## Circle

## Exercise 21A

## Q. 1. Find the equation of a circle with

Centre ( 2,4 ) and radius 5
Answer : The general form of the equation of a circle is:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Where, $(\mathrm{h}, \mathrm{k})$ is the centre of the circle.
$r$ is the radius of the circle.
Substituting the centre and radius of the circle in he general form:
$\Rightarrow(x-2)^{2}+(y-4)^{2}=5^{2}$
$\Rightarrow(\mathrm{x}-2)^{2}+(\mathrm{y}-4)^{2}=25$


Ans; equation of a circle with Centre $(2,4)$ and radius 5 is:
$\Rightarrow(\mathrm{x}-2)^{2}+(\mathrm{y}-4)^{2}=25$

## Q. 2. Find the equation of a circle with

## Centre (-3,-2) and radius 6

Answer : The general form of the equation of a circle is:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Where, $(h, k)$ is the centre of the circle.
$r$ is the radius of the circle.
Substituting the centre and radius of the circle in he general form:
$\Rightarrow(x-(-3))^{2}+(y-(-2))^{2}=6^{2}$
$\Rightarrow(x+3)^{2}+(y+2)^{2}=36$
Ans; equation of a circle with Centre ( $-3,-2$ ) and radius 6 is:
$\Rightarrow(x+3)^{2}+(y+2)^{2}=36$

Q. 3. Find the equation of a circle with

Centre (a, a) and radius $\sqrt{2}$
Answer : The general form of the equation of a circle is:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Where, $(h, k)$ is the centre of the circle.
$r$ is the radius of the circle.
Substituting the centre and radius of the circle in he general form:
$\Rightarrow(x-a)^{2}+(y-a)^{2}=(\sqrt{ } 2)^{2}$
$\Rightarrow(x-a)^{2}+(y-a)^{2}=2$
Ans; equation of a circle with Centre ( $a, a$ ) and radius $\sqrt{ } \mathbf{2}$
is:
$(x-a)^{2}+(y-a)^{2}=2$

## Q. 4. Find the equation of a circle with

## Centre $(a \cos \propto, a \sin \propto)$ and radius a

Answer : The general form of the equation of a circle is:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Where, $(h, k)$ is the centre of the circle.
$r$ is the radius of the circle.
Substituting the centre and radius of the circle in he general form:

$$
\begin{aligned}
& (x-(a \cos \alpha))^{2}+(y-(a \sin \alpha))^{2}=a^{2} \\
& \Rightarrow(x-a \cos \alpha)^{2}+(y-a \sin \alpha)^{2}=a^{2} \\
& \Rightarrow x^{2}-2 x a \cos \alpha+a^{2} \cos ^{2} \alpha+y^{2}-2 y a \sin \alpha+a^{2} \sin ^{2} \alpha=a^{2} \\
& \Rightarrow x^{2}+y^{2}+a^{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)-2 a(x \cos \alpha+y \sin \alpha)=a^{2} \\
& \Rightarrow x^{2}+y^{2}+a^{2}-2 a(x \cos \alpha+y \sin \alpha)=a^{2} \ldots\left(\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=1\right) \\
& \Rightarrow x^{2}+y^{2}-2 a(x \cos \alpha+y \sin \alpha)=0
\end{aligned}
$$

Ans: equation of a circle with Centre $(a \cos \propto, a \sin \propto)$ and radius $a$ is:
$x^{2}+y^{2}-2 a(x \cos \alpha+y \sin \alpha)=0$
Q. 5. Find the equation of a circle with

Centre ( $-\mathrm{a},-\mathrm{b}$ ) and radius $\sqrt{a^{2}-b^{2}}$
Answer : The general form of the equation of a circle is:
$(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$
Where, $(\mathrm{h}, \mathrm{k})$ is the centre of the circle.
$r$ is the radius of the circle.
Substituting the centre and radius of the circle in he general form:
$\Rightarrow(x-(-a))^{2}+(y-(-b))^{2}=\sqrt{ }\left(a^{2} 2-b^{2} 2\right)^{2}$
$\Rightarrow(\mathrm{x}+\mathrm{a})^{2}+(\mathrm{y}+\mathrm{b})^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}$
$\Rightarrow x^{2}+2 x a+a^{2}+y^{2}+2 y a+b^{2}=a^{2}-b^{2}$
$\Rightarrow x^{2}+2 x a+y^{2}+2 y a=a^{2}-2 b^{2}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{a}(\mathrm{x}+\mathrm{y})=\mathrm{a}^{2}-2 \mathrm{~b}^{2}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{a}(\mathrm{x}+\mathrm{y})=\mathrm{a}^{2}-2 \mathrm{~b}^{2}$
Ans; equation of a circle with Centre ( $-\mathrm{a},-\mathrm{b}$ ) and radius
is:
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{a}(\mathrm{x}+\mathrm{y})=\mathrm{a}^{2}-2 \mathrm{~b}^{2}$

## Q. 6. Find the equation of a circle with

## Centre at the origin and radius 4

Answer : The general form of the equation of a circle is:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Where, $(h, k)$ is the centre of the circle.
$r$ is the radius of the circle.

