Differentiation

Exercise 28A

Q. 1. Differentiate the following functions:
(i) x^{-3}
(ii) $\sqrt[3]{\mathrm{x}}$

Answer: (i) x^{-3}
$\frac{d}{d x} x^{n}=n x^{n-1}$

Differentiating w.r.t x ,
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{-3}=-3 \mathrm{x}^{-3-1}$
$=-3 x^{-4}$
(ii) $\sqrt[3]{x}=x^{\frac{1}{3}}$

Formula:-
$\frac{d}{d x} x^{n}=n x^{n-1}$

Differentiating w.r.t x,

$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{X}^{\frac{1}{3}}=\frac{1}{3} \mathrm{X}^{\frac{1}{3}-1}$
$=\frac{1}{3} \mathrm{x}^{-\frac{2}{3}}$
Q. 2. Differentiate the following functions:
(i) $\frac{1}{x}_{\text {(ii) }} \frac{1}{\sqrt{x}}{ }_{\text {(iii) }} \frac{1}{\sqrt[3]{x}}$

Answer: (i) $\frac{1}{x}=x^{-1}$
Formula:-
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{\mathrm{n}}=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
Differentiating w.r.t x ,

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{-1}=-1 \mathrm{x}^{-1-1} \\
& =-\mathrm{x}^{-2}
\end{aligned}
$$

(ii) $\frac{1}{\sqrt{x}}=\mathrm{x}^{-\frac{1}{2}}$

Formula:-
$\frac{d}{d x} x^{n}=n x^{n-1}$

Differentiating w.r.t x,
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{X}^{\frac{-1}{2}}=\frac{-1}{2} \mathrm{X}^{-\frac{1}{2}-1}$
$=\frac{-1}{2} \mathrm{X}^{-\frac{3}{2}}$
(iii) $\frac{1}{\sqrt[3]{x}}=x^{\frac{-1}{3}}$

Formula:-
$\frac{d}{d x} x^{n}=n x^{n-1}$

Differentiating w.r.t \times,
$\frac{d}{d x} x^{\frac{-1}{3}}=\frac{-1}{3} x^{\frac{-1}{3}-1}$
$=-\frac{1}{3} x^{-\frac{4}{3}}$
Q. 3. Differentiate the following functions:
(i) $3 x^{-5}$
(ii) $\frac{1}{5 \mathrm{x}}$
(iii) $6 \sqrt[3]{\mathrm{x}^{2}}$

Answer: (i) $3 x^{-5}$
Formula:-
$\frac{d}{d x} x^{n}=n x^{n-1}$

Differentiating with respect to x ,
$\frac{\mathrm{d}}{\mathrm{dx}} 3 \mathrm{x}^{-5}=3(-5) \mathrm{x}^{-5-1}$
$=-15 x^{-6}$
(ii) $1 / 5 x=\frac{1}{5} x^{-1}$

Formula:-
$\frac{d}{d x} x^{n}=n x^{n-1}$
Differentiating with respect to x ,

$$
\frac{1}{5} \frac{d}{d x} X^{-1}=\frac{-1}{5} X^{-1-1}
$$

$$
=-\frac{1}{5} x^{-2}
$$

(iii) $6 \cdot \sqrt[3]{\mathrm{x}^{2}}=6 \mathrm{x}^{\frac{2}{3}}$

Formula:-

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{\mathrm{n}}=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}
$$

Differentiating with respect to x ,

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dx}} 6 \mathrm{x}^{\frac{2}{3}}=6 \times \frac{2}{3} x^{\frac{2}{3}-1} \\
& =4 \mathrm{x}^{-\frac{1}{3}}
\end{aligned}
$$

Q. 4 Differentiate the following functions:

(i) $6 \times 5+4 \times 3-3 \times 2+2 x-7$
(ii)
$5 \mathrm{x}^{-3 / 2}+\frac{4}{\sqrt{\mathrm{x}}}+\sqrt{\mathrm{x}}-\frac{7}{\mathrm{x}}$
(iii) $a \times 3+b x 2+c x+d$, where a, b, c, d are constants

Answer: (i) $6 x^{5}+4 x^{3}-3 x^{2}+2 x-7$
Formula:-

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{\mathrm{n}}=\mathrm{n}^{\mathrm{n}-1}
$$

Differentiating with respect to x ,
$\frac{d}{d x}\left(6 x^{5}+4 x^{3}-3 x^{2}+2 x-7\right)=30 x^{5-1}+12 x^{3-1}-6 x^{2-1}+2 x^{1-1}+0$
$=30 x^{4}+12 x^{2}-6 x^{1}+2 x$
(ii) $5 \mathrm{x}^{-3 / 2}+\frac{4}{\sqrt{x}}+\sqrt{\mathrm{x}}-\frac{7}{x}$

Formula:-

$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{\mathrm{n}}=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$

Differentiating with respect to x ,

$$
\begin{aligned}
& \frac{d}{d x}\left(5 x^{-3 / 2}+\frac{4}{\sqrt{x}}+\sqrt{x}-\frac{7}{x}\right) \\
& =5 \times-\frac{3}{2} x^{-\frac{3}{2}-1}+4 \times-\frac{1}{2} x^{-\frac{1}{2}-1}+\frac{1}{2} x^{\frac{1}{2}-1}-7 \times-1 x^{-1-1} \\
& =-\frac{15}{2} x^{-\frac{5}{2}}-2 x^{-\frac{3}{2}}+\frac{1}{2} x^{\frac{-1}{2}}+7 x^{-2}
\end{aligned}
$$

(iii) $a x^{3}+b x^{2}+c x+d$, where a, b, c, d are constants

Formula:-

$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{\mathrm{n}}=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$

Differentiating with respect to x,
$\frac{d}{d x}\left(a x^{3}+b x^{2}+c x+d\right)=3 a x^{3-1}+2 b x^{2-1}+c x^{1-1}+d x 0$
$=3 a x^{2}+2 b x+c$
Q. 5. Differentiate the following functions:
(i) $4 x^{3}+3.2^{x}+6 \cdot \sqrt[8]{x^{-4}}+5 \cot x$
(ii) $\frac{x}{3}-\frac{3}{x}+\sqrt{x}-\frac{1}{\sqrt{x}}+x^{2}-2^{x}+6 x^{-2 / 3}-\frac{2}{3} x^{6}$

Answer:
(i) $4 \mathrm{x}^{3}+3 \cdot 2^{\mathrm{x}}+6 \cdot \sqrt[8]{\mathrm{x}^{-4}}+5 \cot \mathrm{x}$
$=4 x^{3}+3.2^{x}+6 x^{-\frac{1}{2}}+5 \cot \mathrm{x}$

Formulae:
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{X}^{\mathrm{n}}=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\frac{d}{d x} \cot x=-\operatorname{cosec}^{2} x$
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{a}^{\mathrm{x}}=\log _{\mathrm{n}}(\mathrm{a}) \times \mathrm{a}^{\mathrm{x}}$

Differentiating with respect to x ,

$$
\frac{\mathrm{d}}{\mathrm{dx}}\left(4 \mathrm{x}^{3}+3 \cdot 2^{\mathrm{x}}+6 \mathrm{x}^{-\frac{1}{2}}+5 \cot \mathrm{x}\right)
$$

$=4.3 x^{3-1}+3 . \log _{n}(2) \cdot 2^{x}+6 x-\frac{1}{2} x^{-\frac{1}{2}-1}+5 x-\operatorname{cosec}^{2} x$
$=12 x^{2}+3 \cdot \log _{n}(2) \cdot 2^{x}-3 x-\frac{3}{2}-5 \operatorname{cosec}^{2} x$
(ii) $\frac{x}{3}-\frac{3}{x}+\sqrt{x}-\frac{1}{\sqrt{x}}+x^{2}-2^{x}+6 x^{-2 / 3}-\frac{2}{3} x^{6}$
$=\frac{x}{3}-3 x^{-1}+x^{\frac{1}{2}}-x^{-\frac{1}{2}}+x^{2}-2^{x}+6 x^{-2 / 3}-\frac{2}{3} x^{6}$
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{\mathrm{n}}=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\frac{d}{d x} a^{x}=\log _{n}(a) \times a^{x}$

Differentiating with respect to x ,
$\frac{d}{d x}\left(\frac{x}{3}-3 x^{-1}+x^{\frac{1}{2}}-x^{-\frac{1}{2}}+x^{2}-2^{x}+6 x^{-\frac{2}{3}}-\frac{2}{3} x^{6}\right)$

$$
\begin{aligned}
& \frac{1}{3}-(-1) \times 3 x^{-1-1}+\frac{1}{2} x^{\frac{1}{2}-1}-\left(-\frac{1}{2}\right) x^{-\frac{1}{2}-1}+2 x^{2-1}-\log (2) \cdot 2^{x}+ \\
& 6\left(-\frac{2}{3}\right) x^{-\frac{2}{3}-1}-\frac{2}{3} \times 6 x^{6-1} \\
= & \frac{1}{3}+3 x^{-2}+\frac{1}{2} x^{-\frac{1}{2}}+\frac{1}{2} x^{-\frac{3}{2}}+2 x^{1}-\log (2) \cdot 2^{x}-4 x^{-\frac{5}{3}}-4 x^{5}
\end{aligned}
$$

Q. 6. Differentiate the following functions:
(i) $4 \cot x-\frac{1}{2} \cos x+\frac{2}{\cos x}-\frac{3}{\sin x}+\frac{6 \cot x}{\operatorname{cosec} x}+9$
(ii) $-5 \tan x+4 \tan x \cos x-3 \cot x \sec x+2 \sec x-13$

