Solution Of Triangles

Exercise 18A

Q. 1. In any $\triangle A B C$, prove that
$a(b \cos C-c \cos B)=\left(b^{2}-c^{2}\right)$
Answer : Left hand side,
$a(b \cos C-c \cos B)$
$=a b \cos C-a c \cos B$
$=a b \frac{a^{2}+b^{2}-c^{2}}{2 a b}-a c \frac{a^{2}+c^{2}-b^{2}}{2 a c}\left[A s, \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \& \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}\right]$
$=\frac{a^{2}+b^{2}-c^{2}}{2}-\frac{a^{2}+c^{2}-b^{2}}{2}$
$=\frac{a^{2}+b^{2}-c^{2}-a^{2}-c^{2}+b^{2}}{2}$
$=\frac{2\left(\mathrm{~b}^{2}-\mathrm{c}^{2}\right)}{2}$
$=b^{2}-c^{2}$
$=$ Right hand side. [Proved]
Q. 2. In any $\triangle A B C$, prove that
$a c \cos B-b c \cos A=\left(a^{2}-b^{2}\right)$
Answer : Left hand side,
$a c \cos B-b c \cos A$
$=a c \frac{a^{2}+c^{2}-b^{2}}{2 a c}-b c \frac{b^{2}+c^{2}-a^{2}}{2 b c}\left[A S, \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right]$
$=\frac{\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}}{2}-\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2}$
$=\frac{a^{2}+c^{2}-b^{2}-b^{2}-c^{2}+a^{2}}{2}$
$=\frac{2\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}{2}$
$=a^{2}-b^{2}$
$=$ Right hand side. [Proved]
Q. 3. In any $\triangle A B C$, prove that
$\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{\left(a^{2}+b^{2}+c^{2}\right)}{2 a b c}$

Answer:

Need to prove: $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{\left(\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)}{2 \mathrm{abc}}$

Left hand side
$=\frac{\cos \mathrm{A}}{\mathrm{a}}+\frac{\cos \mathrm{B}}{\mathrm{b}}+\frac{\cos \mathrm{C}}{\mathrm{c}}$
$=\frac{b^{2}+c^{2}-a^{2}}{2 a b c}+\frac{c^{2}+a^{2}-b^{2}}{2 a b c}+\frac{a^{2}+b^{2}-c^{2}}{2 a b c}$
$=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}{2 \mathrm{abc}}$
$=$ Right hand side. [Proved]
Q. 4. In any $\triangle A B C$, prove that

$$
\frac{c-b \cos A}{b-c \cos A}=\frac{\cos B}{\cos C}
$$

Answer :

Need to prove: $\frac{\mathrm{c}-\mathrm{b} \cos \mathrm{A}}{\mathrm{b}-\mathrm{c} \cos \mathrm{A}}=\frac{\cos \mathrm{B}}{\cos \mathrm{C}}$

Left hand side
$=\frac{c-b \cos A}{b-c \cos A}$
$=\frac{c-b \frac{b^{2}+c^{2}-a^{2}}{2 b c}}{b-c \frac{b^{2}+c^{2}-a^{2}}{2 b c}}$
$=\frac{\frac{2 c^{2}-b^{2}-c^{2}+a^{2}}{2 c}}{\frac{2 b^{2}-b^{2}-c^{2}+a^{2}}{2 b}}$
$=\frac{\frac{c^{2}+a^{2}-b^{2}}{2 c}}{\frac{b^{2}+a^{2}-c^{2}}{2 b}}$
$=\frac{\frac{c^{2}+a^{2}-b^{2}}{22 a c}}{\frac{b^{2}+a^{2}-c^{2}}{2 a b}}$ [Multiplying the numerator and denominator by $\frac{1}{a}$]
$=\frac{\cos B}{\cos C}$
$=$ Right hand side. [Proved]

Q. 5. In any $\triangle A B C$, prove that

$2(b c \cos A+c a \cos B+a b \cos C)=\left(a^{2}+b^{2}+c^{2}\right)$
Answer : Need to prove: $2(b c \cos A+c a \cos B+a b \cos C)=\left(a^{2}+b^{2}+c^{2}\right)$
Left hand side
$2(b c \cos A+c a \cos B+a b \cos C)$

$$
\begin{aligned}
& 2\left(b c \frac{b^{2}+c^{2}-a^{2}}{2 b c}+c a \frac{c^{2}+a^{2}-b^{2}}{2 c a}+a b \frac{a^{2}+b^{2}-c^{2}}{2 a b}\right) \\
& b^{2}+c^{2}-a^{2}+c^{2}+a^{2}-b^{2}+a^{2}+b^{2}-c^{2} \\
& a^{2}+b^{2}+c^{2}
\end{aligned}
$$

