odd number $=18)$
$P(2)=\frac{9}{36}=\frac{1}{4}$ (two odd numbers $=9$)
The probability distribution table is as follows,

Mean $=\mathrm{E}(\mathrm{X})=0\left(\frac{1}{4}\right)+1\left(\frac{1}{2}\right)+2\left(\frac{1}{4}\right)=0+\frac{2}{4}+\frac{2}{4}=\frac{4}{4}=1$
Mean $=E(X)=1$
$\mathrm{E}(\mathrm{X})^{2}=(1)^{2}=1$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)$
$E\left(X^{2}\right)=(0)^{2}\left(\frac{1}{4}\right)+(1)^{2}\left(\frac{2}{4}\right)+(2)^{2}\left(\frac{1}{4}\right)=0+\frac{2}{4}+\frac{4}{4}=\frac{6}{4}=\frac{3}{2}=1.5$
$E\left(X^{2}\right)=1.5$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=1.5-1=0.5$

Variance $=E\left(X^{2}\right)-E(X)^{2}=0.5$
The probability distribution table is as follows,

	0	1	2
()	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Mean $=1$
Variance $=0.5$

5. Question

A die is tossed twice. 'Getting a number greater than 4 ' is considered a success. Find the probability distribution of a number of successes. Also, find the mean and variance of the number of successes.

Answer

Given : A die is tossed twice and 'Getting a number greater than 4 ' is considered a success.
To find : probability distribution of the number of successes and mean (u) and variance $\left(\sigma^{2}\right)$
Formula used :

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}$
Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)$
When a die is tossed twice,
Total possible outcomes $=$
$\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
'Getting a number greater than 4 ' is considered a success.
$P(0)=\frac{16}{36}=\frac{4}{9}$ (zero numbers greater than $4=16$)
$P(1)=\frac{16}{36}=\frac{4}{9}$ (one number greater than $4=16$)
$P(2)=\frac{4}{36}=\frac{1}{9}$ (two numbers greater than $4=4$)
The probability distribution table is as follows,

Mean $=E(X)=0\left(\frac{4}{9}\right)+1\left(\frac{4}{9}\right)+2\left(\frac{1}{9}\right)=0+\frac{4}{9}+\frac{2}{9}=\frac{4+2}{9}=\frac{6}{9}=\frac{2}{3}$
Mean $=E(X)=\frac{2}{3}$
$\mathrm{E}(\mathrm{X})^{2}=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)$
$E\left(X^{2}\right)=(0)^{2}\left(\frac{4}{9}\right)+(1)^{2}\left(\frac{4}{9}\right)+(2)^{2}\left(\frac{1}{9}\right)=0+\frac{4}{9}+\frac{4}{9}=\frac{8}{9}$
$E\left(X^{2}\right)=\frac{8}{9}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{8}{9}-\frac{4}{9}=\frac{4}{9}$

Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{4}{9}$
The probability distribution table is as follows,

Mean $=\frac{2}{3}$
Variance $=\frac{4}{9}$

6. Question

A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of a number of successes, find the probability distribution of the number of successes. Also, find the mean and variance of a number of successes. [CBSE 2008]

Answer

Given : A die is tossed twice and 'Getting a number greater than 4 ' is considered a success.
To find : probability distribution of the number of successes and mean (u) and variance $\left(\sigma^{2}\right)$
Formula used :

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$
When a die is tossed 4 times,

Total possible outcomes $=6^{2}=36$
Getting a doublet is considered as a success
The possible doublets are $(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)$
Let p be the probability of success,
$p=\frac{6}{36}=\frac{1}{6}$
$q=1-p=1-\frac{1}{6}=\frac{5}{6}$
$q=\frac{5}{6}$
since the die is thrown 4 times, $\mathrm{n}=4$
x can take the values of $1,2,3,4$
$P(x)={ }^{n} C_{x} p^{x} q^{n-x}$
$P(0)={ }^{4} C_{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{4}=\frac{625}{1296}$
$P(1)={ }^{4} C_{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{3}=\frac{500}{1296}=\frac{125}{324}$
$P(2)={ }^{4} C_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{2}=\frac{150}{1296}=\frac{25}{216}$
$P(3)={ }^{4} C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{1}=\frac{20}{1296}=\frac{5}{324}$
$P(4)={ }^{4} C_{4}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{0}=\frac{1}{1296}$
The probability distribution table is as follows,

	0	1	2	3	4
	$\frac{625}{1296}$	$\frac{125}{324}$	$\frac{25}{216}$	$\frac{5}{324}$	$\frac{1}{1296}$

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)+\mathrm{x}_{4} \mathrm{P}\left(\mathrm{x}_{4}\right)+\mathrm{x}_{5} \mathrm{P}\left(\mathrm{x}_{5}\right)$
Mean $=\mathrm{E}(\mathrm{X})=0\left(\frac{625}{1296}\right)+1\left(\frac{125}{324}\right)+2\left(\frac{25}{216}\right)+3\left(\frac{5}{324}\right)+4\left(\frac{1}{1296}\right)$