Answer : Formulae: -
$\frac{d}{d x} \cot x=-\operatorname{cosec}^{2} x$
$\frac{d}{d x} \cos x=-\sin x$
$\frac{d}{d x} \sec x=\sec x \tan x$
$\frac{d}{d x} \operatorname{cosec} x=-\operatorname{cosec} x \cot x$
$\frac{d}{d x} \tan x=\sec ^{2} x$
$\frac{d}{d x} \sin x=\cos x$
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{k}=0, \mathrm{k}$ is constant

$$
\text { (i) } 4 \cot x-\frac{1}{2} \cos x+\frac{2}{\cos x}-\frac{3}{\sin x}+\frac{6 \cot x}{\operatorname{cosec} x}+9
$$

$$
=4 \cot x-\frac{1}{2} \cos x+2 \sec x-3 \operatorname{cosec} x+6 \cos x+9
$$

Differentiating with respect to x ,

$$
\begin{aligned}
& \frac{d}{d x}\left(4 \cot x-\frac{1}{2} \cos x+2 \sec x-3 \operatorname{cosec} x+6 \cos x+9\right) \\
& =\frac{4\left(-\operatorname{cosec}^{2} x\right)-\frac{1}{2}(-\sin x)+2 \sec x \times \tan x-3(-\operatorname{cosec} x \times \cot x)+6(-\sin x)+}{0} \\
& =-4 \operatorname{cosec}^{2} x+\frac{1}{2} \sin x+2 \sec x \tan x+3 \operatorname{cosec} x \cot x-6 \sin x
\end{aligned}
$$

(ii) $-5 \tan x+4 \tan x \cos x-3 \cot x \sec x+2 \sec x-13$
$=-5 \tan x+4 \sin x-3 \operatorname{cosec} x+2 \sec x-13$
Differentiating with respect to x,

$$
\begin{aligned}
& \frac{d}{d x}(-5 \tan x+4 \sin x-3 \operatorname{cosec} x+2 \sec x-13) \\
& =-5 \sec ^{2} x+4 \cos x-3(-\operatorname{cosec} x \cot x)+2 \sec x \tan x-0 \\
& =-5 \sec ^{2} x+4 \cos x+3 \operatorname{cosec} x \cot x+2 \sec x \tan x
\end{aligned}
$$

Q. 7 Differentiate the following functions:

(i) $(2 x+3)(3 x-5)$
(ii) $x(1+x)^{3}$
(iii) $\left(\sqrt{\mathrm{x}}+\frac{1}{\mathrm{x}}\right)\left(\mathrm{x}-\frac{1}{\sqrt{\mathrm{x}}}\right)$
(iv) $\left(x-\frac{1}{x}\right)^{2}$
(v) $\left(x^{2}-\frac{1}{x^{2}}\right)^{3}$
(vi) $\left(2 x^{2}+5 x-1\right)(x-3)$

Answer: Formula:
$\frac{d}{d x} f(g(x))=\frac{d}{d g} f(g) \frac{d}{d x} g$
Chain rule -
$\frac{d}{d x}(u v)=u \frac{d}{d x} v+v \frac{d}{d x} u$
Where u and v are the functions of x.
(i) $(2 x+3)(3 x-5)$

Applying, Chain rule
Here, $u=2 x+3$
$V=3 x-5$
$\frac{d}{d x}(2 x+3)(3 x-5)=(2 x+3) \frac{d}{d x}(3 x-5)+(3 x-5) \frac{d}{d x}(2 x+3)$
$=(2 x+3)\left(3 x^{1-1}+0\right)+(3 x-5)\left(2 x^{1-1}+0\right)$
$=6 \mathrm{x}+9+6 \mathrm{x}-10$
$=12 x-1$
(ii) $x(1+x)^{3}$

Applying, Chain rule

Here, $u=x$
$V=(1+x)^{3}$
$\frac{d}{d x} x(1+x)^{3}=x \frac{d}{d x}(1+x) 3+(1+x) 3 \frac{d}{d x}(x)$
$=x \times 3 \times(1+x)^{2}+(1+x)^{3}(1)$
$=(1+x)^{2}(3 x+x+1)$
$=(1+x)^{2}(4 x+1)$
(iii) $\left(\sqrt{\mathrm{x}}+\frac{1}{\mathrm{x}}\right)\left(\mathrm{x}-\frac{1}{\sqrt{\mathrm{x}}}\right)=\left(\mathrm{x}^{1 / 2}+\mathrm{x}^{-1}\right)\left(\mathrm{x}-\mathrm{x}^{-1 / 2}\right)$

Applying, Chain rule

Here, $u=\left(x^{1 / 2}+x^{-1}\right)$

$$
V=\left(x-x^{-1 / 2}\right)
$$

$$
\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{1 / 2}+\mathrm{x}^{-1}\right)\left(\mathrm{x}-\mathrm{x}^{-1 / 2}\right)
$$

$$
=\left(x^{1 / 2}+x^{-1}\right) \frac{\mathrm{d}}{\mathrm{dx}}\left(x-x^{-1 / 2}\right)+\left(x-x^{-1 / 2}\right) \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{1 / 2}+\mathrm{x}^{-1}\right)
$$

$$
=\left(x^{1 / 2}+x^{-1}\right)\left(1+\frac{1}{2} x^{-3 / 2}\right)+\left(x-x^{-1 / 2}\right)\left(\frac{1}{2} x^{-1 / 2}-x^{-2}\right)
$$

$$
=x^{1 / 2}+x^{-1}+\frac{1}{2} x^{-1}+\frac{1}{2} x^{-5 / 2}+\frac{1}{2} x^{1 / 2}-x^{-1}-\frac{1}{2} x^{-1}+x^{-5 / 2}
$$

$$
=\frac{3}{2} x^{1 / 2}+\frac{3}{2} x^{-5 / 2}
$$

(iv)
$\left(x-\frac{1}{x}\right)^{2}$
Differentiation of composite function can be done by $\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{g}(\mathrm{x}))=\frac{\mathrm{d}}{\mathrm{dg}} \mathrm{f}(\mathrm{g}) \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{g}$

Here, $f(g)=g^{2}, g(x)=x-\frac{1}{x}$
$\frac{d}{d x}\left(x-\frac{1}{x}\right)^{2}=2 g \times\left(1+\frac{1}{x^{2}}\right)$
$=2\left(x-\frac{1}{x}\right)\left(1+\frac{1}{x^{2}}\right)$
$=2\left(x+\frac{1}{x}-\frac{1}{x}+\frac{1}{x^{3}}\right)$
$=2\left(x+\frac{1}{x^{3}}\right)$
(v)
$\left(\mathrm{x}^{2}-\frac{1}{\mathrm{x}^{2}}\right)^{3}$
Differentiation of composite function can be done by

$$
\frac{d}{d x} f(g(x))=\frac{d}{d g} f(g) \frac{d}{d x} g
$$

Here, $f(g)=g^{3}, g(x)=x^{2}-\frac{1}{x^{2}}$

$$
\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}-\frac{1}{\mathrm{x}^{2}}\right)^{3}=3 \mathrm{~g}^{2} \times\left(2 \mathrm{x}-\frac{2}{\mathrm{x}^{3}}\right)
$$

$$
\begin{aligned}
& =3\left(x^{2}-\frac{1}{x^{2}}\right)^{2}\left(2 x-\frac{2}{x^{3}}\right) \\
& =3\left(2 x^{3}-\frac{2}{x}-\frac{2}{x}+\frac{2}{x^{5}}\right) \\
& =3\left(2 x^{3}-\frac{4}{x}+\frac{2}{x^{5}}\right)
\end{aligned}
$$

(vi) $\left(2 x^{2}+5 x-1\right)(x-3)$

Applying, Chain rule
Here, $u=\left(2 x^{2}+5 x-1\right)$
$V=(x-3)$
$\frac{d}{d x}\left(2 x^{2}+5 x-1\right)(x-3)$
$=\left(2 x^{2}+5 x-1\right) \frac{d}{d x}(x-3)+(x-3) \frac{d}{d x}\left(2 x^{2}+5 x-1\right)$
$=\left(2 x^{2}+5 x-1\right) \times 1+(x-3)(4 x+5)$
$=2 x^{2}+5 x-1+4 x^{2}-7 x-15$
$=6 x^{2}-2 x-16$

Q. 8. Differentiate the following functions:

(i) $\frac{3 x^{2}+4 x-5}{x}$
(ii) $\frac{\left(x^{3}+1\right)(x-2)}{x^{2}}$
(iii) $\frac{x-4}{2 \sqrt{x}}$
(iv) $\frac{(1+x) \sqrt{x}}{\sqrt[3]{x}}$
(v) $\frac{a x^{2}+b x+c}{\sqrt{x}}$
(vi) $\frac{a+b \cos x}{\sin x}$

Answer : Formula:

$\frac{d}{d x} \frac{u}{v}=\frac{v \frac{d}{d x} u-u \frac{d}{d x} v}{u^{2}}$
(i) $\frac{3 x^{2}+4 x-5}{x}$

Applying, quotient rule

$$
\begin{aligned}
& \frac{d}{d x} \frac{3 x^{2}+4 x-5}{x}=\frac{x \frac{d}{d x}\left(3 x^{2}+4 x-5\right)-\left(3 x^{2}+4 x-5\right) \frac{d}{d x} x}{x^{2}} \\
& =\frac{\frac{x}{(6 x+4)-\left(3 x^{2}+4 x-5\right) 1}}{x^{2}} \\
& =\frac{6 x^{2}+4 x-\left(3 x^{2}+4 x-5\right)}{x^{2}} \\
& =\frac{3 x^{2}+5}{x^{2}} \\
& \text { (ii) } \frac{\left(x^{3}+1\right)(x-2)}{x^{2}}
\end{aligned}
$$