Substituting the centre and radius of the circle in he general form:
$\Rightarrow(\mathrm{x}-0)^{2}+(\mathrm{y}-0)^{2}=4^{2}$
$\Rightarrow x^{2}+y^{2}=16$


Ans; equation of a circle with. Centre at the origin and radius 4 is:
$x^{2}+y^{2}=16$
Q. 7 A. Find the centre and radius of each of the following circles :
$(x-3)^{2}+(y-1)^{2}=9$
Answer : The general form of the equation of a circle is:
$(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$
Where, $(\mathrm{h}, \mathrm{k})$ is the centre of the circle.
$r$ is the radius of the circle.
Comparing the given equation of circle with general form we get:
$h=3, k=1, r^{2}=9$
$\Rightarrow$ centre $=(3,1)$ and radius $=3$ units.
Ans: centre $=(3,1)$ and radius $=3$ units.
Q. 7 B . Find the centre and radius of each of the following circles :
$\left(x-\frac{1}{2}\right)^{2}+\left(y+\frac{1}{3}\right)^{2}=\frac{1}{16}$
Answer : The general form of the equation of a circle is:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Where, $(h, k)$ is the centre of the circle.
$r$ is the radius of the circle.
Comparing the given equation of circle with general form we get:
$h=1 / 2, k=-1 / 3, r^{2}=1 / 16$
$\Rightarrow$ centre $=(1 / 2,-1 / 3)$ and radius $=1 / 4$ units.
Ans: centre $=(1 / 2,-1 / 3)$ and radius $=1 / 4$ units.
Q. 7 C. Find the centre and radius of each of the following circles :
$(x+5)^{2}+(y-3)^{2}=20$
Answer : The general form of the equation of a circle is:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Where, $(h, k)$ is the centre of the circle.
$r$ is the radius of the circle.
Comparing the given equation of circle with general form we get:
$h=-5, k=3, r^{2}=20$
$\Rightarrow$ centre $=(-5,3)$ and radius $=\sqrt{20}=2 \sqrt{ } 5$ units.
Ans: centre $=(-5,3)$ and radius $=2 \sqrt{ } 5$ units.
Q. 7 D. Find the centre and radius of each of the following circles :
$x^{2}+(y-1)^{2}=2$

Answer : The general form of the equation of a circle is:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Where, $(h, k)$ is the centre of the circle.
$r$ is the radius of the circle.
Comparing the given equation of circle with general form we get:
$h=0, k=1, r^{2}=2$
$\Rightarrow$ centre $=(0,1)$ and radius $=\sqrt{ } 2$ units.
Ans: centre $=(0,1)$ and radius $=\sqrt{ } 2$ units.
Q. 8. Find the equation of the circle whose centre is $(2,-5)$ and which passes through the point $(3,2)$.

Answer : The general form of the equation of a circle is:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Where, $(h, k)$ is the centre of the circle.
$r$ is the radius of the circle.
In this question we know that $(h, k)=(2,-5)$, so for determining the equation of the circle we need to determine the radius of the circle.


Since the circle passes through (3, 2), that pair of values for $x$ and $y$ must satisfy the equation and we have:
$\Rightarrow(3-2)^{2}+(2-(-5))^{2}=r^{2}$
$\Rightarrow 1^{2}+7^{2}=r^{2}$
$\Rightarrow r^{2}=49+1=50$
$\therefore \mathrm{r}^{2}=50$
$\Rightarrow$ Equation of circle is:
$(x-2)^{2}+(y-(-5))^{2}=50$
$\Rightarrow(x-2)^{2}+(y+5)^{2}=50$
Ans: $(x-2)^{2}+(y+5)^{2}=50$
Q. 9. Find the equation of the circle of radius 5 cm , whose centre lies on the y axis and which passes through the point (3, 2).

Answer : The general form of the equation of a circle is:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Where, $(h, k)$ is the centre of the circle.
$r$ is the radius of the circle.
Since, centre lies on $Y$ - axis, $\therefore$ it's $X$ - coordinate $=0$, i.e $. h=0$
Hence, $(0, k)$ is the centre of the circle.
Substituting the given values in general form of the equation of a circle we get,
$\Rightarrow(3-0)^{2}+(2-k)^{2}=5^{2}$
$\Rightarrow(3)^{2}+(2-k)^{2}=25$
$\Rightarrow 9+(2-k)^{2}=25$
$\Rightarrow(2-k)^{2}=25-9=16$
Taking square root on both sides we get,
$\Rightarrow 2-\mathrm{k}= \pm 4$
$\Rightarrow 2-\mathrm{k}=4 \& 2-\mathrm{k}=-4$
$\Rightarrow \mathrm{k}=2-4 \& \mathrm{k}=2+4$
$\Rightarrow \mathrm{k}=-2 \& \mathrm{k}=6$
$\therefore$ Equation of circle when $\mathrm{k}=-2$ is: $\mathrm{x}^{2}+(\mathrm{y}+2)^{2}=25$
Equation of circle when $k=6$ is: $x^{2}+(y-6)^{2}=25$
Ans: Equation of circle when $k=-2$ is:
$x^{2}+(y+2)^{2}=25$
Equation of circle when $k=6$ is: $x^{2}+(y-6)^{2}=25$


Q. 10. Find the equation of the circle whose centre is $(2,-3)$ and which passes through the intersection of the lines $3 x+2 y=11$ and $2 x+3 y=4$.