Mean $=\mathrm{E}(\mathrm{X})=0+\frac{125}{324}+\frac{50}{216}+\frac{15}{324}+\frac{4}{1296}=\frac{500+300+60+4}{1296}=\frac{864}{1296}=\frac{2}{3}$
Mean $=E(X)=\frac{2}{3}$
$\mathrm{E}(\mathrm{X})^{2}=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)+\left(\mathrm{x}_{4}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{4}\right)+\left(\mathrm{x}_{5}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{5}\right)$
$E\left(X^{2}\right)=(0)^{2}\left(\frac{625}{1296}\right)+(1)^{2}\left(\frac{125}{324}\right)+(2)^{2}\left(\frac{25}{216}\right)+(3)^{2}\left(\frac{5}{324}\right)+(4)^{2}\left(\frac{1}{1296}\right)$
$E\left(X^{2}\right)=0+\frac{125}{324}+\frac{100}{216}+\frac{45}{324}+\frac{16}{1296}=\frac{500+600+180+16}{1296}=\frac{1296}{1296}$
$E\left(X^{2}\right)=1$
Variance $=E\left(X^{2}\right)-E(X)^{2}=1-\frac{4}{9}=\frac{5}{9}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{5}{9}$
The probability distribution table is as follows,

Mean $=\frac{2}{3}$
Variance $=\frac{5}{9}$

7. Question

A coin is tossed 4 times. Let X denote the number of heads. Find the probability distribution of X. also, find the mean and variance of X.

Answer

Given : A coin is tossed 4 times
To find : probability distribution of X and mean (u) and variance $\left(\sigma^{2}\right)$
Formula used :

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
	$\left(\left(_{1}\right)\right.$	(2)	(3)	(4)	(5)

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$
A coin is tossed 4 times,
Total possible outcomes $=2^{4}=16$
X denotes the number of heads
Let p be the probability of getting a head,
$p=\frac{1}{2}$
$\mathrm{q}=1-\mathrm{p}=1-\frac{1}{2}=\frac{1}{2}$
$q=\frac{1}{2}$
since the coin is tossed 4 times, $n=4$
X can take the values of $1,2,3,4$
$P(x)={ }^{n} C_{x} p^{x} q^{n-x}$
$P(0)={ }^{4} C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{4}=\frac{1}{16}$
$P(1)={ }^{4} C_{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{3}=\frac{4}{16}=\frac{1}{4}$
$P(2)={ }^{4} C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}=\frac{6}{16}=\frac{3}{8}$
$P(3)={ }^{4} C_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{1}=\frac{4}{16}=\frac{1}{4}$
$P(4)={ }^{4} C_{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{0}=\frac{1}{16}$
The probability distribution table is as follows,

	0	1	2	3	4
	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{1}{16}$

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)+\mathrm{x}_{4} \mathrm{P}\left(\mathrm{x}_{4}\right)+\mathrm{x}_{5} \mathrm{P}\left(\mathrm{x}_{5}\right)$
Mean $=E(X)=0\left(\frac{1}{16}\right)+1\left(\frac{1}{4}\right)+2\left(\frac{3}{8}\right)+3\left(\frac{1}{4}\right)+4\left(\frac{1}{16}\right)$
Mean $=E(X)=0+\frac{1}{4}+\frac{6}{8}+\frac{3}{4}+\frac{4}{16}=\frac{4+12+12+4}{16}=\frac{32}{16}=2$
Mean $=E(X)=2$
$\mathrm{E}(\mathrm{X})^{2}=(2)^{2}=4$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)+\left(\mathrm{x}_{4}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{4}\right)+\left(\mathrm{x}_{5}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{5}\right)$
$E\left(X^{2}\right)=(0)^{2}\left(\frac{1}{16}\right)+(1)^{2}\left(\frac{1}{4}\right)+(2)^{2}\left(\frac{3}{8}\right)+(3)^{2}\left(\frac{1}{4}\right)+(4)^{2}\left(\frac{1}{16}\right)$
$E\left(X^{2}\right)=0+\frac{1}{4}+\frac{12}{8}+\frac{9}{4}+\frac{16}{16}=\frac{0+4+24+36+16}{16}=\frac{80}{16}=5$
$E\left(X^{2}\right)=5$
Variance $=E\left(X^{2}\right)-E(X)^{2}=5-4=1$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=1$
The probability distribution table is as follows,

Mean $=2$

8. Question

Let X denote the number of times 'a total of 9 ' appears in two throws of a pair of dice. Find the probability distribution of X. Also, find the mean, variance and standard deviation of X.

Answer

Given : Let X denote the number of times 'a total of 9 ' appears in two throws of a pair of dice To find : probability distribution of X, mean (u) and variance (σ^{2}) and standard deviation Formula used :

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$
Standard deviation $=\sqrt{\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}}$
Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)$
When a die is tossed twice,
Total possible outcomes =
$\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
Let X denote the number of times 'a total of 9 ' appears in two throws of a pair of dice $p=\frac{4}{36}=\frac{1}{9}$
$\mathrm{q}=1-\frac{1}{9}=\frac{8}{9}$
Two dice are tossed twice, hence $\mathrm{n}=2$
$P(0)={ }^{2} C_{0}\left(\frac{1}{9}\right)^{0}\left(\frac{8}{9}\right)^{2}=\frac{64}{81}$
$P(1)={ }^{2} C_{1}\left(\frac{1}{9}\right)^{1}\left(\frac{8}{9}\right)^{1}=\frac{16}{81}$
$P(2)={ }^{2} C_{2}\left(\frac{1}{9}\right)^{2}\left(\frac{8}{9}\right)^{0}=\frac{1}{81}$
The probability distribution table is as follows,