Applying, quotient rule

$$
\begin{aligned}
& \frac{d}{d x} \frac{\left(x^{3}+1\right)(x-2)}{x^{2}}=\frac{x^{2} \frac{d}{d x}\left(x^{3}+1\right)(x-2)-\left(x^{3}+1\right)(x-2) \frac{d}{d x} x^{2}}{x^{4}} \\
& =\frac{x^{2}\left\{\left(x^{3}+1\right) \frac{d}{d x}(x-2)+(x-2) \frac{d}{d x}\left(x^{3}+1\right)\right\}-\left(x^{3}+1\right)(x-2) 2 x}{x^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x^{2}\left\{\left(x^{3}+1\right)+(x-2) 3 x^{2}\right\}-\left(x^{3}+1\right)(x-2) 2 x}{x^{4}} \\
& = \\
& =\frac{\frac{x^{2}\left\{x^{3}+1+3 x^{3}-6 x^{2}\right\}-2\left(x^{4}+x\right)(x-2)}{x^{4}}}{x^{4}} \\
& =\frac{2 x^{5}-6 x^{4}+x^{2}-2\left(x^{5}-2 x^{4}+x^{2}-2 x\right)}{x^{4}+4 x} \\
& \text { (iii) } \frac{x-4}{2 \sqrt{x}}
\end{aligned}
$$

Applying, quotient rule

$$
\begin{aligned}
& \frac{d}{d x} \frac{x-4}{2 \sqrt{x}}=\frac{2 \sqrt{x} \frac{d}{d x}(x-4)-(x-4) \frac{d}{d x} 2 \sqrt{x}}{4 x} \\
& =\frac{\frac{2 \sqrt{x}-(x-4) 2 \frac{1}{2}-x^{-\frac{1}{2}}}{4 x}}{=\frac{\frac{2 \sqrt{x}-(x-4) x^{-\frac{1}{2}}}{4 x}}{=}} \begin{array}{l}
\frac{2 \sqrt{x}-x^{\frac{1}{2}}+4 x^{-\frac{1}{2}}}{4 x} \\
=\frac{\sqrt{x}+4 x^{-\frac{1}{2}}}{4 x} \\
\text { (iv) } \frac{(1+x) \sqrt{x}}{\sqrt[3]{x}}
\end{array}
\end{aligned}
$$

Applying, quotient rule

$$
\begin{aligned}
& \frac{d}{d x} \frac{(1+x) \sqrt{x}}{\sqrt[3]{x}}=\frac{\sqrt[3]{x} \frac{d}{d x}(1+x) \sqrt{x}-(1+x) \sqrt{x} \frac{d}{d x} \sqrt[3]{x}}{x^{\frac{2}{3}}} \\
& =\frac{\sqrt[3]{x}\left\{(1+x) \frac{d}{d x} \sqrt{x}+\sqrt{x} \frac{d}{d x}(1+x)\right\}-(1+x) \sqrt{x} x_{3}^{\frac{1}{3}} x^{\frac{-2}{3}}}{x^{\frac{2}{3}}}
\end{aligned}
$$

Applying, quotient rule
$\frac{d}{d x} \frac{a x^{2}+b x+c}{\sqrt{x}}=\frac{\sqrt{x} \frac{d}{d x}\left(a x^{2}+b x+c\right)-\left(a x^{2}+b x+c\right) \frac{d}{d x} \sqrt{x}}{x}$
$=\frac{\sqrt{x}(2 a x+b)-\frac{1}{2}\left(a x^{2}+b x+c\right) x^{-\frac{1}{2}}}{x}$
$=\frac{\frac{3}{2} a x^{2}+\frac{3}{2} b x^{\frac{1}{2}}-\frac{1}{2} c x^{-\frac{1}{2}}}{x}$
(vi) $\frac{a+b \cos x}{\sin x}$

Applying, quotient rule
$\frac{d}{d x} \frac{a+b \cos x}{\sin x}=\frac{\sin x \frac{d}{d x}(a+b \cos x)-(a+b \cos x) \frac{d}{d x} \sin x}{\sin ^{2} x}$
$=\frac{\sin x(-b \sin x)-(a+b \cos x) \cos x}{\sin ^{2} x}$

$$
\begin{aligned}
& =\frac{-b \sin ^{2} x-a \cos x-b \cos ^{2} x}{\sin ^{2} x} \\
& =\frac{-b(1)-a \cos x}{\sin ^{2} x}
\end{aligned}
$$

Q. 9. Differentiate the following functions:
(i) If $y=6 x^{5}-4 x^{4}-2 x^{2}+5 x-9$, find $\frac{d y}{d x}$ at $x=-1$.
(ii) If $y=(\sin x+\tan x)$, find $\frac{d y}{d x}$ at $x=\frac{\pi}{3}$.
(iii) If $\mathrm{y}=\frac{(2-3 \cos \mathrm{x})}{\sin \mathrm{x}}$, find $\frac{d y}{d x}$ at $\mathrm{x}=\frac{\pi}{4}$.

Answer : Formulae:
$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{x}^{\mathrm{n}}=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$\frac{d}{d x} \cot x=-\operatorname{cosec}^{2} x$
$\frac{d}{d x} \operatorname{cosec} x=-\operatorname{cosec} x \cot x$
$\frac{d}{d x} \tan x=\sec ^{2} x$
$\frac{d}{d x} \sin x=\cos x$
(i) If $y=6 x^{5}-4 x^{4}-2 x^{2}+5 x-9$, find $\frac{d y}{d x}$ at $x=-1$.

Differentiating with respect to x ,

$$
\begin{aligned}
& \frac{d}{d x}\left(6 x^{5}-4 x^{4}-2 x^{2}+5 x-9\right) \\
& =30 x^{4}-16 x^{3}-4 x+5
\end{aligned}
$$

substituing $x=-1$

$$
\left(\frac{d y}{d x}\right) x=-1=30(-1)^{4}-16(-1)^{3}-4(-1)+5
$$

$=30+16+4+5$
$=55$
(ii) If $y=(\sin x+\tan x)$, find $\frac{d y}{d x}$ at $x=\frac{\pi}{3}$.

Differentiating with respect to x ,
$\frac{d}{d x}(\sin x+\tan x)=\cos x+\sec ^{2} x$

Substituting $\mathrm{x}=\frac{\pi}{3}$

$$
\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right) \mathrm{x}=\pi / 3=\cos \frac{\pi}{3}+\sec ^{2} \frac{\pi}{3}
$$

$=\frac{1}{2}+4$
$=\frac{5}{2}$
(iii) If $y=\frac{(2-3 \cos x)}{\sin x}$, find $\frac{d y}{d x}$ at $x=\frac{\pi}{4}$.

Differentiating with respect to x,
$\frac{d}{d x}(2 \operatorname{cosec} x-3 \cot x)=2(-\operatorname{cosec} x \cot x)-3\left(-\operatorname{cosec}^{2} x\right)$

Substituting $\mathrm{x}=\frac{\pi}{4}$
$\left(\frac{d y}{d x}\right) x=\pi / 4=2\left(-\operatorname{cosec} \frac{\pi}{4} \cot \frac{\pi}{4}\right)-3\left(-\operatorname{cosec} 2 \frac{\pi}{4}\right)$
$=-2 \times \sqrt{2}+3 \times 2$
$=6-2 \times \sqrt{2}$
Q. 10.

If $y=\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$, show that $2 x \cdot \frac{d y}{d x}+y=2 \sqrt{x}$.
Answer: To show:
$2 x \cdot \frac{d y}{d x}+y=2 \sqrt{x}$
Differentiating with respect to x

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\sqrt{\mathrm{x}}+\frac{1}{\sqrt{\mathrm{x}}}\right)=\frac{1}{2 \sqrt{\mathrm{x}}}-\frac{1}{2 \mathrm{x}^{\frac{3}{2}}}
$$

Now,

$$
\text { LHS }=2 x \cdot \frac{d y}{d x}+y
$$

$\mathrm{LHS}=2 \mathrm{x} \times\left(\frac{1}{2 \sqrt{\mathrm{x}}}-\frac{1}{2 \mathrm{x}^{\frac{3}{2}}}\right)+\sqrt{\mathrm{x}}+\frac{1}{\sqrt{\mathrm{x}}}$
$\mathrm{LHS}=\sqrt{\mathrm{x}}-\frac{1}{\sqrt{\mathrm{x}}}+\sqrt{\mathrm{x}}+\frac{1}{\sqrt{\mathrm{x}}}$

LHS $=2 \sqrt{x}$
\therefore LHS $=$ RHS
Q. 11

If $y=\left(\sqrt{\frac{x}{a}}+\sqrt{\frac{a}{x}}\right)$, prove that $(2 x y)\left(\frac{d y}{d x}\right)=\left(\frac{x}{a}-\frac{a}{x}\right)$.
Answer : To prove:

$$
(2 x y)\left(\frac{d y}{d x}\right)=\left(\frac{x}{a}-\frac{a}{x}\right)
$$

Differentiating y with respect to x

$$
\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{\frac{x}{a}}+\sqrt{\frac{a}{x}}\right)=\frac{1}{2 \sqrt{a x}}-\frac{\sqrt{a}}{2 x^{\frac{3}{2}}}
$$

Now,
LHS $=(2 x y)\left(\frac{d y}{d x}\right)$

$$
\mathrm{LHS}=2 \mathrm{x}\left(\sqrt{\frac{\mathrm{x}}{\mathrm{a}}}+\sqrt{\frac{\mathrm{a}}{\mathrm{x}}}\right)\left(\frac{1}{2 \sqrt{\mathrm{ax}}}-\frac{\sqrt{\mathrm{a}}}{2 x^{\frac{3}{2}}}\right)
$$

$$
\mathrm{LHS}=\left(\sqrt{\frac{\mathrm{x}}{\mathrm{a}}}+\sqrt{\frac{a}{\mathrm{x}}}\right)\left(\sqrt{\frac{\mathrm{x}}{\mathrm{a}}}-\sqrt{\frac{\mathrm{a}}{\mathrm{x}}}\right)
$$

$\mathrm{LHS}=\left(\frac{\mathrm{x}}{\mathrm{a}}-\frac{\mathrm{a}}{\mathrm{x}}\right)$
\therefore LHS $=$ RHS
Q. 12 If $\mathrm{y}=\sqrt{\frac{1+\cos 2 \mathrm{x}}{1-\cos 2 \mathrm{x}}}$, find $\frac{\mathrm{dy}}{\mathrm{dx}}$.