## Answer :



The intersection of the lines: $3 x+2 y=11$ and $2 x+3 y=4$
Is $(5,-2)$
$\therefore$ This problem is same as solving a circle equation with centre and point on the circle given.

The general form of the equation of a circle is:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Where, $(h, k)$ is the centre of the circle.
$r$ is the radius of the circle.
In this question we know that $(\mathrm{h}, \mathrm{k})=(2,-3)$, so for determining the equation of the circle we need to determine the radius of the circle.

Since the circle passes through (5, - 2), that pair of values for $x$ and $y$ must satisfy the equation and we have:
$\Rightarrow(5-2)^{2}+(-2-(-3))^{2}=r^{2}$
$\Rightarrow 3^{2}+1^{2}=r^{2}$
$\Rightarrow r^{2}=9+1=10$
$\therefore \mathrm{r}^{2}=10$
$\Rightarrow$ Equation of circle is:
$(x-2)^{2}+(y-(-3))^{2}=10$
$\Rightarrow(x-2)^{2}+(y+3)^{2}=10$
Ans: $(x-2)^{2}+(y+5)^{2}=10$
Q. 11. Find the equation of the circle passing through the point ( $-1,-3$ ) and having its centre at the point of intersection of the lines $x-2 y=4$ and $2 x+5 y+1$ $=0$.

Answer:


The intersection of the lines: $x-2 y=4$ and $2 x+5 y+1=0$.
is $(2,-1)$
$\therefore$ This problem is same as solving a circle equation with centre and point on the circle given.

The general form of the equation of a circle is:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Where, $(h, k)$ is the centre of the circle.
$r$ is the radius of the circle.
In this question we know that $(h, k)=(2,-1)$, so for determining the equation of the circle we need to determine the radius of the circle.

Since the circle passes through (-1, -3 ), that pair of values for $x$ and $y$ must satisfy the equation and we have:
$\Rightarrow(-1-2)^{2}+(-3-(-1))^{2}=r^{2}$
$\Rightarrow(-3)^{2}+(-2)^{2}=r^{2}$
$\Rightarrow r^{2}=9+4=13$
$\therefore \mathrm{r}^{2}=13$
$\Rightarrow$ Equation of circle is:
$(x-2)^{2}+(y-(-1))^{2}=13$
$\Rightarrow(x-2)^{2}+(y+1)^{2}=13$
Ans: $(x-2)^{2}+(y+1)^{2}=13$
Q. 12. If two diameters of a circle lie along the lines $x-y=9$ and $x-2 y=7$, and the area of the circle is 38.5 sq cm , find the equation of the circle.

Answer : The point of intersection of two diameters is the centre of the circle.
$\therefore$ point of intersection of two diameters $x-y=9$ and $x-2 y=7$ is $(11,2)$.
$\therefore$ centre $=(11,2)$
Area of a circle $=\pi r^{2}$
$38.5=\pi r^{2}$
$\Rightarrow r^{2}=\frac{38.5}{\pi}$
$\Rightarrow r^{2}=12.25 \mathrm{sq} . \mathrm{cm}$
the equation of the circle is:
$(x-h)^{2}+(y-k)^{2}=r^{2}$
Where, $(\mathrm{h}, \mathrm{k})$ is the centre of the circle.
$r$ is the radius of the circle.
$\Rightarrow(\mathrm{x}-11)^{2}+(\mathrm{y}-2)^{2}=12.25$
Ans: $(x-11)^{2}+(y-2)^{2}=12.25$

Q. 13 A. Find the equation of the circle, the coordinates of the end points of one of whose diameters are
$A(3,2)$ and $B(2,5)$
Answer : The equation of a circle passing through the coordinates of the end points of diameters is:
$\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$

Substituting, values: $\left(x_{1}, y_{1}\right)=(3,2) \&\left(x_{2}, y_{2}\right)=(2,5)$
We get:
$(x-3)(x-2)+(y-2)(y-5)=0$
$\Rightarrow x^{2}-2 x-3 x+6+y^{2}-5 y-2 y+10=0$
$\Rightarrow x^{2}+y^{2}-5 x-7 y+16=0$
Ans: $x^{2}+y^{2}-5 x-7 y+16=0$
Q. 13 B . Find the equation of the circle, the coordinates of the end points of one of whose diameters are
$A(5,-3)$ and $B(2,-4)$
Answer: The equation of a circle passing through the coordinates of the end points of diameters is:
$\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$
Substituting, values: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(5,-3) \&\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(2,-4)$
We get:
$(x-5)(x-2)+(y+3)(y+4)=0$
$\Rightarrow x^{2}-2 x-5 x+10+y^{2}+3 y+4 y+12=0$
$\Rightarrow x^{2}+y^{2}-7 x+7 y+22=0$
Ans: $x^{2}+y^{2}-7 x+7 y+22=0$
Q. 13 C. Find the equation of the circle, the coordinates of the end points of one of whose diameters are
$A(-2,-3)$ and $B(-3,5)$
Answer : The equation of a circle passing through the coordinates of the end points of diameters is:
$\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$
Substituting, values: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(-2,-3) \&\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(-3,5)$