Mean $=E(X)=0\left(\frac{64}{81}\right)+1\left(\frac{16}{81}\right)+2\left(\frac{1}{81}\right)=0+\frac{16}{81}+\frac{2}{81}=\frac{16+2}{81}=\frac{18}{81}=\frac{2}{9}$
Mean $=E(X)=\frac{2}{9}$
$E(X)^{2}=\left(\frac{2}{9}\right)^{2}=\frac{4}{81}$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)$
$E\left(X^{2}\right)=(0)^{2}\left(\frac{64}{81}\right)+(1)^{2}\left(\frac{16}{81}\right)+(2)^{2}\left(\frac{1}{81}\right)=0+\frac{16}{81}+\frac{4}{81}=\frac{20}{81}$
$E\left(X^{2}\right)=\frac{20}{81}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{20}{81}-\frac{4}{81}=\frac{16}{81}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{16}{81}$
Standard deviation $=\sqrt{\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}}=\sqrt{\frac{16}{81}}=\frac{4}{9}$
The probability distribution table is as follows,

	0	1	2
()	$\frac{64}{81}$	$\frac{16}{81}$	$\frac{1}{81}$

Mean $=\frac{2}{9}$
Variance $=\frac{16}{81}$
Standard deviation $=\frac{4}{9}$

9. Question

There are 5 cards, numbers 1 to 5 , one number on each card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two cards drawn. Find the mean and variance of X.

Answer

Given : There are 5 cards, numbers 1 to 5, one number on each card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two cards drawn.

To find : mean (u) and variance $\left(\sigma^{2}\right)$ of X
Formula used :

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
	$\left(\left(_{1}\right)\right.$	(2)	$\left(\left(_{3}\right)\right.$	(4)	(5)	(6)	(7)	$\left({ }_{8}\right)$

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$
There are 5 cards, numbers 1 to 5 , one number on each card. Two cards are drawn at random without replacement.
X denote the sum of the numbers on two cards drawn
The minimum value of X will be 3 as the two cards drawn are 1 and 2
The maximum value of X will be 9 as the two cards drawn are 4 and 5
For $X=3$ the two cards can be $(1,2)$ and $(2,1)$
For $X=4$ the two cards can be $(1,3)$ and $(3,1)$
For $X=5$ the two cards can be $(1,4),(4,1),(2,3)$ and $(3,2)$
For $X=6$ the two cards can be $(1,5),(5,1),(2,4)$ and $(4,2)$
For $X=7$ the two cards can be $(3,4),(4,3),(2,5)$ and $(5,2)$
For $X=8$ the two cards can be $(5,3)$ and $(3,5)$
For $X=9$ the two cards can be $(4,5)$ and $(4,5)$
Total outcomes $=20$
$P(3)=\frac{2}{20}=\frac{1}{10}$
$P(4)=\frac{2}{20}=\frac{1}{10}$
$P(5)=\frac{4}{20}=\frac{1}{5}$
$P(6)=\frac{4}{20}=\frac{1}{5}$
$P(7)=\frac{4}{20}=\frac{1}{5}$
$P(8)=\frac{2}{20}=\frac{1}{10}$
$P(9)=\frac{2}{20}=\frac{1}{10}$
The probability distribution table is as follows,

x_{i}	3	4	5	6	7	8	9
P_{i}	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{10}$	$\frac{1}{10}$

$$
\begin{aligned}
& \text { Mean }=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)+\mathrm{x}_{4} \mathrm{P}\left(\mathrm{x}_{4}\right)+\mathrm{x}_{5} \mathrm{P}\left(\mathrm{x}_{5}\right)+\mathrm{x}_{6} \mathrm{P}\left(\mathrm{x}_{6}\right)+\mathrm{x}_{7} \mathrm{P}\left(\mathrm{x}_{7}\right) \\
& \text { Mean }=\mathrm{E}(\mathrm{X})=3\left(\frac{1}{10}\right)+4\left(\frac{1}{10}\right)+5\left(\frac{1}{5}\right)+6\left(\frac{1}{5}\right)+7\left(\frac{1}{5}\right)+8\left(\frac{1}{10}\right)+9\left(\frac{1}{10}\right) \\
& \text { Mean }=\mathrm{E}(\mathrm{X})=\frac{3}{10}+\frac{4}{10}+\frac{5}{5}+\frac{6}{5}+\frac{7}{5}+\frac{8}{10}+\frac{9}{10}=\frac{3+4+10+12+14+8+9}{10}=\frac{60}{10}=6 \\
& \text { Mean }=\mathrm{E}(\mathrm{X})=6 \\
& \mathrm{E}(\mathrm{X})^{2}=(6)^{2}=36 \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)+\left(\mathrm{x}_{4}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{4}\right)+\left(\mathrm{x}_{5}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{5}\right)+ \\
& \left(\mathrm{x}_{6}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{6}\right)+\left(\mathrm{x}_{7}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{7}\right) \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=(3)^{2}\left(\frac{1}{10}\right)+(4)^{2}\left(\frac{1}{10}\right)+(5)^{2}\left(\frac{1}{5}\right)+(6)^{2}\left(\frac{1}{5}\right)+(7)^{2}\left(\frac{1}{5}\right)+(8)^{2}\left(\frac{1}{10}\right)+(9)^{2}\left(\frac{1}{10}\right) \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=\frac{9}{10}+\frac{16}{10}+\frac{25}{5}+\frac{36}{5}+\frac{49}{5}+\frac{64}{10}+\frac{81}{10}=\frac{9+16+50+72+98+64+81}{10}=\frac{390}{10}=39 \\
& \mathrm{E}\left(\mathrm{X}^{2}\right)=39
\end{aligned}
$$

Variance $=E\left(X^{2}\right)-E(X)^{2}=39-36=3$
Variance $=E\left(X^{2}\right)-E(X)^{2}=3$
Mean $=6$
Variance $=3$

10. Question

Two cards are drawn from a well-shuffled pack of 52 cards. Find the probability distribution of a number of kings. Also, compute the variance for the number of kings. [CBSE 2007]