Right hand side. [Proved]
Q. 6. In any $\triangle A B C$, prove that
$4\left(b c \cos ^{2} \frac{\mathrm{~A}}{2}+c a \cos ^{2} \frac{\mathrm{~B}}{2}+a b \cos ^{2} \frac{\mathrm{C}}{2}\right)=(\mathrm{a}+\mathrm{b}+\mathrm{c})^{2}$
Answer :

Need to prove: $4\left(b c \cos ^{2} \frac{A}{2}+\operatorname{cacs}^{2} \frac{B}{2}+a b \cos ^{2} \frac{C}{2}\right)=(a+b+c)^{2}$

Right hand side

$$
\begin{aligned}
& =4\left(b c \cos ^{2} \frac{A}{2}+\operatorname{ca~}^{2} \cos ^{2} \frac{B}{2}+a b \cos ^{2} \frac{C}{2}\right) \\
& =4\left(b c \frac{s(s-a)}{b c}+c a \frac{s(s-b)}{c a}+a b \frac{s(s-c)}{a b}\right), \text { where } s \text { is half of perimeter of triangle. } \\
& =4(s(s-a)+s(s-b)+s(s-c)) \\
& =4\left(3 s^{2}-s(a+b+c)\right)
\end{aligned}
$$

We know, $2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}$

So, $4\left(3\left(\frac{a+b+c}{2}\right)^{2}-\frac{(a+b+c)^{2}}{2}\right)$
$=4\left(3 \frac{(a+b+c)^{2}}{4}-\frac{(a+b+c)^{2}}{2}\right)$
$=4\left(\frac{3(a+b+c)^{2}-2(a+b+c)}{4}\right)$
$=3(a+b+c)^{2}-2(a+b+c)^{2}$
$=(a+b+c)^{2}$
$=$ Right hand side. [Proved]

Q. 7. In any $\triangle A B C$, prove that

$a \sin A-b \sin B=c \sin (A-B)$
Answer : Need to prove: $a \sin A-b \sin B=c \sin (A-B)$
Left hand side,
$=a \sin A-b \sin B$
$=(b \cos C+c \cos B) \sin A-(c \cos A+a \cos C) \sin B$
$=b \cos C \sin A+c \cos B \sin A-c \cos A \sin B-a \cos C \sin B$
$=c(\sin A \cos B-\cos A \sin B)+\cos C(b \sin A-a \sin B)$
We know that, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$ where R is the circumradius.
Therefore,
$=c(\sin A \cos B-\cos A \sin B)+\cos C(2 R \sin B \sin A-2 R \sin A \sin B)$
$=c(\sin A \cos B-\cos A \sin B)$
$=C \sin (A-B)$
= Right hand side. [Proved]

Q. 8. In any $\triangle A B C$, prove that

$a^{2} \boldsymbol{\operatorname { s i n }}(B-C)=\left(b^{2}-c^{2}\right) \boldsymbol{\operatorname { s i n }} A$
Answer : Need to prove: $a^{2} \sin (B-C)=\left(b^{2}-c^{2}\right) \sin A$
We know that, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$ where R is the circumradius.
Therefore,
$a=2 R \sin A---(a)$
Similarly, $b=2 R \sin B$ and $c=2 R \sin C$
From Right hand side,
$=\left(b^{2}-c^{2}\right) \sin A$
$=\left\{(2 R \sin B)^{2}-(2 R \sin C)^{2}\right\} \sin A$
$=4 R^{2}\left(\sin ^{2} B-\sin ^{2} C\right) \sin A$
We know, $\sin ^{2} B-\sin ^{2} C=\sin (B+C) \sin (B-C)$
So,
$=4 R^{2}(\sin (B+C) \sin (B-C)) \sin A$
$=4 R^{2}\left(\sin \left({ }^{\pi}-A\right) \sin (B-C)\right) \sin A[A s, A+B+C=\pi]$
$=4 R^{2}(\sin A \sin (B-C)) \sin A[A s, \sin (\pi-\theta)=\sin \theta]$
$=4 R^{2} \sin ^{2} A \sin (B-C)$
$=a^{2} \sin (B-C)[$ From (a)]
= Left hand side. [Proved]
Q. 9. In any $\triangle A B C$, prove that
$\frac{\sin (A-B)}{\sin (A+B)}=\frac{\left(a^{2}-b^{2}\right)}{c^{2}}$
Answer :
Need to prove: $\frac{\sin (A-B)}{\sin (A+B)}=\frac{\left(a^{2}-b^{2}\right)}{c^{2}}$