We get:
$(x+2)(x+3)+(y+3)(y-5)=0$
$\Rightarrow x^{2}+3 x+2 x+6+y^{2}-5 y+3 y-15=0$
$\Rightarrow x^{2}+y^{2}+5 x-2 y-9=0$
Ans: $x^{2}+y^{2}+5 x-2 y-9=0$
Q. 13 D . Find the equation of the circle, the coordinates of the end points of one of whose diameters are

## $A(p, q)$ and $B(r, s)$

Answer : The equation of a circle passing through the coordinates of the end points of diameters is:
$\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$
Substituting, values: $\left(x_{1}, y_{1}\right)=(p, q) \&\left(x_{2}, y_{2}\right)=(r, s)$
We get:
$(x-p)(x-r)+(y-q)(y-s)=0$
$\Rightarrow x^{2}-r x-p x+p r+y^{2}-s y-q y+q s=0$
$\Rightarrow x^{2}+y^{2}-(r+p) x-(s+q) y+(p r+q s)=0$
Ans: $x^{2}+y^{2}-(r+p) x-(s+q) y+(p r+q s)=0$
Q. 14. The sides of a rectangle are given by the equations $x=-2, x=4, y=-2$ and $y=5$. Find the equation of the circle drawn on the diagonal of this rectangle as its diameter.

Answer : The intersection points in clockwise fashion are:(-2,5), (4, 5), (4, - 2), (-2, 2).

The equation of a circle passing through the coordinates of the end points of diameters is:
$\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$
Substituting, values: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(-2,5) \&\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(4,-2)$

We get:
$(x+2)(x-4)+(y-5)(y+2)=0$
$\Rightarrow x^{2}-4 x+2 x-8+y^{2}+2 y-5 y-10=0$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-3 \mathrm{y}-18=0$


Ans: $x^{2}+y^{2}-2 x-3 y-18=0$

## Exercise 21B

Q. 1. Show that the equation $x^{2}+y^{2}-4 x+6 y-5=0$ represents a circle. Find its centre and radius.

Answer : The general equation of a conic is as follows
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ where $a, b, c, f, g, h$ are constants
For a circle, $\mathrm{a}=\mathrm{b}$ and $\mathrm{h}=0$.
The equation becomes:
$x^{2}+y^{2}+2 g x+2 f y+c=0$.
Given, $x^{2}+y^{2}-4 x+6 y-5=0$

Comparing with (i) we see that the equation represents a circle with $2 \mathrm{~g}=-4 \Rightarrow \mathrm{~g}=-2$, $2 f=6 \Rightarrow f=3$ and $c=-5$.

Centre $(-g,-f)=\{-(-2),-3\}$
$=(2,-3)$.
Radius $=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}$
$=\sqrt{(-2)^{2}+3^{2}-(-5)}$
$=\sqrt{4+9+5}=\sqrt{18}=3 \sqrt{2}$.
Q. 2. Show that the equation $x^{2}+y^{2}+x-y=0$ represents a circle. Find its centre and radius.

Answer : The general equation of a conic is as follows
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ where $a, b, c, f, g, h$ are constants
For a circle, $\mathrm{a}=\mathrm{b}$ and $\mathrm{h}=0$.
The equation becomes:
$x^{2}+y^{2}+2 g x+2 f y+c=0$.
Given, $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{x}-\mathrm{y}=0$
Comparing with (i) we see that the equation represents a circle with $2 \mathrm{~g}=1$
$\Rightarrow \mathrm{g}=\frac{1}{2}, 2 \mathrm{f}=-1 \Rightarrow \mathrm{f}=-\frac{1}{2}$ and $\mathrm{c}=0$.
Centre ( $-\mathrm{g},-\mathrm{f})=\left\{-\frac{1}{2},-\left(-\frac{1}{2}\right)\right\}$
$=\left(-\frac{1}{2}, \frac{1}{2}\right)$.

Radius $=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}$
$=\sqrt{\frac{1}{2}^{2}+\left(-\frac{1}{2}^{2}\right)-0}$
$=\sqrt{\frac{1}{4}+\frac{1}{4}}=\sqrt{\frac{1}{2}}$.
Q. 3

Show that the equation $3 x^{2}+3 y^{2}+6 x-4 y-1=0$ represents a circle. Find its centre and radius.

Answer: The general equation of a conic is as follows
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ where $a, b, c, f, g, h$ are constants
For a circle, $\mathrm{a}=\mathrm{b}$ and $\mathrm{h}=0$.
The equation becomes:
$x^{2}+y^{2}+2 g x+2 f y+c=0 \ldots$ (i)
Given, $3 x^{2}+3 y^{2}+6 x-4 y-1=0 \Rightarrow x^{2}+y^{2}+2 x-\frac{4}{3} y-\frac{1}{3}=0$

Comparing with (i) we see that the equation represents a circle with $2 \mathrm{~g}=2 \Rightarrow \mathrm{~g}$ $=1,2 f=-\frac{4}{3} \Rightarrow \mathrm{f}=-\frac{2}{3}$ and $\mathrm{c}=-\frac{1}{3}$.