Answer

Given : Two cards are drawn from a well-shuffled pack of 52 cards.
To find : probability distribution of the number of kings and variance (σ^{2})
Formula used :

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$
Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)$
Two cards are drawn from a well-shuffled pack of 52 cards.
Let X denote the number of kings in the two cards
There are 4 king cards present in a pack of well-shuffled pack of 52 cards.
$P(0)=\frac{4 \frac{8}{2} \mathrm{C}}{5{ }_{2} \mathrm{C}}=\frac{48 \times 47}{52 \times 51}=\frac{189}{221}$
$\mathrm{P}(1)=\frac{{ }_{1}^{48} \mathrm{C} \times{ }_{1}^{4} \mathrm{C}}{{ }_{52} \mathrm{C}}=\frac{48 \times 4 \times 2}{52 \times 51}=\frac{32}{221}$
$P(2)=\frac{{ }_{2}^{4} \mathrm{C}}{{ }_{52}^{2} \mathrm{C}}=\frac{4 \times 3}{52 \times 51}=\frac{1}{221}$
The probability distribution table is as follows,

Mean $=\mathrm{E}(\mathrm{X})=0\left(\frac{189}{221}\right)+1\left(\frac{32}{221}\right)+2\left(\frac{1}{221}\right)=0+\frac{32}{221}+\frac{2}{221}=\frac{32+2}{221}=\frac{34}{221}$
Mean $=E(X)=\frac{34}{221}$
$\mathrm{E}(\mathrm{X})^{2}=\left(\frac{34}{221}\right)^{2}=\frac{1156}{48841}$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)$
$E\left(X^{2}\right)=(0)^{2}\left(\frac{189}{221}\right)+(1)^{2}\left(\frac{32}{221}\right)+(2)^{2}\left(\frac{1}{221}\right)=0+\frac{32}{221}+\frac{4}{221}=\frac{36}{221}$
$E\left(X^{2}\right)=\frac{36}{221}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{36}{221}-\frac{1156}{48841}=\frac{7956-1156}{48841}=\frac{6800}{48841}=\frac{400}{2873}$

Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=\frac{400}{2873}$
The probability distribution table is as follows,

Variance $=\frac{400}{2873}$

11. Question

A box contains 16 bulbs, out of which 4 bulbs are defective. Three bulbs are drawn at random from the box. Let X be the number of defective bulbs drawn. Find the mean and variance of X.

Answer

Given : A box contains 16 bulbs, out of which 4 bulbs are defective. Three bulbs are drawn at random
To find: mean (u) and variance $\left(\sigma^{2}\right)$
Formula used :

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}$
Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)$
A box contains 16 bulbs, out of which 4 bulbs are defective. Three bulbs are drawn at random Let X denote the number of defective bulbs drawn

There are 4 defective bulbs present in 16 bulbs
$P(0)=\frac{{ }_{3}^{12} \mathrm{C}}{{ }_{3}^{16} \mathrm{C}}=\frac{12 \times 11 \times 10}{16 \times 15 \times 14}=\frac{11}{28}$
$\mathrm{P}(1)=\frac{{ }_{2}^{12} \mathrm{C} \times{ }_{1}^{4} \mathrm{C}}{{ }_{3}^{16} \mathrm{C}}=\frac{12 \times 11 \times 4 \times 3 \times 2}{16 \times 15 \times 14 \times 2}=\frac{33}{70}$
$\mathrm{P}(2)=\frac{{ }_{1}^{12} \mathrm{C} \times{ }_{2}^{4} \mathrm{C}}{{ }_{3}^{16} \mathrm{C}}=\frac{12 \times 4 \times 3 \times 3 \times 2}{16 \times 15 \times 14 \times 2}=\frac{9}{70}$
$P(3)=\frac{{ }_{3}^{4} \mathrm{C}}{{ }_{3}^{6} \mathrm{C}}=\frac{4 \times 3 \times 2}{16 \times 15 \times 14}=\frac{1}{14 \mathrm{O}}$
The probability distribution table is as follows,

	0	1	2	3
()	$\frac{11}{28}$	$\frac{33}{70}$	$\frac{9}{70}$	$\frac{1}{140}$

Mean $=E(X)=0\left(\frac{11}{28}\right)+1\left(\frac{33}{70}\right)+2\left(\frac{9}{70}\right)+3\left(\frac{1}{140}\right)=0+\frac{33}{70}+\frac{18}{70}+\frac{3}{140}=\frac{66+36+3}{140}$
Mean $=E(X)=\frac{105}{140}=\frac{3}{4}$
$\mathrm{E}(\mathrm{X})^{2}=\left(\frac{3}{4}\right)^{2}=\frac{9}{16}$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)$
$E\left(X^{2}\right)=(0)^{2}\left(\frac{11}{28}\right)+(1)^{2}\left(\frac{33}{70}\right)+(2)^{2}\left(\frac{9}{70}\right)+(3)^{2}\left(\frac{1}{140}\right)=0+\frac{33}{70}+\frac{36}{70}+\frac{9}{140}=\frac{66+72+9}{140}$
$E\left(X^{2}\right)=\frac{147}{140}$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=\frac{147}{140}-\frac{9}{16}=\frac{588-315}{560}=\frac{273}{560}=\frac{39}{80}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{39}{80}$
Mean $=E(X)=\frac{3}{4}$
Variance $=\frac{39}{80}$

12. Question

20% of the bulbs produced by a machine are defective. Find the probability distribution of the number of defective bulbs in a sample of 4 bulbs chosen at random. [CBSE 2004C]

Answer

Given : 20% of the bulbs produced by a machine are defective.
To find probability distribution of a number of defective bulbs in a sample of 4 bulbs chosen at random.