We know that, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$ where R is the circumradius.
Therefore,
$a=2 R \sin A---(a)$

Similarly, $b=2 R \sin B$ and $c=2 R \sin C$
From Right hand side,

$$
=\frac{a^{2}-b^{2}}{c^{2}}
$$

$$
=\frac{4 R^{2} \sin ^{2} A-4 R^{2} \sin ^{2} B}{4 R^{2} \sin ^{2} C}
$$

$$
=\frac{4 R 2\left(\sin ^{2} A-\sin ^{2} B\right)}{4 R^{2} \sin ^{2} C}
$$

$$
=\frac{\sin (A+B) \sin (A-B)}{\sin ^{2} C}
$$

$$
=\frac{\sin (A+B) \sin (A-B)}{\sin ^{2}(\pi-(A+B))}
$$

$$
=\frac{\sin (A+B) \sin (A-B)}{\sin ^{2}(A+B)}
$$

$$
=\frac{\sin (A-B)}{\sin (A+B)}
$$

$=$ Left hand side. [Proved]
Q. 10. In any $\triangle A B C$, prove that

$$
\frac{(b-c)}{a} \cos \frac{A}{2}=\sin \frac{(B-C)}{2}
$$

Answer:

Need to prove: $\frac{(b-c)}{a} \cos \frac{A}{2}=\sin \frac{(B-C)}{2}$

We know that, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$ where R is the circumradius.

Therefore,
$a=2 R \sin A---(a)$
Similarly, $b=2 R \sin B$ and $c=2 R \sin C$
From Left hand side,

$$
\begin{aligned}
& =\frac{2 R \sin B-2 R \sin C}{2 R \sin A} \cos \frac{A}{2} \\
& =\frac{2 \cos \left(\frac{B+C}{2}\right) \sin \left(\frac{B-C}{2}\right)}{\sin A} \cos \frac{A}{2} \\
& =\frac{2 \sin \left(\frac{B-C}{2}\right) \cos \left(\frac{\pi}{2}-\frac{A}{2}\right)}{\sin A} \cos \frac{A}{2} \\
& =\frac{2 \cos ^{2} \frac{A}{2} \sin \left(\frac{B-C}{2}\right)}{\sin A} \\
& =\frac{\sin A \sin \left(\frac{B-C}{2}\right)}{\sin A} \\
& =\sin \frac{B-C}{A} \\
& =\text { Right hand side. [Proved] }
\end{aligned}
$$

Q. 11. In any $\triangle A B C$, prove that

$$
\frac{(a+b)}{c} \sin \frac{C}{2}=\cos \frac{(A-B)}{2}
$$

Answer:

Need to prove: $\frac{(\mathrm{a}+\mathrm{b})}{\mathrm{c}} \sin \frac{\mathrm{C}}{2}=\cos \frac{(\mathrm{A}-\mathrm{B})}{2}$

We know that, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$ where R is the circumradius.

Therefore,

$a=2 R \sin A---(a)$

Similarly, $b=2 R \sin B$ and $c=2 R \sin C$

Now, $\frac{a+b}{c}=\frac{2 R(\sin A+\sin B)}{2 R \sin C}=\frac{\sin A+\sin B}{\sin C}$

Therefore, $\frac{c}{a+b}=\frac{\sin C}{\sin A+\sin B}=\frac{2 \sin \frac{C}{2} \cos \frac{C}{2}}{2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{c}{a+b}=\frac{\sin \frac{C}{2} \cos \frac{C}{2}}{\sin \left(\frac{\pi}{2}-\frac{C}{2}\right) \cos \frac{A-B}{2}} \\
& \Rightarrow \frac{c}{a+b}=\frac{\sin \frac{C}{2} \cos \frac{c}{2}}{\cos \frac{C}{2} \cos \frac{A-B}{2}} \\
& \Rightarrow \frac{c}{a+b}=\frac{\sin \frac{C}{2}}{\cos \frac{A-B}{2}} \\
& \Rightarrow \frac{a+b}{c} \sin \frac{C}{2}=\cos \frac{A-B}{2}[\text { Proved] }
\end{aligned}
$$