Answer :

$$
y=\sqrt{\frac{1+\cos 2 x}{1-\cos 2 x}}
$$

Formula:

Using double angle formula:

$$
\begin{aligned}
& \cos 2 x=2 \cos ^{2} x-1 \\
& =1-2 \sin ^{2} x \\
& \therefore 1+\cos 2 x=2 \cos ^{2} x \\
& 1-\cos 2 x=2 \sin ^{2} x \\
& \therefore y=\sqrt{\frac{2 \cos ^{2} x}{2 \operatorname{sinn}^{2} x}} \\
& =\sqrt{\cot ^{2} x}
\end{aligned}
$$

$=\cot x$
Differentiating y with respect to x

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}(\cot \mathrm{x})
$$

$=-\operatorname{cosec}^{2} x$
Q. 13
$y=\frac{1-\tan ^{2}(x / 2)}{1+\tan ^{2}(x / 2)}$, find $\frac{d y}{d x}$

Answer : Formula:
Using Half angle formula,
$\cos x=\frac{1-\tan ^{2}(x / 2)}{1+\tan ^{2}(x / 2)}$
$\therefore \mathrm{y}=\cos \mathrm{x}$
Differentiating y with respect to x

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x} \cos x \\
& =-\sin x
\end{aligned}
$$

Exercise 28B

Q. 1. Find the derivation of each of the following from the first principle:
$(a x+b)$
Answer : Let $f(x)=a x+b$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=a x+b$
$f(x+h)=a(x+h)+b$
$=a x+a h+b$
Putting values in (i), we get
$\mathrm{f}^{\prime}(\mathrm{x})=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{ax}+\mathrm{ah}+\mathrm{b}-(\mathrm{ax}+\mathrm{b})}{\mathrm{h}}$
$=\lim _{h \rightarrow 0} \frac{a x+a h+b-a x-b}{h}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{ah}}{\mathrm{h}}$
$=\lim _{\mathrm{h} \rightarrow 0} \mathrm{a}$
$f^{\prime}(x)=a$
Hence, $f^{\prime}(x)=a$
Q. 2. Find the derivation of each of the following from the first principle:
$\left(a x^{2}+\frac{b}{x}\right)$
Answer:
Let $f(x)=a x^{2}+\frac{b}{x}$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
\begin{aligned}
& f(x)=a x^{2}+\frac{b}{x} \\
& f(x+h)=a(x+h)^{2}+\frac{b}{(x+h)}
\end{aligned}
$$

Putting values in (i), we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left[a(x+h)^{2}+\frac{b}{(x+h)}\right]-\left[a x^{2}+\frac{b}{x}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{a(x+h)^{2}+\frac{b}{(x+h)}-a x^{2}-\frac{b}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a\left[(x+h)^{2}-x^{2}\right]+b\left[\frac{1}{x+h}-\frac{1}{x}\right]}{h}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{a\left[x^{2}+h^{2}+2 x h-x^{2}\right]+h\left[\frac{x-(x+h)}{x(x+h)}\right]}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{a\left[h^{2}+2 x h\right]+b\left[\frac{x-x-h}{x(x+h)}\right]}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{a\left[h^{2}+2 x h\right]+b\left[\frac{-h}{x(x+h)}\right]}{h}
$$

$$
=\lim _{h \rightarrow 0}\left[\frac{a h(h+2 x)}{h}+\frac{b(-h)}{h x(x+h)}\right]
$$

Taking ' h ' common from both the numerator and denominator, we get
$=\lim _{h \rightarrow 0}\left[a(h+2 x)-\frac{b}{x(x+h)}\right]$
Putting $h=0$, we get
$=a[(0)+2 x]-\frac{b}{x(x+0)}$
$=2 a x-\frac{b}{x^{2}}$
Hence,
$\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{ax}-\frac{\mathrm{b}}{\mathrm{x}^{2}}$
Q. 3. Find the derivation of each of the following from the first principle:
$3 x^{2}+2 x-5$
Answer: Let $f(x)=3 x^{2}+2 x-5$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=3 x^{2}+2 x-5$
$f(x+h)=3(x+h)^{2}+2(x+h)-5$
$=3\left(x^{2}+h^{2}+2 x h\right)+2 x+2 h-5$
$\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$=3 \mathrm{x}^{2}+3 \mathrm{~h}^{2}+6 \mathrm{xh}+2 \mathrm{x}+2 \mathrm{~h}-5$
Putting values in (i), we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{3 x^{2}+3 h^{2}+6 x h+2 x+2 h-5-\left(3 x^{2}+2 x-5\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2}+3 h^{2}+6 x h+2 x+2 h-5-3 x^{2}-2 x+5}{h}
\end{aligned}
$$

$=\lim _{h \rightarrow 0} \frac{3 h^{2}+6 x h+2 h}{h}$
$=\lim _{h \rightarrow 0} 3 h+6 x+2$

Putting $h=0$, we get
$f^{\prime}(x)=3(0)+6 x+2$
$=6 x+2$

Hence, $f^{\prime}(x)=6 x+2$
Q. 4 Find the derivation of each of the following from the first principle:
$x^{3}-2 x^{2}+x+3$
Answer: Let $f(x)=x^{3}-2 x^{2}+x+3$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=x^{3}-2 x^{2}+x+3$
$f(x+h)=(x+h)^{3}-2(x+h)^{2}+(x+h)+3$
Putting values in (i), we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-2(x+h)^{2}+(x+h)+3-\left[x^{3}-2 x^{2}+x+3\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{3}-2(x+h)^{2}+(x+h)+3-x^{3}+2 x^{2}-x-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-x^{3}\right]-2\left[(x+h)^{2}-x^{2}\right]+[x+h-x]}{h}
\end{aligned}
$$

Using the identities:

$$
\begin{aligned}
& (a+b)^{3}=a^{3}+b^{3}+3 a b^{2}+3 a^{2} b \\
& (a+b)^{2}=a^{2}+b^{2}+2 a b \\
& =\lim _{h \rightarrow 0} \frac{\left[x^{3}+h^{3}+3 x h^{2}+3 x^{2} h-x^{3}\right]-2\left[x^{2}+h^{2}+2 x h-x^{2}\right]+h}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[h^{3}+3 x h^{2}+3 x^{2} h\right]-2\left[h^{2}+2 x h\right]+h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left[h^{2}+3 x h+3 x^{2}\right]-2 h[h+2 x]+h}{h} \\
& =\lim _{h \rightarrow 0} h^{2}+3 x h+3 x^{2}-2 h-4 x+1
\end{aligned}
$$

Putting $h=0$, we get
$f^{\prime}(x)=(0)^{2}+2 x(0)+3 x^{2}-2(0)-4 x+1$
$=3 x^{2}-4 x+1$
Hence, $f^{\prime}(x)=3 x^{2}-4 x+1$
Q. 5. Find the derivation of each of the following from the first principle:
x^{8}
Answer: Let $f(x)=x^{8}$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=x^{8}$
$f(x+h)=(x+h)^{8}$
Putting values in (i), we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{8}-x^{8}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{8}-x^{8}}{(x+h)-x}
\end{aligned}
$$

[Add and subtract x in denominator]
$=\lim _{z \rightarrow x} \frac{z^{8}-x^{8}}{z-x}$ where $z=x+h$ and $z \rightarrow x$ as $h \rightarrow 0$

$$
\begin{aligned}
& =8 x^{8-1}\left[\because \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right] \\
& =8 x^{7}
\end{aligned}
$$

Hence, $f^{\prime}(x)=8 x^{7}$
Q. 6 Find the derivation of each of the following from the first principle:

$$
\frac{1}{x^{3}}
$$

Answer :

$$
\text { Let } f(x)=\frac{1}{x^{3}}
$$

We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,

$$
\begin{align*}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{i}\\
& f(x)=\frac{1}{x^{3}} \\
& f(x+h)=\frac{1}{(x+h)^{3}}
\end{align*}
$$

Putting values in (i), we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{3}}-\frac{1}{x^{3}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{-3}-x^{-3}}{(x+h)-x}
\end{aligned}
$$

[Add and subtract x in denominator]

$$
\begin{aligned}
& =\lim _{z \rightarrow x} \frac{z^{-3}-x^{-3}}{z-x} \text { where } z=x+h \text { and } z \rightarrow x \text { as } h \rightarrow 0 \\
& =(-3) x^{-3-1}\left[\because \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right] \\
& =-3 x^{-4} \\
& =-\frac{3}{x^{4}}
\end{aligned}
$$

Hence,

$$
f^{\prime}(x)=-\frac{3}{x^{4}}
$$

Q. 7. Find the derivation of each of the following from the first principle:

$$
\frac{1}{x^{5}}
$$

Answer: Let ,
$f(x)=\frac{1}{x^{5}}$

We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
\begin{aligned}
& f(x)=\frac{1}{x^{5}} \\
& f(x+h)=\frac{1}{(x+h)^{5}}
\end{aligned}
$$

Putting values in (i), we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{5}}-\frac{1}{x^{5}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{-5}-x^{-5}}{(x+h)-x}
\end{aligned}
$$