Formula used :
The probability distribution table is given by,

Where $P(x)={ }^{n} C_{x} p^{x} q^{n-x}$
Here p is the probability of getting a defective bulb.
$q=1-p$
Let the total number of bulbs produced by a machine be x
20% of the bulbs produced by a machine are defective.
Number of defective bulbs produced by a machine $=\frac{20}{100} \times(x)=\frac{x}{5}$
X denotes the number of defective bulbs in a sample of 4 bulbs chosen at random.
Let p be the probability of getting a defective bulb,
$p=\frac{\frac{x}{5}}{x}=\frac{1}{5}$
$p=\frac{1}{5}$
$\mathrm{q}=1-\mathrm{p}=1-\frac{1}{5}=\frac{4}{5}$
$q=\frac{4}{5}$
since 4 bulbs are chosen at random, $n=4$
X can take the values of $0,1,2,3,4$
$P(x)={ }^{n} C_{x} p^{x} q^{n-x}$
$P(0)={ }^{4} C_{0}\left(\frac{1}{5}\right)^{0}\left(\frac{4}{5}\right)^{4}=\frac{256}{625}$
$P(1)={ }^{4} C_{1}\left(\frac{1}{5}\right)^{1}\left(\frac{4}{5}\right)^{3}=\frac{256}{625}$
$P(2)={ }^{4} C_{2}\left(\frac{1}{5}\right)^{2}\left(\frac{4}{5}\right)^{2}=\frac{96}{625}$
$P(3)={ }^{4} C_{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{1}=\frac{16}{625}$
$P(4)={ }^{4} C_{4}\left(\frac{1}{2}\right)^{4}\left(\frac{4}{5}\right)^{0}=\frac{1}{625}$
The probability distribution table is as follows,

	0	1	2	3	4
	$\frac{256}{625}$	$\frac{256}{625}$	$\frac{96}{625}$	$\frac{16}{625}$	$\frac{1}{625}$

13. Question

Four bad eggs are mixed with 10 good ones. Three eggs are drawn one by one without replacement. Let X be the number of bad eggs drawn. Find the mean and variance of X.

Answer

Given : Four bad eggs are mixed with 10 good ones. Three eggs are drawn one by one without replacement.

To find : mean (u) and variance (σ^{2})
Formula used :

x_{1}	x_{2}	x_{3}	
()	(1)	(2)	(3)

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$
Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)$
Four bad eggs are mixed with 10 good ones. Three eggs are drawn one by one without replacement.
Let X denote the number of bad eggs drawn
There are 4 bad eggs present in 14 eggs
$P(0)=\frac{{ }_{3}^{10} \mathrm{C}}{{ }_{3}^{14} \mathrm{C}}=\frac{10 \times 9 \times 8}{14 \times 13 \times 12}=\frac{30}{91}$
$P(1)=\frac{{ }_{2}^{10} \mathrm{C} \times{ }_{1}^{4} \mathrm{C}}{{ }_{3}^{14} \mathrm{C}}=\frac{10 \times 9 \times 4 \times 3 \times 2}{14 \times 13 \times 12 \times 2}=\frac{45}{91}$
$\mathrm{P}(2)=\frac{{ }_{1}^{10} \mathrm{C} \times{ }_{2}^{4} \mathrm{C}}{{ }_{3}^{14} \mathrm{C}}=\frac{10 \times 4 \times 3 \times 3 \times 2}{14 \times 13 \times 12 \times 2}=\frac{15}{91}$
$P(3)=\frac{{ }_{3}^{4} \mathrm{C}}{{ }_{3}^{4} \mathrm{C}}=\frac{4 \times 3 \times 2}{14 \times 13 \times 12}=\frac{1}{91}$
The probability distribution table is as follows,

	0	1	2	3
()	$\frac{30}{91}$	$\frac{45}{91}$	$\frac{15}{91}$	$\frac{1}{91}$

Mean $=E(X)=0\left(\frac{30}{91}\right)+1\left(\frac{45}{91}\right)+2\left(\frac{15}{91}\right)+3\left(\frac{1}{91}\right)=0+\frac{45}{91}+\frac{30}{91}+\frac{3}{91}=\frac{45+30+3}{91}$

Mean $=E(X)=\frac{78}{91}=\frac{6}{7}$
$\mathrm{E}(\mathrm{X})^{2}=\left(\frac{6}{7}\right)^{2}=\frac{36}{49}$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)$
$E\left(X^{2}\right)=(0)^{2}\left(\frac{30}{91}\right)+(1)^{2}\left(\frac{45}{91}\right)+(2)^{2}\left(\frac{15}{91}\right)+(3)^{2}\left(\frac{1}{91}\right)=0+\frac{45}{91}+\frac{60}{91}+\frac{9}{91}=\frac{45+60+9}{91}$
$E\left(X^{2}\right)=\frac{114}{91}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{114}{91}-\frac{36}{49}=\frac{798-468}{637}=\frac{330}{637}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{330}{637}$
Mean $=E(X)=\frac{6}{7}$
Variance $=\frac{330}{637}$

14. Question

Four rotten oranges are accidentally mixed with 16 good ones. Three oranges are drawn at random from the mixed lot. Let X be the number of rotten oranges drawn. Find the mean and variance of X.

Answer

Given : Four rotten oranges are mixed with 16 good ones. Three oranges are drawn one by one without replacement.