Centre $(-\mathrm{g},-\mathrm{f})=\left\{-1,-\left(-\frac{2}{3}\right)\right\}$
$=\left(-1, \frac{2}{3}\right)$.
Radius $=\sqrt{g^{2}+\mathrm{f}^{2}-\mathrm{c}}$
$=\sqrt{1^{2}+\left(-\frac{2}{3}\right)^{2}-\left(-\frac{1}{3}\right)}$
$=\sqrt{1+\frac{4}{9}+\frac{1}{3}}=\sqrt{\frac{16}{9}}=\frac{4}{3}$.
Q. 4. Show that the equation $x^{2}+y^{2}+2 x+10 y+26=0$ represents a point circle. Also, find its centre.

Answer : The general equation of a circle:
$x^{2}+y^{2}+2 g x+2 f y+c=0 \ldots$ (i) where $c, g, f$ are constants.
Given, $x^{2}+y^{2}+2 x+10 y+26=0$
Comparing with (i) we see that the equation represents a circle with $2 \mathrm{~g}=2 \Rightarrow \mathrm{~g}=1,2 \mathrm{f}=$ $10 \Rightarrow f=5$ and $\mathrm{c}=26$.

Centre ( $-\mathrm{g},-\mathrm{f})=(-1,-5)$.
Radius $=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}$
$=\sqrt{1^{2}+5^{2}-26}$
$=\sqrt{26-26}=0$.
Thus it is a point circle with radius 0 .
Q. 5. Show that the equation $x^{2}+y^{2}-3 x+3 y+10=0$ does not represent a circle.

Answer: Radius =

$$
\begin{aligned}
& \sqrt{g^{2}+\mathrm{f}^{2}-\mathrm{c}} \\
& =\sqrt{\left(-\frac{3}{2}\right)^{2}+\left(-\frac{3}{2}^{2}\right)-10} \\
& =\sqrt{\frac{9}{2}-10}=\sqrt{-\frac{11}{2}}
\end{aligned}
$$

which implies that the radius is negative. (not possible)
Therefore, $x^{2}+y^{2}-3 x+3 y+10=0$ does not represent a circle.
Q. 6. Find the equation of the circle passing through the points
(i) $(0,0),(5,0)$ and $(3,3)$
(ii) $(1,2),(3,-4)$ and (5, - 6$)$
(iii) $(20,3),(19,8)$ and ( $2,-9$ )

Also, find the centre and radius in each case.

Answer: (i) The required circle equation

$$
\left|\begin{array}{llll}
x^{2}+y^{2} & x & y & 1 \\
0^{2}+0^{2} & 0 & 0 & 1 \\
5^{2}+0^{2} & 5 & 0 & 1 \\
3^{2}+3^{2} & 3 & 3 & 1
\end{array}\right|=0
$$

Using Laplace Expansion

$$
\begin{aligned}
& \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\left|\begin{array}{lll}
0 & 0 & 1 \\
5 & 0 & 1 \\
3 & 3 & 1
\end{array}\right|-\mathrm{x}\left|\begin{array}{ccc}
0 & 0 & 1 \\
25 & 0 & 1 \\
18 & 3 & 1
\end{array}\right| \\
& +\mathrm{y}\left|\begin{array}{ccc}
0 & 0 & 1 \\
25 & 5 & 1 \\
18 & 3 & 1
\end{array}\right|-\left|\begin{array}{ccc}
0 & 0 & 0 \\
25 & 5 & 0 \\
18 & 3 & 3
\end{array}\right|=0 \\
& \Rightarrow 15\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-75 \mathrm{x}-15 \mathrm{y}=0 \\
& \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-5 \mathrm{x}-\mathrm{y}=0 \text { is the equation with centre }=(2.5,0.5)
\end{aligned}
$$

Radius $=\sqrt{g^{2}+f^{2}-c}=\sqrt{\left(-2.5^{2}\right)+(-0.5)^{2}-0}=2.549$
(ii) The required circle equation

$$
\left|\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1 \\
1^{2}+2^{2} & 1 & 2 & 1 \\
3^{2}+(-4)^{2} & 3 & -4 & 1 \\
5^{2}+(-6)^{2} & 5 & -6 & 1
\end{array}\right|=0
$$

Using Laplace Expansion

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right)\left|\begin{array}{ccc}
1 & 2 & 1 \\
3 & -4 & 1 \\
5 & -6 & 1
\end{array}\right|-x\left|\begin{array}{ccc}
5 & 2 & 1 \\
25 & -4 & 1 \\
61 & -6 & 1
\end{array}\right|+y\left|\begin{array}{ccc}
5 & 1 & 1 \\
25 & 3 & 1 \\
61 & 5 & 1
\end{array}\right|-\left|\begin{array}{ccc}
5 & 1 & 2 \\
25 & 3 & -4 \\
61 & 5 & -6
\end{array}\right|=0 \\
& \Rightarrow 8\left(x^{2}+y^{2}\right)-176 x-32 y-200=0
\end{aligned}
$$

$\Rightarrow x^{2}+y^{2}-22 x-4 y-25=0$ is the equation with centre $=(11,2)$

Radius $=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}=\sqrt{(-11)^{2}+(-2)^{2}-25}=10$
(iii) The required circle equation

$$
\left|\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1 \\
20^{2}+3^{2} & 20 & 3 & 1 \\
19^{2}+8^{2} & 19 & 8 & 1 \\
2^{2}+(-9)^{2} & 2 & -9 & 1
\end{array}\right|=0
$$