Q. 12. In any $\triangle A B C$, prove that

$$
\frac{(\mathrm{b}+\mathrm{c})}{\mathrm{a}} \cdot \cos \frac{(\mathrm{~B}+\mathrm{C})}{2}=\cos \frac{(\mathrm{B}-\mathrm{C})}{2}
$$

Answer:

Need to prove: $\frac{(\mathrm{b}+\mathrm{c})}{\mathrm{a}} \cdot \cos \frac{(\mathrm{B}+\mathrm{C})}{2}=\cos \frac{(\mathrm{B}-\mathrm{C})}{2}$

We know that, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$ where R is the circumradius.

Therefore,

$$
a=2 R \sin A----(a)
$$

Similarly, $b=2 R \sin B$ and $c=2 R \sin C$

$$
\text { Now, } \frac{a}{b+c}=\frac{2 R \sin A}{2 R \sin B+2 R \sin C}=\frac{\sin A}{\sin B+\sin C}
$$

$$
\Rightarrow \frac{\mathrm{a}}{\mathrm{~b}+\mathrm{c}}=\frac{2 \sin \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~A}}{\frac{2}{2}}}{2 \sin \frac{\mathrm{~B}+\mathrm{C}}{2} \cos \frac{\mathrm{~B}-\mathrm{c}}{2}}
$$

$$
\Rightarrow \frac{\mathrm{a}}{\mathrm{~b}+\mathrm{c}}=\frac{\sin \frac{\mathrm{A}}{2} \cos \frac{\mathrm{~A}}{2}}{\sin \left(\frac{\pi}{2}-\frac{\mathrm{A}}{2}\right) \cos \frac{\mathrm{BCc}}{2}}
$$

$$
\Rightarrow \frac{\mathrm{a}}{\mathrm{~b}+\mathrm{c}}=\frac{\sin \frac{\mathrm{A}}{2} \cos \frac{\mathrm{~A}}{2}}{\cos \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~B}-\mathrm{C}}{2}}
$$

$\Rightarrow \frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}=\frac{\cos \left(\frac{\pi}{2}-\frac{\mathrm{A}}{2}\right)}{\cos \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)}$
$\Rightarrow \frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}=\frac{\cos \left(\frac{\pi-\mathrm{A}}{2}\right)}{\cos \left(\frac{\mathrm{B}-\mathrm{C}}{2}\right)}$
$\Rightarrow \frac{a}{b+c}=\frac{\cos \left(\frac{B+C}{2}\right)}{\cos \left(\frac{B-C}{2}\right)}$
$\Rightarrow \frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}} \cos \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)=\cos \frac{\mathrm{B}-\mathrm{C}}{2}[$ Proved $]$

Q. 13. In any $\triangle A B C$, prove that

$a^{2}\left(\cos ^{2} B-\cos ^{2} C\right)+b^{2}\left(\cos ^{2} C-\cos ^{2} A\right)+c^{2}\left(\cos ^{2} A-\cos ^{2} B\right)=0$
Answer : Need to prove: $a^{2}\left(\cos ^{2} B-\cos ^{2} C\right)+b^{2}\left(\cos ^{2} C-\cos ^{2} A\right)+c^{2}\left(\cos ^{2} A-\cos ^{2} B\right)=$ 0

From left hand side,
$=a^{2}\left(\cos ^{2} B-\cos ^{2} C\right)+b^{2}\left(\cos ^{2} C-\cos ^{2} A\right)+c^{2}\left(\cos ^{2} A-\cos ^{2} B\right)$
$=a^{2}\left(\left(1-\sin ^{2} B\right)-\left(1-\sin ^{2} C\right)\right)+b^{2}\left(\left(1-\sin ^{2} C\right)-\left(1-\sin ^{2} A\right)\right)+c^{2}\left(\left(1-\sin ^{2} A\right)-\left(1-\sin ^{2} B\right)\right)$
$=a^{2}\left(-\sin ^{2} B+\sin ^{2} C\right)+b^{2}\left(-\sin ^{2} C+\sin ^{2} A\right)+c^{2}\left(-\sin ^{2} A+\sin ^{2} B\right)$
We know that, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$ where R is the circumradius.
Therefore,
$a=2 R \sin A---(a)$
Similarly, $b=2 R \sin B$ and $c=2 R \sin C$
So,
$=4 R^{2}\left[\sin ^{2} A\left(-\sin ^{2} B+\sin ^{2} C\right)+\sin ^{2} B\left(-\sin ^{2} C+\sin ^{2} A\right)+\sin ^{2} C\left(-\sin ^{2} A+\sin ^{2} B\right)\right.$
$=4 R^{2}\left[-\sin ^{2} A \sin ^{2} B+\sin ^{2} A \sin ^{2} C-\sin ^{2} B \sin ^{2} C+\sin ^{2} A \sin ^{2} B-\sin ^{2} A \sin ^{2} C+\sin ^{2} B \sin ^{2} C\right]$
$=4 R^{2}[0]$
$=0$ [Proved]
Q. 14. In any $\triangle A B C$, prove that