To find: mean (u) and variance $\left(\sigma^{2}\right)$
Formula used :

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$
Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)$

Four rotten oranges are mixed with 16 good ones. Three oranges are drawn one by one without replacement.

Let X denote the number of rotten oranges drawn
There are 4 rotten oranges present in 20 oranges
$P(0)=\frac{{ }_{3}^{16} \mathrm{C}}{{ }_{3}{ }^{0} \mathrm{C}}=\frac{16 \times 15 \times 14}{20 \times 19 \times 1 \mathrm{~g}}=\frac{28}{57}$
$\mathrm{P}(1)=\frac{{ }_{2}^{16} \mathrm{C} \times{ }_{1}^{4} \mathrm{C}}{{ }_{3}^{20} \mathrm{C}}=\frac{16 \times 15 \times 4 \times 3 \times 2}{20 \times 19 \times 18 \times 2}=\frac{8}{19}$
$\mathrm{P}(2)=\frac{{ }_{1}^{16} \mathrm{C} \times{ }_{2}^{4} \mathrm{C}}{{ }_{3}^{20} \mathrm{C}}=\frac{16 \times 4 \times 3 \times 3 \times 2}{20 \times 19 \times 18 \times 2}=\frac{8}{95}$
$P(3)=\frac{{ }_{3}^{4} \mathrm{C}}{{ }_{3}^{20} \mathrm{C}}=\frac{4 \times 3 \times 2}{20 \times 19 \times 1 \mathrm{~g}}=\frac{1}{285}$
The probability distribution table is as follows,

	0	1	2	3
()	$\frac{28}{57}$	$\frac{8}{19}$	$\frac{8}{95}$	$\frac{1}{285}$

Mean $=\mathrm{E}(\mathrm{X})=0\left(\frac{28}{57}\right)+1\left(\frac{8}{19}\right)+2\left(\frac{8}{95}\right)+3\left(\frac{1}{285}\right)=0+\frac{8}{19}+\frac{16}{95}+\frac{3}{285}=\frac{120+48+3}{285}$
Mean $=E(X)=\frac{171}{285}=\frac{3}{5}$
$\mathrm{E}(\mathrm{X})^{2}=\left(\frac{3}{5}\right)^{2}=\frac{9}{25}$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)$
$E\left(X^{2}\right)=(0)^{2}\left(\frac{28}{57}\right)+(1)^{2}\left(\frac{8}{19}\right)+(2)^{2}\left(\frac{8}{95}\right)+(3)^{2}\left(\frac{1}{285}\right)=0+\frac{8}{19}+\frac{32}{95}+\frac{9}{285}=\frac{120+96+9}{285}$
$E\left(X^{2}\right)=\frac{225}{285}=\frac{15}{19}$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=\frac{15}{19}-\frac{9}{25}=\frac{375-171}{475}=\frac{204}{475}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{204}{475}$

Mean $=E(X)=\frac{3}{5}$
Variance $=\frac{204}{475}$

15. Question

Three balls are drawn simultaneously from a bag containing 5 white and 4 red balls. Let X be the number of red balls drawn. Find the mean and variance of X.

Answer

Given : Three balls are drawn simultaneously from a bag containing 5 white and 4 red balls.
To find : mean (u) and variance $\left(\sigma^{2}\right)$ of X
Formula used :

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$

$$
\text { Mean }=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)
$$

Three balls are drawn simultaneously from a bag containing 5 white and 4 red balls.
Let X be the number of red balls drawn.
$P(0)=\frac{{ }_{3}^{5} \mathrm{C}}{{ }_{3}^{9} \mathrm{C}}=\frac{5 \times 4}{9 \times 8 \times 7}=\frac{5}{126}$
$\mathrm{P}(1)=\frac{{ }_{2}^{5} \mathrm{C} \times{ }_{1}^{4} \mathrm{C}}{{ }_{3}^{9} \mathrm{C}}=\frac{5 \times 4 \times 4 \times 3 \times 2}{9 \times 8 \times 7 \times 2}=\frac{10}{21}$
$\mathrm{P}(2)=\frac{{ }_{1}^{5} \mathrm{C} \times{ }_{2}^{4} \mathrm{C}}{{ }_{3}^{9} \mathrm{C}}=\frac{5 \times 4 \times 3 \times 3 \times 2}{9 \times 8 \times 7 \times 2}=\frac{5}{14}$
$P(3)=\frac{{ }_{3}^{4} \mathrm{C}}{{ }_{3} \mathrm{C} \mathrm{C}}=\frac{4 \times 3 \times 2}{9 \times 8 \times 7}=\frac{1}{21}$
The probability distribution table is as follows,

	0	1	2	3
()	$\frac{5}{126}$	$\frac{10}{21}$	$\frac{5}{14}$	$\frac{1}{21}$

Mean $=E(X)=0\left(\frac{5}{126}\right)+1\left(\frac{10}{21}\right)+2\left(\frac{5}{14}\right)+3\left(\frac{1}{21}\right)=0+\frac{10}{21}+\frac{10}{14}+\frac{3}{21}=\frac{20+30+6}{42}$
Mean $=E(X)=\frac{56}{42}=\frac{4}{3}$
$\mathrm{E}(\mathrm{X})^{2}=\left(\frac{4}{3}\right)^{2}=\frac{16}{9}$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)$
$E\left(X^{2}\right)=(0)^{2}\left(\frac{5}{126}\right)+(1)^{2}\left(\frac{10}{21}\right)+(2)^{2}\left(\frac{5}{14}\right)+(3)^{2}\left(\frac{1}{21}\right)=0+\frac{10}{21}+\frac{20}{14}+\frac{9}{21}=\frac{20+60+18}{42}$
$E\left(X^{2}\right)=\frac{98}{42}=\frac{7}{3}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{7}{3}-\frac{16}{9}=\frac{21-16}{9}=\frac{5}{9}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{5}{9}$
Mean $=E(X)=\frac{4}{3}$
Variance $=\frac{5}{9}$

16. Question

Two cards are drawn without replacement from a well-shuffled deck of 52 cards. Let X be the number of face cards drawn. Find the mean and variance of X.