Using Laplace Expansion
$\left(x^{2}+y^{2}\right)\left|\begin{array}{ccc}20 & 3 & 1 \\ 19 & 8 & 1 \\ 2 & -9 & 1\end{array}\right|-x\left|\begin{array}{ccc}409 & 3 & 1 \\ 425 & 8 & 1 \\ 85 & -9 & 1\end{array}\right|+y\left|\begin{array}{ccc}409 & 20 & 1 \\ 425 & 19 & 1 \\ 85 & 2 & 1\end{array}\right|-$
$\left|\begin{array}{ccc}409 & 20 & 3 \\ 425 & 19 & 8 \\ 85 & 2 & -9\end{array}\right|=0$
$\Rightarrow 102\left(x^{2}+y^{2}\right)-1428 x-612 y-11322=0$
$\Rightarrow x^{2}+y^{2}-14 x-6 y-111=0$ is the equation with centre $=(7,3)$
Radius $=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}=\sqrt{(-7)^{2}+(-3)^{2}-(-111)}=13$
Q. 7. Find the equation of the circle which is circumscribed about the triangle whose vertices are $\mathrm{A}(-2,3), \mathrm{b}(5,2)$ and $\mathrm{C}(6,-1)$. Find the centre and radius of this circle.

Answer : The general equation of a circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$
...(i), where ( $h, k$ ) is the centre and $r$ is the radius.
Putting $\mathrm{A}(-2,3), \mathrm{B}(5,2)$ and $\mathrm{c}(6,-1)$ in (i) we get
$h^{2}+k^{2}+4 h-6 k+13=r^{2} \ldots$ (ii)
$h^{2}+k^{2}-10 h-4 k+29=r^{2} \ldots$ (iii)and
$h^{2}+k^{2}-12 h+2 k+37=r^{2}$
subtracting (ii) from (iii) and also from (iv),
$-14 h+2 k+16=0 \Rightarrow-7 h+k+8=0$
$-16 h+8 k+24=0 \Rightarrow-2 h+k+3=0$
Subtracting,
$5 h-5=0 \Rightarrow h=1$
$k=-1$
Centre $=(1,-1)$
Putting these values in (ii) we get, radius
$=\sqrt{1+1+4+6+13}=\sqrt{25}=5$

Equation of the circle is
$(x-1)^{2}+\{y-(-1)\}^{2}=5^{2}$
$(x-1)^{2}+(y+1)^{2}=25$.

Q. 8. Find the equation of the circle concentric with the circle $x^{2}+y^{2}+4 x+6 y+11$ $=0$ and passing through the point $P(5,4)$.

Answer : 2 or more circles are said to be concentric if they have the same centre and different radii.


Given, $x^{2}+y^{2}+4 x+6 y+11=0$
The concentric circle will have the equation
$x^{2}+y^{2}+4 x+6 y+c^{\prime}=0$
As it passes through $\mathrm{P}(5,4)$, putting this in the equation
$5^{2}+4^{2}+4 \times 5+6 \times 4+c^{\prime}=0$
$\Rightarrow 25+16+20+24+c^{\prime}=0$
$\Rightarrow c^{\prime}=-85$

The required equation is
$x^{2}+y^{2}+4 x+6 y-85=0$
Q. 9. Show that the points $A(1,0), B(2,-7), c(8,1)$ and $D(9,-6)$ all lie on the same circle. Find the equation of this circle, its centre and radius.

Answer :


The general equation of a circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$
$\ldots$ (i), where $(h, k)$ is the centre and $r$ is the radius.
Putting $(1,0)$ in (i)
$(1-h)^{2}+(0-k)^{2}=r^{2}$
$\Rightarrow h^{2}+k^{2}+1-2 h=r^{2} . .(i i)$
Putting (2, -7 ) in (i)
$(2-h)^{2}+(-7-k)^{2}=r^{2}$
$\Rightarrow h^{2}+k^{2}+53-4 h+14 k=r^{2}$
$\Rightarrow\left(h^{2}+k^{2}+1-2 h\right)+52-2 h+14 k=r^{2}$
h-7k-26 $=0 .$. (iii) [from (ii)]
Similarly putting $(8,1)$
$7 h+k-32=0 . .(i v)$
Solving (iii)\&(iv)
$\mathrm{h}=5$ and $\mathrm{k}=-3$
centre(5, - 3 )

Radius = 25
To check if $(9,-6)$ lies on the circle, $(9-5)^{2}+(-6+3)^{2}=5^{2}$
Hence, proved.
Q. 10. Find the equation of the circle which passes through the points $(1,3)$ and $(2,-1)$, and has its centre on the line $2 x+y-4=0$.

Answer : The equation of a circle: $x^{2}+y^{2}+2 g x+2 f y+c=0 \ldots$ (i)
Putting $(1,3) \&(2,-1)$ in (i)
$2 g+6 f+c=-10 .$. (ii)
$4 g-2 f+c=-5$. .(iii)
Since the centre lies on the given straight line, ( $-\mathrm{g},-\mathrm{f})$ must satisfy the equation as
$-2 g-f-4=0 \ldots$ (iv)
Solving, $f=-1, g=-1.5, c=-1$
The equation is $x^{2}+y^{2}-3 x-2 y-1=0$
Q. 11. Find the equation of the circle concentric with the circle $x^{2}+y^{2}-4 x-6 y-3$ $=0$ and which touches the $y$-axis.