[Add and subtract x in denominator]

$$
\begin{aligned}
& =\lim _{z \rightarrow x} \frac{z^{-5}-x^{-5}}{z-x} \text { where } z=x+h \text { and } z \rightarrow x \text { as } h \rightarrow 0 \\
& =(-5) x^{-5-1}\left[\because \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}\right] \\
& =-5 x^{-6} \\
& =-\frac{5}{x^{6}}
\end{aligned}
$$

Hence,
$f^{\prime}(x)=-\frac{5}{x^{6}}$
Q. 8. Find the derivation of each of the following from the first principle:

$$
\sqrt{a x+b}
$$

Answer : Let
$f(x)=\sqrt{a x+b}$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$

We know that,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

$f(x)=\sqrt{a x+b}$
$f(x+h)=\sqrt{a(x+h)+b}$
$=\sqrt{\mathrm{ax}+\mathrm{ah}+\mathrm{b}}$
Putting values in (i), we get
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{a x+a h+b}-\sqrt{a x+b}}{h}$
Now rationalizing the numerator by multiplying and divide by the conjugate of

$$
\begin{aligned}
& \sqrt{a x+a h+b}-\sqrt{a x+b} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{a x+a h+b}-\sqrt{a x+b}}{h} \times \frac{\sqrt{a x+a h+b}+\sqrt{a x+b}}{\sqrt{a x+a h+b}+\sqrt{a x+b}}
\end{aligned}
$$

Using the formula:

$$
\begin{aligned}
& (a+b)(a-b)=\left(a^{2}-b^{2}\right) \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{a x+a h+b})^{2}-(\sqrt{a x+b})^{2}}{h(\sqrt{a x+a h+b}+\sqrt{a x+b})} \\
& =\lim _{h \rightarrow 0} \frac{a x+a h+b-a x-b}{h(\sqrt{a x+a h+b}+\sqrt{a x+b})} \\
& =\lim _{h \rightarrow 0} \frac{a h}{h(\sqrt{a x+a h+b}+\sqrt{a x+b})} \\
& =\lim _{h \rightarrow 0} \frac{a}{\sqrt{a x+a h+b}+\sqrt{a x+b}}
\end{aligned}
$$

Putting $h=0$, we get

$$
\begin{aligned}
& =\frac{a}{\sqrt{a x+a(0)+b}+\sqrt{a x+b}} \\
& =\frac{a}{\sqrt{a x+b}+\sqrt{a x+b}} \\
& =\frac{a}{2 \sqrt{a x+b}}
\end{aligned}
$$

Hence,
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{a}}{2 \sqrt{\mathrm{ax}+\mathrm{b}}}$
Q. 9. Find the derivation of each of the following from the first principle:
$\sqrt{5 x-4}$
Answer: Let
$f(x)=\sqrt{5 x-4}$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=\sqrt{5 x-4}$
$\mathrm{f}(\mathrm{x}+\mathrm{h})=\sqrt{5(\mathrm{x}+\mathrm{h})-4}$
$=\sqrt{5 x+5 h-4}$
Putting values in (i), we get

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{5 x+5 h-4}-\sqrt{5 x-4}}{h}
$$

Now rationalizing the numerator by multiplying and divide by the conjugate of

$$
\begin{aligned}
& \sqrt{5 x+5 h-4}-\sqrt{5 x-4} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{5 x+5 h-4}-\sqrt{5 x-4}}{h} \times \frac{\sqrt{5 x+5 h-4}+\sqrt{5 x-4}}{\sqrt{5 x+5 h-4}+\sqrt{5 x-4}}
\end{aligned}
$$

Using the formula:

$$
\begin{aligned}
& (a+b)(a-b)=\left(a^{2}-b^{2}\right) \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{5 x+5 h-4})^{2}-(\sqrt{5 x-4})^{2}}{h(\sqrt{5 x+5 h-4}+\sqrt{5 x-4})} \\
& =\lim _{h \rightarrow 0} \frac{5 x+5 h-4-5 x+4}{h(\sqrt{5 x+5 h-4}+\sqrt{5 x-4})} \\
& =\lim _{h \rightarrow 0} \frac{5 h}{h(\sqrt{5 x+5 h-4}+\sqrt{5 x-4})} \\
& =\lim _{h \rightarrow 0} \frac{5}{\sqrt{5 x+5 h-4}+\sqrt{5 x-4}} \\
& \text { Putting } h=0, w e g e t \\
& =\frac{5}{\sqrt{5 x+5(0)-4}+\sqrt{5 x-4}} \\
& =\frac{5}{\sqrt{5 x-4}+\sqrt{5 x-4}} \\
& =\frac{5}{2 \sqrt{5 x-4}} \\
& \frac{5}{\sqrt{5 x}} \\
& \\
&
\end{aligned}
$$

Hence,
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{5}{2 \sqrt{5 \mathrm{x}-4}}$

Q. 10. Find the derivation of each of the following from the first principle:

$\frac{1}{\sqrt{x+2}}$
Answer : Let
$f(x)=\frac{1}{\sqrt{x+2}}$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=\frac{1}{\sqrt{x+2}}$
$f(x+h)=\frac{1}{\sqrt{x+h+2}}$
Putting values in (i), we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{x+h+2}}-\frac{1}{\sqrt{x+2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\sqrt{x+2}-\sqrt{x+h+2}}{(\sqrt{x+h+2})(\sqrt{x+2})}}{h}
\end{aligned}
$$

Now rationalizing the numerator by multiplying and divide by the conjugate of

$$
\begin{aligned}
& \sqrt{x+2}-\sqrt{x+h+2} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+2}-\sqrt{x+h+2}}{h(\sqrt{x+h+2})(\sqrt{x+2})} \times \frac{\sqrt{x+2}+\sqrt{x+h+2}}{\sqrt{x+2}+\sqrt{x+h+2}}
\end{aligned}
$$

Using the formula:

$$
\begin{aligned}
& (a+b)(a-b)=\left(a^{2}-b^{2}\right) \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{x+2})^{2}-(\sqrt{x+h+2})^{2}}{h(\sqrt{x+h+2})(\sqrt{x+2})(\sqrt{x+2}+\sqrt{x+h+2})} \\
& =\lim _{h \rightarrow 0} \frac{x+2-x-h-2}{h(\sqrt{x+h+2})(\sqrt{x+2})(\sqrt{x+2}+\sqrt{x+h+2})} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(\sqrt{x+h+2})(\sqrt{x+2})(\sqrt{x+2}+\sqrt{x+h+2})} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(\sqrt{x+h+2})(\sqrt{x+2})(\sqrt{x+2}+\sqrt{x+h+2})}
\end{aligned}
$$

Putting $h=0$, we get

$$
\begin{aligned}
& =\frac{-1}{(\sqrt{x+0+2})(\sqrt{x+2})(\sqrt{x+2}+\sqrt{x+0+2})} \\
& =\frac{-1}{(\sqrt{x+2})^{2}(2 \sqrt{x+2})} \\
& =\frac{-1}{2(\sqrt{x+2})^{3}}
\end{aligned}
$$

Hence,

$$
f^{\prime}(x)=\frac{-1}{2(\sqrt{x+2})^{2}}
$$

Q. 11. Find the derivation of each of the following from the first principle:

$$
\frac{1}{\sqrt{2 \mathrm{x}+3}}
$$

Answer : Let
$f(x)=\frac{1}{\sqrt{2 x+3}}$

We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{i}
\end{equation*}
$$

$f(x)=\frac{1}{\sqrt{2 x+3}}$
$f(x+h)=\frac{1}{\sqrt{2 x+2 h+3}}$
Putting values in (i), we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{2 x+2 h+3}}-\frac{1}{\sqrt{2 x+3}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\sqrt{2 x+3}-\sqrt{2 x+2 h+3}}{(\sqrt{2 x+2 h+3})(\sqrt{2 x+3})}}{h}
\end{aligned}
$$

Now rationalizing the numerator by multiplying and divide by the conjugate of

$$
\begin{aligned}
& \sqrt{2 \mathrm{x}+3}-\sqrt{2 \mathrm{x}+2 \mathrm{~h}+3} \\
& =\lim _{\mathrm{h} \rightarrow 0} \frac{\sqrt{2 \mathrm{x}+3}-\sqrt{2 \mathrm{x}+2 \mathrm{~h}+3}}{\mathrm{~h}(\sqrt{2 \mathrm{x}+2 \mathrm{~h}+3})(\sqrt{2 \mathrm{x}+3})} \times \frac{\sqrt{2 \mathrm{x}+3}+\sqrt{2 \mathrm{x}+2 \mathrm{~h}+3}}{\sqrt{2 \mathrm{x}+3}+\sqrt{2 \mathrm{x}+2 \mathrm{~h}+3}}
\end{aligned}
$$

Using the formula:

$$
\begin{aligned}
& (a+b)(a-b)=\left(a^{2}-b^{2}\right) \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{2 x+3})^{2}-(\sqrt{2 x+2 h+3})^{2}}{h(\sqrt{2 x+2 h+3})(\sqrt{2 x+3})(\sqrt{2 x+3}+\sqrt{2 x+2 h+3})} \\
& =\lim _{h \rightarrow 0} \frac{2 x+3-2 x-2 h-3}{h(\sqrt{2 x+2 h+3})(\sqrt{2 x+3})(\sqrt{2 x+3}+\sqrt{2 x+2 h+3})}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{-2 h}{h(\sqrt{2 x+2 h+3})(\sqrt{2 x+3})(\sqrt{2 x+3}+\sqrt{2 x+2 h+3})} \\
& =\lim _{h \rightarrow 0} \frac{-2}{(\sqrt{2 x+2 h+3})(\sqrt{2 x+3})(\sqrt{2 x+3}+\sqrt{2 x+2 h+3})}
\end{aligned}
$$

