Parabola

Exercise 22

Q. 1 A. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola:

$$y^2 = 12x$$

Answer:

Given equation : $y^2 = 12x$

Comparing given equation with parabola having equation,

$$y^2 = 4ax$$

$$4a = 12$$

Focus:

$$F(a,0) = F(3,0)$$

Vertex:

$$A(0,0) = A(0,0)$$

Equation of the directrix: x+a=0

•
$$x+3=0$$

•
$$x = -3$$

Lenth of latusrectum: 4a = 4.(3) = 12

Q. 1 B. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola:

$$y^2 = 10x$$

Answer: Given equation: $y^2 = 10x$

Comparing given equation with parabola having equation,

$$y^2 = 4ax$$

$$4a = 10$$

Focus: F(a,0) = F(2.5,0)

Vertex : A(0,0) = A(0,0)

Equation of the directrix: x+a=0

•
$$x = -2.5$$

Lenth of latusrectum : 4a = 4.(2.5) = 10

Q. 1 C. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola:

$$3y^2 = 8x$$

Answer: Given equation:

$$3y^2 = 8x$$

$$y^2 = \frac{8}{3}x$$

Comparing the given equation with parabola having equation,

$$y^2 = 4ax$$

$$4a = \frac{8}{3}$$

•
$$a=\frac{2}{3}$$

Focus: $F(a,0) = F\left(\frac{2}{3},0\right)$

Vertex : A(0,0) = A(0,0)

Equation of the directrix : x+a=0

•
$$x + \frac{2}{3} = 0$$

•
$$x = -\frac{2}{3}$$

Lenth of latusrectum : $4a = \frac{8}{3}$

Q. 2 A. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola:

$$y^2 = -8x$$

Answer: Given equation:

$$y^2 = -8x$$

Comparing given equation with parabola having equation,

$$y^2 = -4ax$$

$$4a = 8$$

Focus : F(-a,0) = F(-2,0)

Vertex : A(0,0) = A(0,0)

Equation of the directrix : x - a = 0

•
$$x - 2 = 0$$

•
$$x = 2$$

Lenth of latusrectum: 4a = 8

Q. 2 B. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola:

$$y^2 = -6x$$

Answer: Given equation:

$$y^2 = -6x$$

Comparing given equation with parabola having equation,

$$y^2 = -4ax$$

$$\bullet \ a = \frac{3}{2}$$

Focus:
$$F(-a,0) = F\left(-\frac{3}{2},0\right)$$

Vertex : A(0,0) = A(0,0)

Equation of the directrix : x - a = 0

•
$$x - \frac{3}{2} = 0$$

•
$$X = \frac{3}{2}$$

Lenth of latusrectum: 4a = 6

Q. 2 C. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola:

$$5y^2 = -16x$$

Answer: Given equation:

$$5y^2 = -16x$$

$$y^2 = -\frac{16}{5}x$$

Comparing the given equation with parabola having an equation,

$$y^2 = -4ax$$

$$4a = \frac{16}{5}$$

•
$$a = \frac{4}{5}$$

Focus: F(-a,0)

$$=F\left(-\frac{4}{5},0\right)$$

Vertex:

$$A(0,0) = A(0,0)$$

Equation of the directrix:

$$x - a = 0$$

•
$$x - \frac{4}{5} = 0$$

$$x = \frac{4}{5}$$

Lenth of latusrectum : $4a = \frac{16}{5}$

Q. 3 A. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola:

$$x^2 = 16y$$

Answer : Given equation : $x^2 = 16y$

Comparing given equation with parabola having equation,

$$x^2 = 4ay$$

$$4a = 16$$

Focus : F(0,a) = F(0,4)

Vertex : A(0,0) = A(0,0)

Equation of the directrix: y+a=0

Lenth of latusrectum: 4a = 16

Q. 3 B. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola:

$$x^2 = 10y$$

Answer : Given equation : $x^2 = 10y$

Comparing given equation with parabola having equation,

$$x^2 = 4ay$$

$$4a = 10$$

•
$$a = 2.5$$

Focus: F(0,a) = F(0,2.5)

Vertex : A(0,0) = A(0,0)

Equation of the directrix: y+a=0

•
$$y = -2.5$$

Lenth of latusrectum: 4a = 10

Q. 3 C. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola :

$$3x^2 = 8y$$

Answer: Given equation:

$$3x^2 = 8y$$

$$x^2 = \frac{8}{3}y$$

Comparing the given equation with parabola having an equation,

$$x^2 = 4ay$$

•
$$4a = \frac{8}{3}$$

$$\bullet \ a = \frac{2}{3}$$

Focus:
$$F(0,a) = F\left(0,\frac{2}{3}\right)$$

Vertex : A(0,0) = A(0,0)