Answer : The given image of the circle is:


We know that the general equation of the circle is given by:
$x^{2}+y^{2}+2 g x+2 f y+c=0$
Also,
Radius $\mathrm{r}=$
$\sqrt{g^{2}+f^{2}-c}$
Now,
$r=\sqrt{(2)^{2}+(3)^{2}-(-3)}$
$r=\sqrt{4+9+3}$
$r=4$ units.
We need to the find the equation of the circle which is concentric to the given circle and touches $y$-axis.

The centre of the circle remains the same.
Now, $y$-axis will be tangent to the circle.
Point of contact will be ( 0,3 )
Therefore, radius $=2$
Now,
Equation of the circle:
$(x-2)^{2}+(y-3)^{2}=(2)^{2}$
$x^{2}+4-4 x+y^{2}+9-6 y=4$
$x^{2}+y^{2}-4 x-6 y+9=0$
Q. 12. Find the equation of the circle concentric with the circle $x^{2}+y^{2}-6 x+12 y+$ $15=0$ and of double its area.

Answer : 2 or more circles are said to be concentric if they have the same centre and different radii.


Given, $x^{2}+y^{2}-6 x+12 y+15=0$
Radius $r=$
$\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}=\sqrt{\left(-3^{2}\right)+6^{2}-15}=\sqrt{30}$
The concentric circle will have the equation
$x^{2}+y^{2}-6 x+12 y+c^{\prime}=0$
Also given area of circle $=2 \times$ area of the given circle.
$\Rightarrow r^{\prime 2}=2 \times r^{2}=2 \times 30=60$

We can get $c^{\prime}=45-60=-15$

The required equation is $x^{2}+y^{2}-6 x+12 y-15=0$.
Q. 13. Prove that the centres of the three circles $x^{2}+y^{2}-4 x-6 y-12=0, x^{2}+y^{2}+$ $2 x+4 y-5=0$ and $x^{2}+y^{2}-10 x-16 y+7=0$ are collinear.

Answer : Given,
$x^{2}+y^{2}-4 x-6 y-12=0$
centre $\left(-g_{1},-f_{1}\right)=(2,3)$
$x^{2}+y^{2}+2 x+4 y-5=0$
centre $\left(-g_{2},-f_{2}\right)=(-1,-2)$
$x^{2}+y^{2}-10 x-16 y+7=0$
centre $\left(-g_{3},-f_{3}\right)=(5,8)$
to prove that the centres are collinear,
$\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|=0$
Where $x_{1}, y_{1}$ are the coordinates of the ist centre and so on.
$\Rightarrow\left|\begin{array}{ccc}2 & 3 & 1 \\ -1 & -2 & 1 \\ 5 & 8 & 1\end{array}\right|$
$=2(-2-8)-3(-1-5)+1(-8+10)$
$=-20+18+2=0$


The centres are collinear.
Q. 14. Find the equation of the circle which passes through the points $A(1,1)$ and $B(2,2)$ and whose radius is 1 . Show that there are two such circles.

Answer : The general equation of a circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$
$\ldots$ (i), where $(h, k)$ is the centre and $r$ is the radius.
Putting $\mathrm{A}(1,1)$ in (i)
$(1-h)^{2}+(1-k)^{2}=1^{2}$
$\Rightarrow h^{2}+k^{2}+2-2 h-2 k=1$
$\Rightarrow h^{2}+k^{2}-2 h-2 k=-1$..(ii)

Putting $B(2,2)$ in (i)

$$
\begin{aligned}
& (2-h)^{2}+(2-k)^{2}=1^{2} \\
& \Rightarrow h^{2}+k^{2}+8-4 h-4 k=1
\end{aligned}
$$

$$
\Rightarrow h^{2}+k^{2}-4 h-4 k=-7
$$

$$
\Rightarrow\left(h^{2}+k^{2}-2 h-2 k\right)-2 h-2 k=-7
$$

$$
\Rightarrow-1-2 h-2 k=-7[\text { from (ii) }]
$$

$$
\Rightarrow-2 h-2 k=-6
$$

$$
\Rightarrow h+k=3 \Rightarrow h=3-k
$$

Putting it in (ii)

$$
\begin{aligned}
& \Rightarrow(3-k)^{2}+k^{2}-2(3-k)-2 k=-1 \\
& \Rightarrow 9+2 k^{2}-6 k-6+2 k-2 k=-1 \\
& \Rightarrow 2 k^{2}+4-6 k=0 \\
& \Rightarrow k^{2}-3 k+2=0 \\
& \Rightarrow k=2 \text { or } k=1
\end{aligned}
$$

When $\mathrm{k}=2, \mathrm{~h}=3-2=1$
Equation of 1 circle
$(x-1)^{2}+(y-2)^{2}=1$
When $\mathrm{k}=1, \mathrm{~h}=3-1=2$
$(x-2)^{2}+(y-1)^{2}=1$

Q. 15. Find the equation of a circle passing through the origin and intercepting lengths $a$ and $b$ on the axes.

Answer : From the figure
$A D=b$ units and $A E=a$ units.
$D(0, b), E(a, 0)$ and $A(0,0)$ lies on the circle. $C$ is the centre.