Answer

Given : Two cards are drawn without replacement from a well-shuffled deck of 52 cards.
To find: mean (u) and variance $\left(\sigma^{2}\right)$ of X
Formula used :

x_{1}	x_{2}	x_{3}	
()	(1)	(2)	(3)

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$
Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)$
Two cards are drawn without replacement from a well-shuffled deck of 52 cards.
Let X denote the number of face cards drawn
There are 12 face cards present in 52 cards
$P(0)=\frac{{ }_{2}^{40} \mathrm{C}}{{ }_{5}^{5} \mathrm{C}}=\frac{40 \times 39}{52 \times 51}=\frac{10}{17}$
$P(1)=\frac{{ }_{1}^{40} \mathrm{C} \times{ }_{1}^{12} \mathrm{C}}{{ }_{2}^{52} \mathrm{C}}=\frac{40 \times 12 \times 2}{52 \times 51}=\frac{80}{221}$
$P(2)=\frac{{ }_{2}^{12} \mathrm{C}}{{ }_{2}^{22} \mathrm{C}}=\frac{12 \times 11}{52 \times 51}=\frac{11}{221}$
The probability distribution table is as follows,

	0	1	2
()	$\frac{10}{17}$	$\frac{80}{221}$	$\frac{11}{221}$

Mean $=\mathrm{E}(\mathrm{X})=0\left(\frac{10}{17}\right)+1\left(\frac{80}{221}\right)+2\left(\frac{11}{221}\right)=0+\frac{80}{221}+\frac{22}{221}=\frac{80+22}{221}=\frac{102}{221}=\frac{6}{13}$
Mean $=E(X)=\frac{6}{13}$
$\mathrm{E}(\mathrm{X})^{2}=\left(\frac{6}{13}\right)^{2}=\frac{36}{169}$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)$
$E\left(X^{2}\right)=(0)^{2}\left(\frac{10}{17}\right)+(1)^{2}\left(\frac{80}{221}\right)+(2)^{2}\left(\frac{11}{221}\right)=0+\frac{80}{221}+\frac{44}{221}=\frac{80+44}{221}$
$E\left(X^{2}\right)=\frac{124}{221}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{124}{221}-\frac{36}{169}=\frac{1612-612}{2873}=\frac{1000}{2873}$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=\frac{1000}{2873}$
Mean $=E(X)=\frac{6}{13}$
Variance $=\frac{1000}{2873}$

17. Question

Two cards are drawn one by one with replacement from a well-shuffled deck of 52 cars. Find the mean and variance of the number of aces.

Answer

Given : Two cards are drawn with replacement from a well-shuffled deck of 52 cards.
To find: mean (u) and variance $\left(\sigma^{2}\right)$ of X
Formula used :

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=E\left(X^{2}\right)-E(X)^{2}$
Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)$
Two cards are drawn with replacement from a well-shuffled deck of 52 cards.
Let X denote the number of ace cards drawn

There are 4 face cards present in 52 cards
X can take the value of $0,1,2$.
$P(0)=\frac{48}{52} \times \frac{48}{52}=\frac{144}{169}$
$\mathrm{P}(1)={ }_{1}^{2} \mathrm{C} \times \frac{4}{52} \times \frac{48}{52}=\frac{2 \times 4 \times 48}{52 \times 52}=\frac{24}{169}$
$P(2)=\frac{4}{52} \times \frac{4}{52}=\frac{1}{169}$
The probability distribution table is as follows,

	0	1	2
()	$\frac{144}{169}$	$\frac{24}{169}$	$\frac{1}{169}$

Mean $=E(X)=0\left(\frac{144}{169}\right)+1\left(\frac{24}{169}\right)+2\left(\frac{1}{169}\right)=0+\frac{24}{169}+\frac{2}{169}=\frac{24+2}{169}=\frac{26}{169}=\frac{2}{13}$
Mean $=E(X)=\frac{2}{13}$
$E(X)^{2}=\left(\frac{2}{13}\right)^{2}=\frac{4}{169}$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=(0)^{2}\left(\frac{144}{169}\right)+(1)^{2}\left(\frac{24}{169}\right)+(2)^{2}\left(\frac{1}{169}\right)=0+\frac{24}{169}+\frac{4}{169}=\frac{28}{169}$
$E\left(X^{2}\right)=\frac{28}{169}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{28}{169}-\frac{4}{169}=\frac{24}{169}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{24}{169}$
Mean $=E(X)=\frac{2}{13}$
Variance $=\frac{24}{169}$

18. Question

Three cards are drawn successively with replacement from a well - shuffled deck of 52 cards. A random variable X denotes the number of hearts in the three cards drawn. Find the mean and variance of X.

