Applications of Conic Sections

Exercise 25

Q. 1. The focus of a parabolic mirror is at a distance of 6 cm from its vertex. If the mirror is 20 cm deep, find its diameter.

Answer : Given: The focus of a parabolic mirror is at a distance of 6 cm from its vertex. And the mirror is 20 cm deep.

Need to find: Diameter of the mirror.

Here O is the vertex and A is the Focus. So, $O A=a=6 \mathrm{~cm}$.
$O D$ is the deep of the mirror $=20 \mathrm{~cm}$
$B C$ is the diameter of the mirror.
Equation of the parabola is, $\mathrm{y}^{2}=4 \mathrm{ax}$
$\Rightarrow y^{2}=24 x$
The mirror is 20 cm deep. That means the x-coordinate of the points B, C and D is 20

Both the points, B and C are on the parabola. Hence, the points satisfies the equation of the parabola.

Therefore, $\mathrm{y}^{2}=24 \times 20=480$
$\Rightarrow y= \pm 21.9$
So, the coordinate of B is $(20,21.9)$ and the coordinate of C is $(20,-21.9)$.
Therefore, the diameter of the mirror is $=(21.9+21.9) \mathrm{cm}$
$=43.8 \mathrm{~cm}$

Q. 2. A parabolic reflector is 5 cm deep and its diameter is $\mathbf{2 0} \mathrm{cm}$. How far is its focus from the vertex?

Answer : Given: Parabolic reflector is 5 cm deep \& its diameter is 20 cm
Need to find: Distance of its focus from the vertex.

Reflector is 5 cm deep, i.e., $\mathrm{OD}=5 \mathrm{~cm}$
Diameter of the mirror is 20 com, i.e., $\mathrm{BC}=20 \mathrm{~cm}$

Let, the equation of the parabola is $y^{2}=4 a x$, where a is the distance of the focus from the vertex.

The x-coordinate of the points B and C is 5 .
D is the middle point of $B C$ which is upon the x-axis.
So, we can say that $B D=C D=10 \mathrm{~cm}$.
So, the coordinate of the point B is $(5,10)$
Putting the values of the equation,
$y^{2}=4 a x$
$\Rightarrow 100=4 \mathrm{a} \times 5$
$\Rightarrow 20 \mathrm{a}=100$
$\Rightarrow \mathrm{a}=5$
That means, the focus is 5 cm far from the vertex.
Q. 3. The towers of bridge, hung in the form of a parabola, have their tops 30 m above the roadway, and are 200 m apart. If the cable is 5 m above the roadway at the center of the bridge, find the length of the vertical supporting cable, 30 m from the center.

Answer : Given: Top of the towers are 30 m above the roadway and are 200 m apart. Cable is 5 m above the roadway at center.

Need to find: Length of the vertical supporting cable, 30 m from the center.

A and B are the top of the towers. $A E$ and BF are the height of the towers. H is the center of the bridge. HI is the 5 m above from the roadway.

Let, the equation of the parabola be: $x^{2}=4 a(y-b)$
Here $b=5$. So, $x^{2}=4 a(y-5)$
Here, $A B=200 \mathrm{~m}$ and $B F=30 \mathrm{~m}$.
So, the coordinate of the point B is $(100,30)$
The point is on the parabola.
Hence, $x^{2}=4 a(y-5)$
$\Rightarrow 10000=4 \mathrm{a}(30-5)$
$\Rightarrow 10000=4 \mathrm{a} \times 25$
$\Rightarrow \mathrm{a}=100$

Now we need to find, the length of the vertical supporting cable, 30 m from the center.
The x-coordinate of the point, 30 m from the center, is 30 .
So, $30 \times 30=4 \mathrm{a}(\mathrm{y}-5)$
$\Rightarrow 900=400(y-5)$
$\Rightarrow y-5=\frac{9}{4}$
$\Rightarrow y=\frac{9}{4}+5=\frac{29}{4}$

So, the length of the vertical supporting cable is $\frac{29}{4} m=7.25 m$
Q. 4. A rod of length 15 cm moves with its ends always touching the coordinate axes. Find the equation of the locus of a point P on the rod, which is at a distance of 3 cm from the end in contact with the x-axis.

Answer : Given: A rod of length 15 cm moves with its ends always touching the coordinate axes. A point P on the rod, which is at a distance of 3 cm from the end in contact with the x-axis

Need to find: Find the equation of the locus of a point P

Here $A B$ is the rod making an angle θ with the x-axis.
Here AP $=3$.
$P B=A B-A P=12-3=9 \mathrm{~cm}$
Here, $P Q$ is the perpendicular drawn from the x-axis and $R P$ is the perpendicular drawn from y-axis.

Let, the coordinates of the point P is (x, y).
Now, in the triangle $\triangle \mathrm{BPQ}$,

$$
\cos \theta=\frac{x}{P B}=\frac{x}{9}
$$

And in the triangle $\triangle \mathrm{PAR}$,

$$
\sin \theta=\frac{y}{A P}=\frac{y}{3}
$$

We know, $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\Rightarrow \frac{x^{2}}{81}+\frac{y^{2}}{9}=1$

This is the locus of the point P.

Q. 5. A beam is supported at its ends by supports which are 12 m apart. Since the load is concentrated at its center, there is a deflection of 3 cm at the center, and the deflected beam is in the shape of a parabola. How far from the center is the deflection 1 cm ?

Answer : Given: A beam is supported at its ends by supports which are 12 m apart. There is a deflection of 3 cm at the center, and the deflected beam is in the shape of a parabola.

Need to find: How far from the center is the deflection 1 cm

Here EF are the ends of the beam and they are 12 m apart.
IJ is the deflection of 3 cm at the center.
We know, that the distance $\mathrm{IF}=\frac{12}{2}=6 \mathrm{~m}=600 \mathrm{~cm}$ and the deflection $\mathrm{IJ}=\mathrm{FH}=3 \mathrm{~cm}$.
So, the coordinate of the point F is $(600,3)$
Let, the equation of the parabola is: $x^{2}=4 a y$
F point is on the parabola. So, putting the coordinates of F in the equation we get,
$x^{2}=4 a y$
$\Rightarrow 3600=4 \mathrm{a} \times 3$
$\Rightarrow \mathrm{a}=300$

Here KL denotes the deflection of 1 cm .
So, at the point L the value of y-coordinate is $(3-1)=2$
So, by the equation,
$\Rightarrow x^{2}=4 a y=4 \times 300 \times 2=2400$
$\Rightarrow x=49 \mathrm{~cm}$.
So, the distance of the point of 1 cm deflection from the center is 49 cm .