$$
\frac{\left(\cos ^{2} \mathrm{~B}-\cos ^{2} \mathrm{C}\right)}{\mathrm{b}+\mathrm{c}}+\frac{\left(\cos ^{2} \mathrm{C}-\cos ^{2} \mathrm{~A}\right)}{\mathrm{c}+\mathrm{a}}+\frac{\left(\cos ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~B}\right)}{\mathrm{a}+\mathrm{b}}=0
$$

Answer :

Need to prove: $\frac{\left(\cos ^{2} \mathrm{~B}-\cos ^{2} \mathrm{C}\right)}{\mathrm{b}+\mathrm{c}}+\frac{\left(\cos ^{2} \mathrm{C}-\cos ^{2} \mathrm{~A}\right)}{\mathrm{c}+\mathrm{a}}+\frac{\left(\cos ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~B}\right)}{\mathrm{a}+\mathrm{b}}=0$

We know that, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$ where R is the circumradius.

Therefore,
$a=2 R \sin A---(a)$
Similarly, $b=2 R \sin B$ and $c=2 R \sin C$
From left hand side,

$$
\begin{aligned}
& =\frac{\left(\cos ^{2} B-\cos ^{2} C\right)}{b+c}+\frac{\left(\cos ^{2} C-\cos ^{2} A\right)}{c+a}+\frac{\left(\cos ^{2} A-\cos ^{2} B\right)}{a+b} \\
& =\frac{\left(1-\sin ^{2} B-1+\sin ^{2} C\right)}{b+c}+\frac{\left(1-\sin ^{2} C-1+\sin ^{2} A\right)}{c+a} \\
& +\frac{\left(1-\sin ^{2} A-1+\sin ^{2} B\right)}{a+b} \\
& =\frac{\sin ^{2} C-\sin ^{2} B}{b+c}+\frac{\sin ^{2} A-\sin ^{2} C}{c+a}+\frac{\sin ^{2} B-\sin ^{2} A}{a+b}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& =\frac{1}{2 R}\left[\frac{(\sin B+\sin C)(\sin C-\sin B)}{\sin B+\sin C}+\frac{(\sin A+\sin C)(\sin A-\sin C)}{\sin A+\sin C}\right. \\
& \left.\quad+\frac{(\sin A+\sin B)(\sin B-\sin A)}{\sin A+\sin B}\right] \\
& =\frac{1}{2 R}[\sin C-\sin B+\sin A-\sin C+\sin B-\sin A] \\
& =0[\text { Proved }]
\end{aligned}
$$

Q. 15. In any $\triangle A B C$, prove that

$$
\frac{\cos 2 \mathrm{~A}}{\mathrm{a}^{2}}-\frac{\cos 2 \mathrm{~B}}{\mathrm{~b}^{2}}=\left(\frac{1}{\mathrm{a}^{2}}-\frac{1}{\mathrm{~b}^{2}}\right)
$$

Answer :

Need to prove: $\frac{\cos 2 \mathrm{~A}}{\mathrm{a}^{2}}-\frac{\cos 2 \mathrm{~B}}{\mathrm{~b}^{2}}=\left(\frac{1}{\mathrm{a}^{2}}-\frac{1}{\mathrm{~b}^{2}}\right)$

Left hand side,
$=\frac{\cos 2 \mathrm{~A}}{\mathrm{a}^{2}}-\frac{\cos 2 \mathrm{~B}}{\mathrm{~b}^{2}}$
$=\frac{1-2 \sin ^{2} \mathrm{~A}}{\mathrm{a}^{2}}-\frac{1-2 \sin ^{2} \mathrm{~B}}{\mathrm{~b}^{2}}$
$=\frac{1}{a^{2}}-\frac{1}{b^{2}}+2\left(\frac{\sin ^{2} B}{b^{2}}-\frac{\sin ^{2} A}{a^{2}}\right)$

We know that, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$ where R is the circumradius.

