Parabola

Exercise 22

Q. 1 A . Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola:
$y^{2}=12 x$
Answer :
Given equation : $y^{2}=12 x$
Comparing given equation with parabola having equation,
$y^{2}=4 a x$
$4 a=12$

- $a=3$

Focus:

$F(a, 0)=F(3,0)$
Vertex :
$A(0,0)=A(0,0)$
Equation of the directrix : $x+a=0$

- $x+3=0$
- $x=-3$

Lenth of latusrectum : $4 \mathrm{a}=4 .(3)=12$

Q. 1 B . Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola:
$y^{2}=10 x$
Answer : Given equation : $\mathrm{y}^{2}=10 \mathrm{x}$
Comparing given equation with parabola having equation,
$y^{2}=4 a x$
$4 a=10$

- $\mathrm{a}=2.5$

Focus: $F(a, 0)=F(2.5,0)$
Vertex : $\mathrm{A}(0,0)=\mathrm{A}(0,0)$
Equation of the directrix : $x+a=0$

- $\mathrm{x}+2.5=0$
$\cdot x=-2.5$
Lenth of latusrectum : $4 \mathrm{a}=4 .(2.5)=10$

Q. 1 C . Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola:
$3 y^{2}=8 x$
Answer : Given equation :
$3 y^{2}=8 x$
. $y^{2}=\frac{8}{3} x$
Comparing the given equation with parabola having equation,
$y^{2}=4 a x$
$4 a=\frac{8}{3}$
- $a=\frac{2}{3}$

Focus: $F(a, 0)=F\left(\frac{2}{3}, 0\right)$

Vertex: $\mathrm{A}(0,0)=\mathrm{A}(0,0)$
Equation of the directrix : $x+a=0$

- $x+\frac{2}{3}=0$
- $\mathrm{x}=-\frac{2}{3}$

Lenth of latusrectum : $4 a=\frac{8}{3}$

Q. 2 A. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola :
$y^{2}=-8 x$
Answer : Given equation :
$y^{2}=-8 x$
Comparing given equation with parabola having equation,
$y^{2}=-4 a x$
$4 a=8$

- $\mathrm{a}=2$

Focus: $F(-a, 0)=F(-2,0)$
Vertex : $\mathrm{A}(0,0)=\mathrm{A}(0,0)$
Equation of the directrix : $\mathrm{x}-\mathrm{a}=0$

- $x-2=0$
- $x=2$

Lenth of latusrectum : 4a=8

Q. 2 B. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola :
$y^{2}=-6 x$
Answer : Given equation :
$y^{2}=-6 x$
Comparing given equation with parabola having equation,
$y^{2}=-4 a x$
$4 a=6$

- $a=\frac{3}{2}$

Focus: $\mathrm{F}(-\mathrm{a}, 0)=F\left(-\frac{3}{2}, 0\right)$

Vertex: $\mathrm{A}(0,0)=\mathrm{A}(0,0)$

Equation of the directrix: $x-a=0$

- $x-\frac{3}{2}=0$
- $\mathrm{x}=\frac{3}{2}$

Lenth of latusrectum : $4 \mathrm{a}=6$

Q. 2 C. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola :
$5 y^{2}=-16 x$
Answer : Given equation :
$5 y^{2}=-16 x$
$y^{2}=-\frac{16}{5} x$
Comparing the given equation with parabola having an equation,
$y^{2}=-4 a x$

- $4 a=\frac{16}{5}$
- $a=\frac{4}{5}$

Focus: $F(-a, 0)$
$=F\left(-\frac{4}{5}, 0\right)$

Vertex :

$\mathrm{A}(0,0)=\mathrm{A}(0,0)$

Equation of the directrix :

$\mathrm{x}-\mathrm{a}=0$

- $x-\frac{4}{5}=0$
- $\mathrm{x}=\frac{4}{5}$

Lenth of latusrectum : $4 a=\frac{16}{5}$

Q. 3 A. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola :
$x^{2}=16 y$
Answer : Given equation : $x^{2}=16 y$
Comparing given equation with parabola having equation,
$x^{2}=4 a y$
$4 a=16$

- $\mathrm{a}=4$

Focus: $F(0, a)=F(0,4)$
Vertex : $\mathrm{A}(0,0)=\mathrm{A}(0,0)$
Equation of the directrix : $y+a=0$

- $y+4=0$
- $y=-4$

Lenth of latusrectum : $4 \mathrm{a}=16$

Q. 3 B . Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola :
$x^{2}=10 y$
Answer : Given equation : $x^{2}=10 y$
Comparing given equation with parabola having equation,
$x^{2}=4 a y$
$4 a=10$

- $a=2.5$

Focus: $F(0, a)=F(0,2.5)$
Vertex : $\mathrm{A}(0,0)=\mathrm{A}(0,0)$
Equation of the directrix : $y+a=0$

- $y+2.5=0$
- $y=-2.5$

Lenth of latusrectum : 4a=10

Q. 3 C. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola :
$3 x^{2}=8 y$
Answer : Given equation :
$3 x^{2}=8 y$
. $x^{2}=\frac{8}{3} y$
Comparing the given equation with parabola having an equation,
$x^{2}=4 a y$

- $4 a=\frac{8}{3}$
- $a=\frac{2}{3}$

Focus: $F(0, a)=F\left(0, \frac{2}{3}\right)$
Vertex : $\mathrm{A}(0,0)=\mathrm{A}(0,0)$
Equation of the directrix: $y+a=0$