Putting $h=0$, we get

$$
\begin{aligned}
& =\frac{-2}{(\sqrt{2 x+0+3})(\sqrt{2 x+3})(\sqrt{2 x+3}+\sqrt{2 x+0+3})} \\
& =\frac{-2}{(\sqrt{2 x+3})^{2}(2 \sqrt{2 x+3})}
\end{aligned}
$$

$$
=\frac{-2}{2(\sqrt{2 x+3})^{3}}
$$

$$
=\frac{-1}{(\sqrt{2 x+3})^{3}}
$$

Hence,

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{-1}{(\sqrt{2 \mathrm{x}+3})^{3}}
$$

Q. 12. Find the derivation of each of the following from the first principle:
$\frac{1}{\sqrt{6 \mathrm{x}-5}}$
Answer: Let
$\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{6 \mathrm{x}-5}}$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,

$$
\begin{align*}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \ldots \text { (i) } \tag{i}\\
& f(x)=\frac{1}{\sqrt{6 x-5}} \\
& f(x+h)=\frac{1}{\sqrt{6 x+6 h-5}}
\end{align*}
$$

Putting values in (i), we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{6 x+6 h-5}}-\frac{1}{\sqrt{6 x-5}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\sqrt{6 x-5}-\sqrt{6 x+6 h-5}}{(\sqrt{6 x+6 h-5})(\sqrt{6 x-5})}}{h}
\end{aligned}
$$

Now rationalizing the numerator by multiplying and divide by the conjugate of $\sqrt{6 x-5}-\sqrt{6 x+6 h-5}$

$$
=\lim _{h \rightarrow 0} \frac{\sqrt{6 x-5}-\sqrt{6 x+6 h-5}}{h(\sqrt{6 x+6 h-5})(\sqrt{6 x-5})} \times \frac{\sqrt{6 x-5}+\sqrt{6 x+6 h-5}}{\sqrt{6 x-5}+\sqrt{6 x+6 h-5}}
$$

Using the formula:

$$
\begin{aligned}
& (a+b)(a-b)=\left(a^{2}-b^{2}\right) \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{6 x-5})^{2}-(\sqrt{6 x+6 h-5})^{2}}{h(\sqrt{6 x+6 h-5})(\sqrt{6 x-5})(\sqrt{6 x-5}+\sqrt{6 x+6 h-5})} \\
& =\lim _{h \rightarrow 0} \frac{6 x-5-6 x-6 h+5}{h(\sqrt{6 x+6 h-5})(\sqrt{6 x-5})(\sqrt{6 x-5}+\sqrt{6 x+6 h-5})} \\
& =\lim _{h \rightarrow 0} \frac{-6 h}{h(\sqrt{6 x+6 h-5})(\sqrt{6 x-5})(\sqrt{6 x-5}+\sqrt{6 x+6 h-5})}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{-6}{(\sqrt{6 x+6 h-5})(\sqrt{6 x-5})(\sqrt{6 x-5}+\sqrt{6 x+6 h-5})}
$$

Putting $\mathrm{h}=0$, we get

$$
\begin{aligned}
& =\frac{-6}{(\sqrt{6 \mathrm{x}+6(0)-5})(\sqrt{6 \mathrm{x}-5})(\sqrt{6 \mathrm{x}-5}+\sqrt{6 \mathrm{x}+6(0)-5})} \\
& =\frac{-6}{(\sqrt{6 \mathrm{x}-5})^{2}(2 \sqrt{6 \mathrm{x}-5})} \\
& =\frac{-6}{2(\sqrt{6 \mathrm{x}-5})^{3}} \\
& =\frac{-3}{(\sqrt{6 \mathrm{x}-5})^{3}}
\end{aligned}
$$

Hence,

$$
f^{\prime}(x)=\frac{-3}{(\sqrt{6 x-5})^{3}}
$$

Q. 13. Find the derivation of each of the following from the first principle:

$$
\frac{1}{\sqrt{2-3 \mathrm{x}}}
$$

Answer: Let
$f(x)=\frac{1}{\sqrt{2-3 x}}$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
f(x)=\frac{1}{\sqrt{2-3 x}}
$$

$f(x+h)=\frac{1}{\sqrt{2-3(x+h)}}=\frac{1}{\sqrt{2-3 x-3 h}}$
Putting values in (i), we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{2-3 x-3 h}}-\frac{1}{\sqrt{2-3 x}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\sqrt{2-3 x}-\sqrt{2-3 x-3 h}}{\sqrt{2-3 x-3 h}(\sqrt{2-3 x})}}{h}
\end{aligned}
$$

Now rationalizing the numerator by multiplying and divide by the conjugate

$$
\text { of } \sqrt{2-3 x}-\sqrt{2-3 x-3 h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\sqrt{2-3 x}-\sqrt{2-3 x-3 h}}{h \sqrt{2-3 x-3 h}(\sqrt{2-3 x})} \times \frac{\sqrt{2-3 x}+\sqrt{2-3 x-3 h}}{\sqrt{2-3 x}+\sqrt{2-3 x-3 h}}
$$

Using the formula:

$$
\begin{aligned}
& (a+b)(a-b)=\left(a^{2}-b^{2}\right) \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{2-3 x})^{2}-(\sqrt{2-3 x-3 h})^{2}}{h(\sqrt{2-3 x-3 h})(\sqrt{2-3 x})(\sqrt{2-3 x}+\sqrt{2-3 x-3 h})} \\
& =\lim _{h \rightarrow 0} \frac{2-3 x-2+3 x+3 h}{h(\sqrt{2-3 x-3 h})(\sqrt{2-3 x})(\sqrt{2-3 x}+\sqrt{2-3 x-3 h})} \\
& =\lim _{h \rightarrow 0} \frac{3 h}{h(\sqrt{2-3 x-3 h})(\sqrt{2-3 x})(\sqrt{2-3 x}+\sqrt{2-3 x-3 h})} \\
& =\lim _{h \rightarrow 0} \frac{3}{(\sqrt{2-3 x-3 h})(\sqrt{2-3 x})(\sqrt{2-3 x}+\sqrt{2-3 x-3 h})}
\end{aligned}
$$

Putting $h=0$, we get

$$
\begin{aligned}
& =\frac{3}{(\sqrt{2-3 \mathrm{x}-3(0)})(\sqrt{2-3 \mathrm{x}})(\sqrt{2-3 \mathrm{x}}+\sqrt{2-3 \mathrm{x}-3(0)})} \\
& =\frac{3}{(\sqrt{2-3 \mathrm{x}})^{2}(2 \sqrt{2-3 \mathrm{x}})} \\
& =\frac{3}{2(\sqrt{2-3 \mathrm{x}})^{3}}
\end{aligned}
$$

Hence,
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{3}{2(\sqrt{2-3 \mathrm{x}})^{3}}$
Q. 14. Find the derivation of each of the following from the first principle:
$\frac{2 \mathrm{x}+3}{3 \mathrm{x}+2}$
Answer : Let,
$\mathrm{f}(\mathrm{x})=\frac{2 \mathrm{x}+3}{3 \mathrm{x}+2}$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=\frac{2 x+3}{3 x+2}$
$\mathrm{f}(\mathrm{x}+\mathrm{h})=\frac{2(\mathrm{x}+\mathrm{h})+3}{3(\mathrm{x}+\mathrm{h})+2}=\frac{2 \mathrm{x}+2 \mathrm{~h}+3}{3 \mathrm{x}+3 \mathrm{~h}+2}$
Putting values in (i), we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{2 x+2 h+3}{3 x+3 h+2}-\frac{2 x+3}{3 x+2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{(2 x+2 h+3)(3 x+2)-(2 x+3)(3 x+3 h+2)}{(3 x+3 h+2)(3 x+2)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 x^{2}+4 x+6 x h+4 h+9 x+6-\left[6 x^{2}+6 x h+4 x+9 x+9 h+6\right]}{h((3 x+3 h+2)(3 x+2))} \\
& =\lim _{h \rightarrow 0} \frac{6 x^{2}+4 x+6 x h+4 h+9 x+6-6 x^{2}-6 x h-4 x-9 x-9 h-6}{h((3 x+3 h+2)(3 x+2))} \\
& =\lim _{h \rightarrow 0} \frac{-5 h}{h((3 x+3 h+2)(3 x+2))} \\
& =\lim _{h \rightarrow 0} \frac{-5}{((3 x+3 h+2)(3 x+2))}
\end{aligned}
$$

Putting $h=0$, we get

$$
\begin{aligned}
& =\frac{-5}{((3 x+3(0)+2)(3 x+2))} \\
& =\frac{-5}{(3 x+2)(3 x+2)} \\
& =\frac{-5}{(3 x+2)^{2}}
\end{aligned}
$$

Hence,
$f^{\prime}(x)=\frac{-5}{(3 x+2)^{2}}$
Q. 15. Find the derivation of each of the following from the first principle:

$$
\frac{5-x}{5+x}
$$

Answer : Let

$$
f(x)=\frac{5-x}{5+x}
$$

We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=\frac{5-x}{5+x}$
$f(x+h)=\frac{5-(x+h)}{5+(x+h)}=\frac{5-x-h}{5+x+h}$
Putting values in (i), we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{5-x-h}{5+x+h}-\frac{5-x}{5+x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{(5-x-h)(5+x)-(5-x)(5+x+h)}{(5+x+h)(5+x)}}{h}
\end{aligned}
$$

$=\lim _{h \rightarrow 0} \frac{25+5 x-5 x-x^{2}-5 h-x h-\left[25+5 x+5 h-5 x-x^{2}-x h\right]}{h(5+x+h)(5+x)}$
$=\lim _{h \rightarrow 0} \frac{25-x^{2}-5 h-x h-25-5 h+x^{2}+x h}{h(5+x+h)(5+x)}$
$=\lim _{h \rightarrow 0} \frac{-10 h}{h(5+x+h)(5+x)}$
$=\lim _{h \rightarrow 0} \frac{-10}{(5+x+h)(5+x)}$
Putting $h=0$, we get

$$
\begin{aligned}
& =\frac{-10}{(5+x+0)(5+x)} \\
& =\frac{-10}{(5+x)(5+x)} \\
& =\frac{-10}{(5+x)^{2}}
\end{aligned}
$$