Therefore,

$$
\frac{\sin ^{2} \mathrm{~B}}{\mathrm{~b}^{2}}-\frac{\sin ^{2} \mathrm{~A}}{\mathrm{a}^{2}}=\frac{1}{4 \mathrm{R}^{2}}-\frac{1}{4 \mathrm{R}^{2}}=0
$$

Hence,
$\frac{\cos 2 \mathrm{~A}}{\mathrm{a}^{2}}-\frac{\cos 2 \mathrm{~B}}{\mathrm{~b}^{2}}=\frac{1}{\mathrm{a}^{2}}-\frac{1}{\mathrm{~b}^{2}}[$ Proved $]$

Q. 16. In any $\triangle A B C$, prove that

$$
\left(c^{2}-a^{2}+b^{2}\right) \tan A=\left(a^{2}-b^{2}+c^{2}\right) \tan B=\left(b^{2}-c^{2}+a^{2}\right) \tan C
$$

Answer : Need to prove: $\left(c^{2}-a^{2}+b^{2}\right) \tan A=\left(a^{2}-b^{2}+c^{2}\right) \tan B=\left(b^{2}-c^{2}+a^{2}\right) \tan C$

We know,
$\tan A=\frac{a b c}{R} \frac{1}{b^{2}+c^{2}-a^{2}} \cdots(a)$

Similarly, $\tan B=\frac{a b c}{R} \frac{1}{c^{2}+a^{2}-b^{2}}$ and $\tan C=\frac{a b c}{R} \frac{1}{a^{2}+b^{2}-c^{2}}$

Therefore,
$\left(b^{2}+c^{2}-a^{2}\right) \tan A=\frac{a b c}{R}[$ from (a)]

Similarly,

$$
\left(c^{2}+a^{2}-b^{2}\right) \tan B=\frac{a b c}{R} \text { and }\left(a^{2}+b^{2}-c^{2}\right) \tan C=\frac{a b c}{R}
$$

Hence we can conclude comparing above equations,
$\left(\mathrm{c}^{2}-\mathrm{a}^{2}+\mathrm{b}^{2}\right) \tan \mathrm{A}=\left(\mathrm{a}^{2}-\mathrm{b}^{2}+\mathrm{c}^{2}\right) \tan \mathrm{B}=\left(\mathrm{b}^{2}-\mathrm{c}^{2}+\mathrm{a}^{2}\right) \tan \mathrm{C}$
[Proved]
Q. 17.

If in a $\triangle A B C, \angle C=90^{\circ}$, then prove that $\sin (A-B)=\frac{\left(a^{2}-b^{2}\right)}{\left(a^{2}+b^{2}\right)}$.

Answer : Given: $\angle \mathrm{C}=90^{\circ}$
Need to prove: $\sin (A-B)=\frac{\left(a^{2}-b^{2}\right)}{\left(a^{2}+b^{2}\right)}$
Here, $\angle \mathrm{C}=90^{\circ} ; \sin \mathrm{C}=1$
So, it is a Right-angled triangle.

And also, $a^{2}+b^{2}=c^{2}$
Now,

$$
\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2}-\mathrm{b}^{2}} \sin (\mathrm{~A}-\mathrm{B})=\frac{\mathrm{c}^{2}}{\mathrm{a}^{2}-\mathrm{b}^{2}} \sin (\mathrm{~A}-\mathrm{B})
$$

We know that, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$ where R is the circumradius.

Therefore,

$$
\begin{aligned}
& =\frac{4 R^{2} \sin ^{2} C}{4 R^{2} \sin ^{2} A-4 R^{2} \sin ^{2} B} \sin (A-B)=\frac{\sin (A-B)}{\sin ^{2} A-\sin ^{2} B}[A s, \sin C=1] \\
& =\frac{\sin (A-B)}{(\sin A+\sin B)(\sin A-\sin B)}=\frac{\sin (A-B)}{\left[2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}\right]\left[2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}\right]}
\end{aligned}
$$

$$
=\frac{\sin (A-B)}{2 \sin \frac{A+B}{2} \cos \frac{A+B}{2} \cdot 2 \sin \frac{A-B}{2} \cos \frac{A-B}{2}}=\frac{\sin (A-B)}{\sin (A+B) \sin (A-B)}
$$