The general equation of a circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$
$\ldots(\mathrm{i})$, where $(\mathrm{h}, \mathrm{k})$ is the centre and r is the radius.
Putting $A(0,0)$ in (i)
$(0-h)^{2}+(0-k)^{2}=r^{2}$
$\Rightarrow h^{2}+k^{2}=r^{2}$

Similarly putting $D(0, b)$ in (i)
$(0-h)^{2}+(b-k)^{2}=r^{2}$
$\Rightarrow h^{2}+k^{2}+b^{2}-2 k b=r^{2}$
$\Rightarrow r^{2}+b^{2}-2 k b=r^{2}$
$\Rightarrow b^{2}-2 k b=0$

$$
\Rightarrow(b-2 k) b=0
$$

Either $\mathrm{b}=0$ ork $=\frac{\mathrm{b}}{2}$

Similarly putting $E(a, 0)$ in (i)

$$
(a-h)^{2}+(0-k)^{2}=r^{2}
$$

$$
\Rightarrow h^{2}+k^{2}+a^{2}-2 h a=r^{2}
$$

$$
\Rightarrow r^{2}+a^{2}-2 h a=r^{2}
$$

$$
\Rightarrow a^{2}-2 h a=0
$$

$$
\Rightarrow(\mathrm{a}-2 \mathrm{~h}) \mathrm{a}=0
$$

Either $\mathrm{a}=0$ orh $=\frac{\mathrm{a}}{2}$

Centre $=C\left(\frac{a}{2}, \frac{b}{2}\right)$
$r^{2}=h^{2}+k^{2}$
$\Rightarrow r^{2}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{4}$

Putting the value of $\mathrm{r}^{2}, \mathrm{~h}$ and k in equation (i)
$(x-h)^{2}+(y-k)^{2}=r^{2}$
$\left(x-\frac{a}{2}\right)^{2}+\left(y-\frac{b}{2}\right)^{2}=\frac{a^{2}+b^{2}}{4}$
$\Rightarrow x^{2}+y^{2}+\frac{a^{2}}{4}+\frac{b^{2}}{4}-x a-y b=\frac{a^{2}+b^{2}}{4}$
$\Rightarrow x^{2}+y^{2}-x a-y b=0$
which is the required equation.
Q. 16. Find the equation of the circle circumscribing the triangle formed by the lines $x+$ $y=6,2 x+y=4$ and $x+2 y=5$.

Answer : Solving the equations we get the coordinates of the triangle:


$$
A=(7,-1)
$$

The required circle equation

$$
\left|\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1 \\
(-2)^{2}+8^{2} & -2 & 8 & 1 \\
1^{2}+2^{2} & 1 & 2 & 1 \\
7^{2}+(-1)^{2} & 7 & -1 & 1
\end{array}\right|=0
$$

Using Laplace Expansion

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right)\left|\begin{array}{ccc}
-2 & 8 & 1 \\
1 & 2 & 1 \\
7 & -1 & 1
\end{array}\right|-x\left|\begin{array}{ccc}
68 & 8 & 1 \\
5 & 2 & 1 \\
50 & -1 & 1
\end{array}\right|+y\left|\begin{array}{ccc}
68 & -2 & 1 \\
5 & 1 & 1 \\
50 & 7 & 1
\end{array}\right|- \\
& \left|\begin{array}{ccc}
68 & -2 & 8 \\
5 & 1 & 2 \\
50 & 7 & -1
\end{array}\right|=0 \\
& \Rightarrow 27\left(x^{2}+y^{2}\right)-459 x-513 y+1350=0 \\
& \Rightarrow x^{2}+y^{2}-17 x-19+50=0
\end{aligned}
$$

Q. 17. Show that the quadrilateral formed by the straight lines $x-y=0,3 x+2 y=$ $5, x-y=10$ and $2 x+3 y=0$ is cyclic and hence find the equation of the circle.

Answer : Solving the euations we get the coordinates of the quadrilateral.


Slope of $A B=\frac{1-0}{1-0}=1$
Slope of $C D=1$
AB\|||CD
Slope of $B D=A C=-1$
AC||BD
So they form a rectangle with all sides $=90^{\circ}$
The quadrilateral is cyclic as sum of opposite angles $=180^{\circ}$.
Now, $\mathrm{AD}=$ diameter of the circle equation of the circle with extremities $\mathrm{A}(0,0) \& \mathrm{D}(6,-4)$ is
$(x-0)(x-6)+(y-0)(y+4)=0$
$x^{2}+y^{2}-6 x+4 y=0$
Q. 18. If $(-1,3)$ and $(\alpha, \beta)$ are the extremities of the diameter of the circle $x^{2}+y^{2}-$ $6 x+5 y-7=0$, find the coordinates $(\alpha, \beta)$.

Answer: Given $x^{2}+y^{2}-6 x+5 y-7=0$
Centre( $3,-\frac{5}{2}$ )

As $(-1,3) \&(\alpha, \beta)$ are the 2 extremities of the diameter, using mid - point formula we can write

$$
\begin{aligned}
& \frac{\alpha-1}{2}=3 \\
& \Rightarrow \alpha=7 \\
& \text { and } \frac{\beta+3}{2}=-\frac{5}{2} \\
& \Rightarrow \beta=-8 \\
& (\alpha, \beta)=(7,-8)
\end{aligned}
$$