Hence,
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{-10}{(5+\mathrm{x})^{2}}$
Q. 16. Find the derivation of each of the following from the first principle:

$$
\frac{x^{2}+1}{x}, x \neq 0
$$

Answer : Let

$$
f(x)=\frac{x^{2}+1}{x}
$$

We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=\frac{x^{2}+1}{x}$
$f(x+h)=\frac{(x+h)^{2}+1}{x+h}=\frac{x^{2}+h^{2}+2 x h+1}{x+h}$

Putting values in (i), we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{x^{2}+h^{2}+2 x h+1}{x+h}-\frac{x^{2}+1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\left(x^{2}+h^{2}+2 x h+1\right)(x)-\left(x^{2}+1\right)(x+h)}{(x+h)(x)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+x h^{2}+2 x^{2} h+x-\left[x^{3}+x^{2} h+x+h\right]}{h(x+h)(x)} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+x h^{2}+2 x^{2} h+x-x^{3}-x^{2} h-x-h}{h(x+h)(x)} \\
& =\lim _{h \rightarrow 0} \frac{x h^{2}+x^{2} h-h}{h(x+h)(x)} \\
& =\lim _{h \rightarrow 0} \frac{x h+x^{2}-1}{(x+h)(x)}
\end{aligned}
$$

Putting $h=0$, we get

$$
\begin{aligned}
& =\frac{x(0)+x^{2}-1}{(x+0)(x)} \\
& =\frac{x^{2}-1}{(x)^{2}}
\end{aligned}
$$

Hence,
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{x}^{2}-1}{\mathrm{x}^{2}}$
Q. 17. Find the derivation of each of the following from the first principle:
$\sqrt{\cos 3 x}$
Answer : Let
$f(x)=\sqrt{\cos 3 x}$

We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=\sqrt{\cos 3 x}$
$f(x+h)=\sqrt{\cos 3(x+h)}$
$=\sqrt{\cos (3 \mathrm{x}+3 \mathrm{~h})}$
Putting values in (i), we get
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{\cos (3 x+3 h)}-\sqrt{\cos 3 x}}{h}$
Now rationalizing the numerator by multiplying and divide by the conjugate
of $\sqrt{\cos (3 x+3 h)}-\sqrt{\cos 3 x}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{\cos (3 x+3 h)}-\sqrt{\cos 3 x}}{h} \times \frac{\sqrt{\cos (3 x+3 h)}+\sqrt{\cos 3 x}}{\sqrt{\cos (3 x+3 h)}+\sqrt{\cos 3 x}}$

Using the formula:

$$
\begin{aligned}
& (a+b)(a-b)=\left(a^{2}-b^{2}\right) \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{\cos (3 x+3 h)})^{2}-(\sqrt{\cos 3 x})^{2}}{h(\sqrt{\cos (3 x+3 h)}+\sqrt{\cos 3 x})} \\
& =\lim _{h \rightarrow 0} \frac{\cos (3 x+3 h)-\cos 3 x}{h(\sqrt{\cos (3 x+3 h)}+\sqrt{\cos 3 x})}
\end{aligned}
$$

Using the formula:

$\cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{-2 \sin \frac{3 x+3 h+3 x}{2} \sin \frac{3 x+3 h-3 x}{2}}{h(\sqrt{\cos (3 x+3 h)}+\sqrt{\cos 3 x})} \\
& =\lim _{h \rightarrow 0} \frac{-2 \sin \frac{6 x+3 h}{2} \sin \frac{3 h}{2}}{h \sqrt{\cos (3 x+3 h)}+\sqrt{\cos 3 x}} \\
& =-2 \lim _{h \rightarrow 0} \frac{\sin \frac{3 h}{2}}{\frac{3 h}{2}} \times \frac{3}{2} \lim _{h \rightarrow 0} \sin \left(\frac{6 x+3 h}{2}\right) \times \lim _{h \rightarrow 0} \frac{1}{\sqrt{\cos (3 x+3 h)}+\sqrt{\cos 3 x}}
\end{aligned}
$$

[Here, we multiply and divide by $\frac{3}{2}$]
$=-2 \times \frac{3}{2} \lim _{h \rightarrow 0} \frac{\sin \frac{3 h}{2}}{\frac{3 h}{2}} \times \lim _{h \rightarrow 0} \sin \left(\frac{6 x+3 h}{2}\right) \times \lim _{h \rightarrow 0} \frac{1}{\sqrt{\cos (3 x+3 h)}+\sqrt{\cos 3 x}}$
$=-3 \times(1) \times \lim _{h \rightarrow 0} \sin \left(\frac{6 x+3 h}{2}\right) \times \lim _{h \rightarrow 0} \frac{1}{\sqrt{\cos (3 x+3 h)}+\sqrt{\cos 3 x}}$
$\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]$
Putting $h=0$, we get
$=-3 \times \sin \left[\frac{6 x+3(0)}{2}\right] \times \frac{1}{\sqrt{\cos (3 x+3(0))}+\sqrt{\cos 3 x}}$
$=-3 \sin 3 x \times \frac{1}{2 \sqrt{\cos 3 x}}$
$=-\frac{3 \sin 3 \mathrm{x}}{2(\cos 3 \mathrm{x})^{\frac{1}{2}}}$
Hence,
$f^{\prime}(x)=-\frac{3 \sin 3 x}{2(\cos 3 x)^{\frac{1}{2}}}$
Q. 18. Find the derivation of each of the following from the first principle:
$\sqrt{\sec x}$
Answer : Let

$$
f(x)=\sqrt{\sec x}
$$

We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=\sqrt{\sec x}$
$f(x+h)=\sqrt{\sec (x+h)}$
Putting values in (i), we get
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{\sec (x+h)}-\sqrt{\sec x}}{h}$
Now rationalizing the numerator by multiplying and divide by the conjugate
of $\sqrt{\sec (x+h)}-\sqrt{\sec x}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{\sec (x+h)}-\sqrt{\sec x}}{h} \times \frac{\sqrt{\sec (x+h)}+\sqrt{\sec x}}{\sqrt{\sec (x+h)}+\sqrt{\sec x}}$
Using the formula:
$(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
$=\lim _{h \rightarrow 0} \frac{(\sqrt{\sec (x+h)})^{2}-(\sqrt{\sec x})^{2}}{h(\sqrt{\sec (x+h)}+\sqrt{\sec x})}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\sec (x+h)-\sec (x)}{h(\sqrt{\sec (x+h)}+\sqrt{\sec x})} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{\cos (x+h)}-\frac{1}{\cos x}}{(\sqrt{\sec (x+h)}+\sqrt{\sec x})} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\cos x-\cos (x+h)}{\cos (x+h) \cos x}}{h(\sqrt{\sec (x+h)}+\sqrt{\sec x})} \\
& =\lim _{h \rightarrow 0} \frac{\cos x-\cos (x+h)}{h(\cos (x+h) \cos x)(\sqrt{\sec (x+h)}+\sqrt{\sec x})}
\end{aligned}
$$

Using the formula:

$$
\begin{aligned}
& \cos A-\cos B=2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{B-A}{2}\right) \\
& =\lim _{h \rightarrow 0} \frac{2 \sin \frac{x+(x+h)}{2} \sin \frac{(x+h)-x}{2}}{h(\cos (x+h) \cos x)(\sqrt{\sec (x+h)}+\sqrt{\sec x})} \\
& =\lim _{h \rightarrow 0} \frac{2 \sin \frac{2 x+h}{2} \sin \frac{h}{2}}{h(\cos (x+h) \cos x)(\sqrt{\sec (x+h)}+\sqrt{\sec x})}
\end{aligned}
$$

$$
=2 \lim _{h \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}}
$$

$$
\times \frac{1}{2} \lim _{\mathrm{h} \rightarrow 0} \sin \left(\frac{2 \mathrm{x}+\mathrm{h}}{2}\right)
$$

$$
\times \lim _{h \rightarrow 0} \frac{1}{(\cos (x+h) \cos x)(\sqrt{\sec (x+h)}+\sqrt{\sec x})}
$$

[Here, we multiply and divide by $\frac{1}{2}$]

$$
\begin{aligned}
& =2 \times \frac{1}{2} \lim _{h \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \\
& \quad \times \lim _{h \rightarrow 0} \sin \left(x+\frac{h}{2}\right) \times \lim _{h \rightarrow 0} \frac{1}{(\cos (x+h) \cos x)(\sqrt{\sec (x+h)}+\sqrt{\sec x})} \\
& =(1) \times \lim _{h \rightarrow 0} \sin \left(x+\frac{h}{2}\right) \times \lim _{h \rightarrow 0} \frac{1}{(\cos (x+h) \cos x)(\sqrt{\sec (x+h)}+\sqrt{\sec x})} \\
& {\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]}
\end{aligned}
$$

Putting $h=0$, we get

$$
\begin{aligned}
& =\sin \left[x+\frac{0}{2}\right] \times \frac{1}{\cos (x+0) \cos x(\sqrt{\sec (x+0)}+\sqrt{\sec x})} \\
& =\sin x \times \frac{1}{\cos x \cos x(\sqrt{\sec x}+\sqrt{\sec x})} \\
& =\frac{\sin x}{\cos ^{2} x(2 \sqrt{\sec x)}} \\
& =\frac{\sin x}{\cos x} \times \frac{1}{\cos x} \times \frac{1}{2 \sqrt{\sec x}}
\end{aligned}
$$

$$
=\tan x \times \sec x \times \frac{1}{2 \sqrt{\sec x}}\left[\because \frac{\sin x}{\cos x}=\tan x\right] \&\left[\frac{1}{\cos x}=\sec x\right]
$$

$$
=\frac{1}{2} \tan x \sqrt{\sec x}
$$

Hence,

$$
\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2} \tan \mathrm{x} \sqrt{\sec \mathrm{x}}
$$