$$
=\frac{1}{\sin (A+B)}
$$

$=\frac{1}{\sin (\pi-C)}=\frac{1}{\sin C}=1$

Therefore,

$\Rightarrow \frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{\mathrm{a}^{2}-\mathrm{b}^{2}} \sin (\mathrm{~A}-\mathrm{B})=1$
$\Rightarrow \sin (A-B)=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$ [Proved]
Q. 18. In a $\triangle A B C$, if $\frac{\cos A}{a}=\frac{\cos B}{b}$, show that the triangle is isosceles.

Answer :

Given: $\frac{\cos A}{a}=\frac{\cos B}{b}$

Need to prove: $\triangle A B C$ is isosceles.

$$
\begin{aligned}
& \frac{\cos A}{a}=\frac{\cos B}{b} \\
& \Rightarrow \frac{\sqrt{1-\sin ^{2} A}}{a}=\frac{\sqrt{1-\sin ^{2} B}}{b} \\
& \Rightarrow \frac{1-\sin ^{2} A}{a^{2}}=\frac{1-\sin ^{2} B}{b^{2}} \text { [Squaring both sides] } \\
& \Rightarrow \frac{1}{a^{2}}-\frac{\sin ^{2} A}{a^{2}}=\frac{1}{b^{2}}-\frac{\sin ^{2} B}{b^{2}}
\end{aligned}
$$

We know, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$

Therefore, $\frac{\sin ^{2} \mathrm{~A}}{\mathrm{a}^{2}}=\frac{\sin ^{2} \mathrm{~B}}{\mathrm{~b}^{2}}$

So,

$$
\Rightarrow \frac{1}{a^{2}}=\frac{1}{b^{2}}
$$

$\Rightarrow \mathrm{a}=\mathrm{b}$
That means a and b sides are of same length. Therefore, the triangle is isosceles. [Proved]
Q. 19. In a $\triangle A B C$, if $\sin ^{2} A+\sin ^{2} B=\sin ^{2} C$, show that the triangle is rightangled.

Answer : Given: $\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}=\sin ^{2} \mathrm{C}$
Need to prove: The triangle is right-angled
$\sin ^{2} A+\sin ^{2} B=\sin ^{2} C$
We know, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$
So,

$$
\sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}=\sin ^{2} \mathrm{C}
$$

$\frac{\mathrm{a}^{2}}{4 \mathrm{R}^{2}}+\frac{\mathrm{b}^{2}}{4 \mathrm{R}^{2}}=\frac{\mathrm{c}^{2}}{4 \mathrm{R}^{2}}$
$\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$
This is one of the properties of right angled triangle. And it is satisfied here. Hence, the triangle is right angled. [Proved]
Q. 20. Solve the triangle in which $\mathbf{a}=\mathbf{2} \mathbf{c m}, \mathbf{b}=\mathbf{1} \mathbf{c m}$ and $\mathbf{c}=\sqrt{3} \mathbf{c m}$.

Answer : Given: $\mathrm{a}=2 \mathrm{~cm}, \mathrm{~b}=1 \mathrm{~cm}$ and $\mathrm{c}=\sqrt{3} \mathrm{~cm}$
Perimeter $=\mathrm{a}+\mathrm{b}+\mathrm{c}=3+\sqrt{3} \mathrm{~cm}$

$$
\begin{aligned}
& \text { Area }=\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{\frac{3+\sqrt{3}}{2}\left(\frac{3+\sqrt{3}}{2}-2\right)\left(\frac{3+\sqrt{3}}{2}-1\right)\left(\frac{3+\sqrt{3}}{2}-\sqrt{3}\right)} \\
& =\sqrt{\frac{3+\sqrt{3}}{2} \cdot \frac{\sqrt{3}-1}{2} \cdot \frac{\sqrt{3}+1}{2} \cdot \frac{3-\sqrt{3}}{2}} \\
& =\sqrt{\frac{(9-3)(3-1)}{16}} \\
& =\sqrt{\frac{12}{16}}=\frac{2 \sqrt{3}}{4}=\frac{\sqrt{3}}{2} \mathrm{~cm}^{2}[\text { Proved }
\end{aligned}
$$

Q. 21. In a $\triangle A B C$, if $a=3 \mathrm{~cm}, b=5 \mathrm{~cm}$ and $c=7 \mathrm{~cm}$, find $\cos A, \cos B, \cos C$.