Equation of the directrix : y + a = 0

•
$$y + \frac{2}{3} = 0$$

•
$$y = -\frac{2}{3}$$

Lenth of latusrectum:

$$4a = \frac{8}{3}$$

Q. 4 A. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola:

$$x^2 = -8y$$

Answer : Given equation : $x^2 = -8y$

Comparing given equation with parabola having equation,

$$x^2 = -4ay$$

$$4a = 8$$

Focus : F(0,-a) = F(0,-2)

Vertex : A(0,0) = A(0,0)

Equation of the directrix: y - a=0

Lenth of latusrectum: 4a = 8

Q. 4 B. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola:

$$x^2 = -18y$$

Answer:

Given equation : $x^2 = -18y$

Comparing given equation with parabola having equation,

$$x^2 = -4ay$$

$$4a = 18$$

$$\bullet \ a = \frac{9}{2}$$

Focus:
$$F(0,-a) = F\left(0,-\frac{9}{2}\right)$$

$$Vertex : A(0,0) = A(0,0)$$

Equation of the directrix: y - a=0

•
$$y - \frac{9}{2} = 0$$

•
$$y = \frac{9}{2}$$

Lenth of latusrectum: 4a = 18

Q. 4 C. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola :

$$3x^2 = -16y$$

Answer: Given equation:

$$3x^2 = -16y$$

•
$$x^2 = -\frac{16}{3}y$$

Comparing the given equation with parabola having an equation,

$$x^2 = 4ay$$

•
$$4a = \frac{16}{3}$$

$$\bullet \ a = \frac{4}{3}$$

Focus :
$$F(0,-a) = F\left(0,-\frac{4}{3}\right)$$

$$Vertex : A(0,0) = A(0,0)$$

Equation of the directrix : y - a = 0

•
$$y - \frac{4}{3} = 0$$

•
$$y = \frac{4}{3}$$

Lenth of latusrectum:

$$4a = \frac{16}{3}$$

Q. 5. Find the equation of the parabola with vertex at the origin and focus at F(-2, 0).

Answer: Vertex: A (0,0)

Given focus F(-2,0) is of the form F(-a,0)

For Vertex A(0,0) and Focus F(-a,0), equation of parabola is

$$y^2 = -4ax$$

Here, a = 2

Therefore, equation of parabola,

$$y^2 = -8x$$

Q. 6. Find the equation of the parabola with focus F(4, 0) and directrix x = -4.

Answer:

Given equation of directrix: x = -4

•
$$x + 4 = 0$$

Above equation is of the form, x + a = 0

Focus of the parabola F(4,0) is of the form F(a,0)

Therefore, a = 4

For directrix with equation x+a=0 and focus (a,0), equation of the parabola is,

$$y^2 = 4ax$$

•
$$y^2 = 16x$$

Q. 7. Find the equation of the parabola with focus F(0, -3) and directrix y = 3.

Answer : Given equation of directrix : y = 3

•
$$y - 3 = 0$$

Above equation is of the form, y - a = 0

Focus of the parabola F(0,-3) is of the form F(0,-a)

Therefore, a = 3

For directrix with equation y-a=0 and focus (0,-a), equation of the parabola is,

$$x^2 = -4ay$$

•
$$x^2 = -12y$$

Q. 8. Find the equation of the parabola with vertex at the origin and focus F(0, 5).

Answer: Vertex: A (0,0)

Given focus F(0,5) is of the form F(0,a)

For Vertex A(0,0) and Focus F(0,a), equation of parabola is

$$x^2 = 4ay$$

Here, a = 5

Therefore, equation of parabola,

$$x^2 = 20y$$

Q. 9. Find the equation of the parabola with vertex at the origin, passing through the point P(5, 2) and symmetric with respect to the y-axis.

Answer : The equation of a parabola with vertex at the origin and symmetric about the y-axis is

$$x^2 = 4ay$$

Since point P(5,2) passes through above parabola we can write,

$$5^2 = 4a(2)$$

•
$$a = \frac{25}{8}$$

Therefore, the equation of a parabola is

•
$$x^2 = 4 \cdot \frac{25}{8}y$$

•
$$x^2 = \frac{25}{2}y$$

•
$$2x^2 = 25y$$

Q. 10. Find the equation of the parabola, which is symmetric about the y-axis and passes through the point P(2, -3).

Answer : The equation of a parabola with vertex at the origin and symmetric about the y-axis is

$$x^2 = 4ay$$

Since point P(2,-3) passes through above parabola we can write,

$$2^2 = 4a(-3)$$

$$\bullet \ a = -\frac{1}{3}$$

Therefore, the equation of a parabola is

$$\bullet \ \chi^2 = 4 \cdot \left(-\frac{1}{3}\right) y$$

$$\bullet \ x^2 = -\frac{4}{3}y$$

•
$$3x^2 = -4y$$

