Graphs Of Trigonometric

Exercise 19

Q. 1. Draw the graph of each of the following functions:
$\operatorname{Sin} 3 x$
Answer: To draw the graph of the curve $\sin (3 x)$ assume some standard angle measures which will help in locating the points and drawing the curve.

X	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	Π	$\frac{3 \pi}{2}$	2π
$\operatorname{Sin} 3 \mathrm{x}$	1	0	-1	0	1	0

Therefore, the graph of curve $\sin (3 x)$ can be drawn as

Here, the frequency of the function $\sin (x)$ is increased by 3 times.

Q. 2. Draw the graph of each of the following functions:

$3 \sin x$

Answer : To draw the graph of the curve $3 \sin (x)$ assume some standard angle measures which will help in locating the points and drawing the curve.

X	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	Π	$\frac{3 \pi}{2}$	2π
$3 \sin (\mathrm{x})$	$\frac{3}{2}$	$\frac{3 \sqrt{3}}{2}$	3	0	-3	0

Therefore, the graph of curve $3 \sin (x)$ can be drawn as

Here, the amplitude of the function $\sin (x)$ is increased by 3 times.

Q. 3. Draw the graph of each of the following functions:

$2 \sin 3 x$

Answer : To draw the graph of the curve $2 \sin (3 x)$ assume some standard angle measures which will help in locating the points and drawing the curve

X	$\frac{\pi}{2}$	Π	$\frac{3 \pi}{2}$	2π
$2 \sin (3 \mathrm{x})$	2	0	2	0

The graph looks like:

Q. 4. Draw the graph of each of the following functions:

$2 \cos 3 x$

Answer : To draw the graph of the curve $2 \cos (3 x)$ assume some standard angle measures which will help in locating the points and drawing the curve.

X	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$2 \cos (3 \mathrm{x})$	0	-2	0	-2	0	2

Therefore, the graph of curve $2 \cos (3 x)$ can be drawn as

Here, the amplitude and frequency of the function $\cos (x)$ is increased by 2 and 3 times respectively.
Q. 5. Draw the graph of each of the following functions:
$\sin \frac{x}{2}$

Answer: To draw the graph of the curve $\sin (x / 2)$ assume some standard angle measures which will help in locating the points and drawing the curve.

X	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\sin (\mathrm{x} / 2)$	$\frac{\sqrt{3}-1}{2 \sqrt{2}}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	1	$\frac{1}{\sqrt{2}}$	0

Therefore, the graph of curve $2 \cos (3 x)$ can be drawn as

Here, the frequency of the function $\sin (x)$ is decreased by 0.5 times.
Q. 6. Draw the graphs of $\mathbf{y}=\sin \mathbf{x}$ and $\mathrm{y}=\cos \mathrm{x} \operatorname{in}[0,2 \pi]$ on the same axes.

Answer : For sinx

X	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	Π	$\frac{3 \pi}{2}$	2π
Sinx	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0

For $\cos x$

x	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	Π	$\frac{3 \pi}{2}$	2π
$\cos \mathrm{x}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	-1	0	1

The green line represents curve for $\sin (x)$ and blue for $\cos (x)$ for $[0,2 \pi]$.
Q. 7. Draw the graphs of $\mathbf{y}=\boldsymbol{\operatorname { c o s }} \mathbf{x}$ and $\mathrm{y}=\cos 2 \mathrm{x}$ in $[0,2 \pi]$ on the same axes.

Answer : For cosx

x	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\cos \mathrm{x}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	-1	0	1

For $\cos (2 x)$

x	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\operatorname{Cos}(2 \mathrm{x})$	$\frac{1}{2}$	$-\frac{1}{2}$	-1	1	-1	1

The graph is:-

Blue line depicts curve $\cos (2 x)$
Purple lines depict $\cos (x)$.