Answer : Given: $\mathrm{a}=3 \mathrm{~cm}, \mathrm{~b}=5 \mathrm{~cm}$ and $\mathrm{c}=7 \mathrm{~cm}$
Need to find: $\cos A, \cos B, \cos C$
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}=\frac{5^{2}+7^{2}-3^{2}}{2.5 .7}=\frac{65}{70}=\frac{13}{14}$
$\cos \mathrm{B}=\frac{\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{ca}}=\frac{7^{2}+3^{2}-5^{2}}{2.7 .3}=\frac{33}{42}$
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{3^{2}+5^{2}-7^{2}}{2.3 .5}=\frac{-15}{30}=-\frac{1}{2}$
Q. 22. If the angles of a triangle are in the ratio $1: 2: 3$, prove that its corresponding sides are in the ratio $1: \sqrt{3}: 2$.

Answer : Given: Angles of a triangle are in the ratio 1:2:3
Need to prove: Its corresponding sides are in the ratio $1: \sqrt{3}: 2$
Let the angles are $\mathrm{x}, 2 \mathrm{x}, 3 \mathrm{x}$
Therefore, $x+2 x+3 x=180^{\circ}$
$6 x=180^{\circ}$
$x=30^{\circ}$
So, the angles are $30^{\circ}, 60^{\circ}, 90^{\circ}$
So, the ratio of the corresponding sides are:
$=\sin 30^{\circ}: \sin 60^{\circ}: \sin 90^{\circ}$
$=2^{\frac{1}{2}}: \frac{\sqrt{3}}{2}: 1$

$$
=1: \sqrt{3}: 2 \text { [Proved] }
$$

Exercise 18B

Q. 1. Two boats leave a port at the same time. One travels 60 km in the direction \mathbf{N} $50^{\circ} \mathrm{E}$ while the other travels 50 km in the direction $\mathrm{S} 70^{\circ} \mathrm{E}$. What is the distance between the boats?

Answer :

Both the boats starts from A and boat 1 reaches at B and boat 2 reaches at C.
Here, $A B=60 \mathrm{Km}$ and $A C=50 \mathrm{Km}$
So, the net distance between ta boats is:

$$
\begin{aligned}
& |\overrightarrow{\mathrm{BC}}|=|\overrightarrow{\mathrm{AC}}-\overrightarrow{\mathrm{AB}}| \\
& =\sqrt{60^{2}+50^{2}-2 \cdot 60 \cdot 50 \cdot \cos 60^{0}} \\
& =\sqrt{3600+2500-3000} \\
& =55.67 \mathrm{Km}
\end{aligned}
$$

Q. 2. A town B is 12 km south and 18 km west of a town A. Show that the bearing of B from A is $S 56^{\circ} 20^{\prime} W$. Also, find the distance of B from A.

Answer:

Distance from A to B is $=\sqrt{12^{2}+18^{2}}=\sqrt{468}=21.63 \mathrm{Km}$

Let, bearing from A to B is ${ }^{\theta}$.
So, $\tan ^{\theta}=\frac{18}{12}=\frac{3}{2}$
$\theta=\tan ^{-1}\left(\frac{3}{2}\right)=56.31^{\circ}=56^{\circ} 20^{\prime}$
Q. 3. At the foot of a mountain, the angle of elevation of its summit is 45°. After ascending 1 km towards the mountain up an incline of 30°, the elevation changes to 60° (as shown in the given figure). Find the height of the mountain. [Given
: $\sqrt{3}=1.73$]

Answer : After ascending 1 km towards the mountain up an incline of 30°, the elevation changes to 60°

So, according to the figure given, $\mathrm{AB}=\mathrm{AF} \times \sin 30^{\circ}=(1 \times 0.5)=0.5 \mathrm{Km}$.
At point A the elevation changes to 60°.
In this figure, ${ }^{\Delta} \mathrm{ABF} \cong{ }^{\cong}$ ACS
Comparing these triangles, we get $\mathrm{AB}=\mathrm{AC}=0.5 \mathrm{Km}$
Now, CS $=A C \times \tan 60^{\circ}=(0.5 \times 1.73)=0.865 \mathrm{Km}$
Therefore, the total height of the mountain is = CS + DC
$=C S+B A$
$=(0.865+0.5) \mathrm{Km}$
$=1.365 \mathrm{Km}$