Answer

Given : Three cards are drawn successively with replacement from a well - shuffled deck of 52 cards.
To find : mean (u) and variance $\left(\sigma^{2}\right)$ of X
Formula used :

Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}$
Mean $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{i=n} x_{i} P\left(x_{i}\right)=\mathrm{x}_{1} \mathrm{P}\left(\mathrm{x}_{1}\right)+\mathrm{x}_{2} \mathrm{P}\left(\mathrm{x}_{2}\right)+\mathrm{x}_{3} \mathrm{P}\left(\mathrm{x}_{3}\right)$
Three cards are drawn successively with replacement from a well - shuffled deck of 52 cards.
Let X be the number of hearts drawn.
Number of hearts in 52 cards is 13
$P(0)=\frac{39}{52} \times \frac{39}{52} \times \frac{39}{52}=\frac{27}{64}$
$\mathrm{P}(1)={ }_{1}^{3} \mathrm{C} \times \frac{13}{52} \times \frac{39}{52} \times \frac{39}{52}=\frac{27}{64}$
$P(2)={ }_{2}^{3} \mathrm{C} \times \frac{13}{52} \times \frac{13}{52} \times \frac{39}{52}=\frac{9}{64}$
$P(3)=\frac{13}{52} \times \frac{13}{52} \times \frac{13}{52}=\frac{1}{64}$
The probability distribution table is as follows,

	0	1	2	3
()	$\frac{27}{64}$	$\frac{27}{64}$	$\frac{9}{64}$	$\frac{1}{64}$

Mean $=\mathrm{E}(\mathrm{X})=0\left(\frac{27}{64}\right)+1\left(\frac{27}{64}\right)+2\left(\frac{9}{64}\right)+3\left(\frac{1}{64}\right)=0+\frac{27}{64}+\frac{18}{64}+\frac{3}{64}=\frac{48}{64}=\frac{3}{4}$
Mean $=E(X)=\frac{3}{4}$
$\mathrm{E}(\mathrm{X})^{2}=\left(\frac{3}{4}\right)^{2}=\frac{9}{16}$
$\mathrm{E}\left(\mathrm{X}^{2}\right)=\sum_{i=1}^{i=n}\left(x_{i}\right)^{2} \cdot P\left(x_{i}\right)=\left(\mathrm{x}_{1}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{1}\right)+\left(\mathrm{x}_{2}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)^{2} \cdot \mathrm{P}\left(\mathrm{x}_{3}\right)$
$E\left(X^{2}\right)=(0)^{2}\left(\frac{27}{64}\right)+(1)^{2}\left(\frac{27}{64}\right)+(2)^{2}\left(\frac{9}{64}\right)+(3)^{2}\left(\frac{1}{64}\right)=0+\frac{27}{64}+\frac{36}{64}+\frac{9}{64}=\frac{72}{64}=\frac{9}{8}$
$E\left(X^{2}\right)=\frac{9}{8}$
Variance $=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=\frac{9}{8}-\frac{9}{16}=\frac{18-9}{16}=\frac{9}{16}$
Variance $=E\left(X^{2}\right)-E(X)^{2}=\frac{9}{16}$
Mean $=E(X)=\frac{3}{4}$
Variance $=\frac{9}{16}$

19. Question

Five defective bulbs are accidently mixed with 20 good ones. It is not possible to just look at a bulb and tell whether or not it is defective. Find the probability distribution from this lot.

Answer

Given : Five defective bulbs are accidently mixed with 20 good ones.
To find : probability distribution from this lot
Formula used :

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
	$\left(\left(_{1}\right)\right.$	(2)	(3)	(4)	(5)

Five defective bulbs are accidently mixed with 20 good ones.
Total number of bulbs $=25$
X denote the number of defective bulbs drawn
X can draw the value $0,1,2,3,4$.
since the number of bulbs drawn is $4, n=4$
$P(0)=P($ getting a no defective bulb $)=\frac{{ }_{4}^{20} \mathrm{C}}{{ }_{4}^{5} \mathrm{C}}=\frac{20 \times 19 \times 18 \times 17}{25 \times 24 \times 23 \times 22}=\frac{969}{2530}$
$P(1)=P($ getting 1 defective bulb and 3 good ones $)=\frac{{ }_{1}^{5} \mathrm{C} \times{ }_{3}^{20} \mathrm{C}}{{ }_{4}^{25} \mathrm{C}}=\frac{5 \times 20 \times 19 \times 18 \times 4}{25 \times 24 \times 23 \times 22}$
$P(1)=\frac{1140}{2530}=\frac{114}{253}$
$P(2)=P($ getting 2 defective bulbs and 2 good one $)=\frac{{ }_{2}^{5} \mathrm{C} \times{ }_{2}^{20} \mathrm{C}}{{ }_{4}^{25} \mathrm{C}}$
$P(2)=\frac{5 \times 4 \times 20 \times 19 \times 4 \times 3 \times 2}{25 \times 24 \times 23 \times 22 \times 2 \times 2}=\frac{380}{2530}=\frac{38}{253}$
$P(3)=P($ getting 3 defective bulbs and 1 good one $)=\frac{{ }_{3}^{5} \mathrm{C} \times{ }_{1}^{20} \mathrm{C}}{{ }_{2}^{5} \mathrm{C}} \frac{5 \times 4 \times 20 \times 4 \times 3 \times 2}{25 \times 24 \times 23 \times 22 \times 2}$
$P(3)=\frac{40}{2530}=\frac{4}{253}$
$P(4)=P($ getting all defective bulbs $)=\frac{{ }_{4}^{5} \mathrm{C}}{{ }_{4}^{5} \mathrm{C}}=\frac{5 \times 4 \times 3 \times 2}{25 \times 24 \times 23 \times 22}=\frac{1}{2530}$
$P(4)=\frac{1}{2530}$
The probability distribution table is as follows,

	0	1	2	3	4
$\frac{969}{2530}$	$\frac{114}{253}$	$\frac{38}{253}$	$\frac{4}{253}$	$\frac{1}{2530}$	