- $\mathrm{y}+\frac{2}{3}=0$
- $\mathrm{y}=-\frac{2}{3}$

Lenth of latusrectum :

$4 a=\frac{8}{3}$

Q. 4 A. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola :
$x^{2}=-8 y$
Answer: Given equation: $\mathrm{x}^{2}=-8 \mathrm{y}$
Comparing given equation with parabola having equation,
$x^{2}=-4 a y$
$4 \mathrm{a}=8$

- $a=2$

Focus : $F(0,-a)=F(0,-2)$
Vertex : $\mathrm{A}(0,0)=\mathrm{A}(0,0)$
Equation of the directrix : $\mathrm{y}-\mathrm{a}=0$

- $y-2=0$
- $y=2$

Lenth of latusrectum : $4 \mathrm{a}=8$

Q. 4 B. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola :
$x^{2}=-18 y$
Answer :
Given equation: $x^{2}=-18 y$

Comparing given equation with parabola having equation,
$x^{2}=-4 a y$
$4 \mathrm{a}=18$

- $a=\frac{9}{2}$

Focus: $\mathrm{F}(0,-\mathrm{a})=F\left(0,-\frac{9}{2}\right)$

Vertex: $\mathrm{A}(0,0)=\mathrm{A}(0,0)$

Equation of the directrix : $y-a=0$

- $\mathrm{y}-\frac{9}{2}=0$
- $\mathrm{y}=\frac{9}{2}$

Q. 4 C. Find the coordinates of the focus and the vertex, the equations of the directrix and the axis, and length of the latus rectum of the parabola :
$3 x^{2}=-16 y$
Answer : Given equation :
$3 x^{2}=-16 y$
- $x^{2}=-\frac{16}{3} y$

Comparing the given equation with parabola having an equation,
$x^{2}=4 a y$

- $4 a=\frac{16}{3}$
- $a=\frac{4}{3}$

Focus: $\mathrm{F}(0,-\mathrm{a})=F\left(0,-\frac{4}{3}\right)$

Vertex: $\mathrm{A}(0,0)=\mathrm{A}(0,0)$

Equation of the directrix : $y-a=0$

- $y-\frac{4}{3}=0$
- $\mathrm{y}=\frac{4}{3}$

Lenth of latusrectum :

$4 a=\frac{16}{3}$

Q. 5. Find the equation of the parabola with vertex at the origin and focus at $F(-2$, 0).

Answer : Vertex : A $(0,0)$
Given focus $F(-2,0)$ is of the form $F(-a, 0)$
For Vertex $A(0,0)$ and Focus $F(-a, 0)$, equation of parabola is
$y^{2}=-4 a x$
Here, $\mathrm{a}=2$
Therefore, equation of parabola,
$y^{2}=-8 x$

Q. 6. Find the equation of the parabola with focus $\mathrm{F}(4,0)$ and directrix $\mathrm{x}=-4$.

Answer:

Given equation of directrix : $x=-4$

- $x+4=0$

Above equation is of the form, $x+a=0$
Focus of the parabola $F(4,0)$ is of the form $F(a, 0)$
Therefore, $\mathrm{a}=4$
For directrix with equation $x+a=0$ and focus ($a, 0$), equation of the parabola is,
$y^{2}=4 a x$

- $y^{2}=16 x$

Q. 7. Find the equation of the parabola with focus $F(0,-3)$ and directrix $y=3$.

Answer : Given equation of directrix : $y=3$

- $y-3=0$

Above equation is of the form, $\mathrm{y}-\mathrm{a}=0$

Focus of the parabola $F(0,-3)$ is of the form $F(0,-a)$
Therefore, $\mathrm{a}=3$
For directrix with equation $\mathrm{y}-\mathrm{a}=0$ and focus $(0,-\mathrm{a})$, equation of the parabola is, $x^{2}=-4 a y$

- $x^{2}=-12 y$

Q. 8. Find the equation of the parabola with vertex at the origin and focus $\mathrm{F}(0,5)$.

Answer: Vertex : A $(0,0)$
Given focus $F(0,5)$ is of the form $F(0, a)$
For Vertex $\mathrm{A}(0,0)$ and Focus $\mathrm{F}(0, \mathrm{a})$, equation of parabola is
$x^{2}=4 a y$
Here, $a=5$

Therefore, equation of parabola,
$x^{2}=20 y$

Q. 9. Find the equation of the parabola with vertex at the origin, passing through the point $P(5,2)$ and symmetric with respect to the y-axis.

Answer : The equation of a parabola with vertex at the origin and symmetric about the y-axis is
$x^{2}=4 a y$
Since point $P(5,2)$ passes through above parabola we can write,
$5^{2}=4 a(2)$

- $25=8 a$
- $a=\frac{25}{8}$

Therefore, the equation of a parabola is

- $x^{2}=4 \cdot \frac{25}{8} y$
- $x^{2}=\frac{25}{2} y$
- $2 x^{2}=25 y$

Q. 10. Find the equation of the parabola, which is symmetric about the y-axis and passes through the point $P(2,-3)$.

Answer : The equation of a parabola with vertex at the origin and symmetric about the y-axis is
$x^{2}=4 a y$
Since point $P(2,-3)$ passes through above parabola we can write,
$2^{2}=4 a(-3)$

- $4=-12 a$
- $a=-\frac{1}{3}$

Therefore, the equation of a parabola is

- $x^{2}=4 \cdot\left(-\frac{1}{3}\right) y$
- $x^{2}=-\frac{4}{3} y$
- $3 x^{2}=-4 y$