Q. 19. Find the derivation of each of the following from the first principle:

$\tan ^{2} \mathbf{x}$
Answer : Let $f(x)=\tan ^{2} x$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=\tan ^{2} x$
$f(x+h)=\tan ^{2}(x+h)$
Putting values in (i), we get

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=\lim _{\mathrm{h} \rightarrow 0} \frac{\tan ^{2}(\mathrm{x}+\mathrm{h})-\tan ^{2} \mathrm{x}}{\mathrm{~h}} \\
& =\lim _{\mathrm{h} \rightarrow 0} \frac{[\tan (\mathrm{x}+\mathrm{h})-\tan \mathrm{x}][\tan (\mathrm{x}+\mathrm{h})+\tan \mathrm{x}]}{\mathrm{h}}
\end{aligned}
$$

Using:

$\tan \mathrm{x}=\frac{\sin \mathrm{x}}{\cos \mathrm{x}}$
$=\lim _{h \rightarrow 0} \frac{\left[\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right]\left[\frac{\sin (x+h)}{\cos (x+h)}+\frac{\sin x}{\cos x}\right]}{h}$
$=\lim _{h \rightarrow 0} \frac{\left[\frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos (x+h) \cos x}\right]\left[\frac{\sin (x+h) \cos x+\sin x \cos (x+h)}{\cos (x+h) \cos x}\right]}{h}$
$=\lim _{h \rightarrow 0} \frac{\{\sin [(x+h)-x]\}\{\sin [(x+h)+x]\}}{h\left[\cos ^{2}(x+h) \cos ^{2} x\right]}$
$[\because \sin A \cos B-\sin B \cos A=\sin (A-B)$
$\& \sin A \cos B+\sin B \cos A=\sin (A+B)]$
$=\lim _{h \rightarrow 0} \frac{[\sin h][\sin (2 x+h)]}{h\left[\cos ^{2}(x+h) \cos ^{2} x\right]}$
$=\frac{1}{\cos ^{2} x} \lim _{h \rightarrow 0} \frac{\sin h}{h} \times \lim _{h \rightarrow 0} \sin (2 x+h) \times \lim _{h \rightarrow 0} \frac{1}{\cos ^{2}(x+h)}$
$=\frac{1}{\cos ^{2} x} \times(1) \times \lim _{h \rightarrow 0} \sin (2 x+h) \times \lim _{h \rightarrow 0} \frac{1}{\cos ^{2}(x+h)}$
$\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]$
Putting $h=0$, we get

$$
=\frac{1}{\cos ^{2} x} \times \sin (2 x+0) \times \frac{1}{\cos ^{2}(x+0)}
$$

$$
=\frac{1}{\cos ^{2} x} \times \sin 2 x \times \frac{1}{\cos ^{2} x}
$$

$=\frac{1}{\cos ^{2} x} \times 2 \sin x \cos x \times \sec ^{2} x$
$[\because \sin 2 x=2 \sin x \cos x]$
$=2 \frac{\sin x}{\cos x} \times \sec ^{2} x\left[\because \frac{1}{\cos x}=\sec x\right]$
$=2 \tan x \sec ^{2} x$
$\left[\because \frac{\sin x}{\cos x}=\tan x\right]$
Hence, $f^{\prime}(x)=2 \tan x \sec ^{2} x$
Q. 20. Find the derivation of each of the following from the first principle:
$\sin (2 x+3)$
Answer : Let $f(x)=\sin (2 x+3)$

We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=\sin (2 x+3)$
$f(x+h)=\sin [2(x+h)+3]$
Putting values in (i), we get
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sin [2(x+h)+3]-\sin (2 x+3)}{h}$

Using the formula:

$$
\begin{aligned}
& \sin A-\sin B=2 \sin \frac{A-B}{2} \cos \frac{A+B}{2} \\
& =\lim _{h \rightarrow 0} \frac{2 \sin \frac{2(x+h)+3-(2 x+3)}{2} \cos \frac{2(x+h)+3+2 x+3}{2}}{h}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{2 \sin \frac{2 x+2 h+3-2 x-3}{2} \cos \frac{2 x+2 h+6+2 x}{2}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{2 \sin \frac{2 h}{2} \cos \frac{4 x+2 h+6}{2}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{2 \sin (h) \cos (2 x+h+3)}{h}
$$

$$
=2 \lim _{h \rightarrow 0} \frac{\sin h}{h} \times \lim _{h \rightarrow 0} \cos (2 x+h+3)
$$

$$
=2(1) \times \lim _{h \rightarrow 0} \cos (2 x+h+3)
$$

$$
\left[\because \lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right]
$$

Putting $h=0$, we get
$=2 \cos (2 x+0+3)$
$=2 \cos (2 x+3)$
Hence, $f^{\prime}(x)=2 \cos (2 x+3)$
Q. 21. Find the derivation of each of the following from the first principle:

$\tan (3 \mathrm{x}+1)$

Answer: Let $\mathrm{f}(\mathrm{x})=\tan (3 \mathrm{x}+1)$
We need to find the derivative of $f(x)$ i.e. $f^{\prime}(x)$
We know that,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$f(x)=\tan (3 x+1)$
$\mathrm{f}(\mathrm{x}+\mathrm{h})=\tan [3(\mathrm{x}+\mathrm{h})+1]$
Putting values in (i), we get
$\mathrm{f}^{\prime}(\mathrm{x})=\lim _{\mathrm{h} \rightarrow 0} \frac{\tan [3(\mathrm{x}+\mathrm{h})+1]-\tan [3 \mathrm{x}+1]}{\mathrm{h}}$
Using the formula:

$$
\begin{aligned}
& \tan A-\tan B=\frac{\sin (A-B)}{\cos A \cos B} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\sin [3(x+h)+1-(3 x+1)]}{\cos [3(x+h)+1] \cos [3 x+1]}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\sin [3 x+3 h+1-3 x-1]}{\cos [3(x+h)+1] \cos [3 x+1]}}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\sin 3 h}{h[\cos [3(x+h)+1] \cos [3 x+1]]} \\
& =\lim _{h \rightarrow 0} \frac{\sin 3 h}{h} \times \lim _{h \rightarrow 0} \frac{1}{\cos [3(x+h)+1] \cos [3 x+1]} \\
& =\lim _{h \rightarrow 0} \frac{\sin 3 h}{3 h} \times 3 \times \lim _{h \rightarrow 0} \frac{1}{\cos [3(x+h)+1] \cos [3 x+1]} \\
& =3(1) \times \lim _{h \rightarrow 0} \frac{1}{\cos [3(x+h)+1] \cos [3 x+1]} \\
& {\left[\because \lim _{x \rightarrow 0} \frac{\sin 3 x}{3 x}=1\right]}
\end{aligned}
$$

Putting $\mathrm{h}=0$, we get

$$
=3 \times \frac{1}{\cos [3(x+0)+1] \cos [3 x+1]}
$$

$$
=\frac{3}{\cos [3 x+1] \cos [3 x+1]}
$$

$$
=\frac{3}{\cos ^{2}(3 x+1)}
$$

$$
=3 \sec ^{2}(3 x+1)\left[\because \frac{1}{\cos x}=\sec x\right]
$$

Hence, $f^{\prime}(x)=3 \sec ^{2}(3 x+1)$

Exercise 28C

Q. 1. Differentiate:

$X^{2} \sin x$

Answer : To find: Differentiation of $x^{2} \sin x$
Formula used: (i) (uv)' = u'v + uv' (Leibnitz or product rule)
(ii)

$$
\frac{d x^{n}}{d x}=n x^{n-1}
$$

(iii)
$\frac{d \sin x}{d x}=\cos x$
Let us take $u=x^{2}$ and $v=\sin x$
$u^{\prime}=\frac{d u}{d x}=\frac{d\left(x^{2}\right)}{d x}=2 x$
$v^{\prime}=\frac{d v}{d x}=\frac{d(\sin x)}{d x}=\cos x$
Putting the above obtained values in the formula:-
$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left(x^{2} \sin x\right)^{\prime}=2 x \times \sin x+x^{2} \times \cos x$
$=2 x \sin x+x^{2} \cos x$
Ans) $2 x \sin x+x^{2} \cos x$
Q. 2. Differentiate:
$e^{x} \cos x$
Answer : To find: Differentiation of $e^{x} \cos x$
Formula used: (i) (uv)' = u'v + uv' (Leibnitz or product rule)
(ii)

$$
\frac{\mathrm{de}^{\mathrm{x}}}{\mathrm{dx}}=\mathrm{e}^{\mathrm{x}}
$$

(iii)

$$
\frac{d \cos x}{d x}=-\sin x
$$

Let us take $u=e^{x}$ and $v=\cos x$
$u^{\prime}=\frac{d u}{d x}=\frac{d e^{x}}{d x}=e^{x}$
$v^{\prime}=\frac{d v}{d x}=\frac{d \cos x}{d x}=-\sin x$
Putting the above obtained values in the formula:-

$$
\begin{aligned}
& (u v)^{\prime}=u^{\prime} v+u v^{\prime} \\
& \left(e^{x} \cos x\right)^{\prime}=e^{x} x \cos x+e^{x} x-\sin x \\
& =e^{x} \cos x-e^{x} \sin x \\
& =e^{x}(\cos x-\sin x)
\end{aligned}
$$

Ans) $e^{x}(\cos x-\sin x)$
Q. 3. Differentiate:

$e^{x} \cot x$

Answer : To find: Differentiation of $e^{x} \cot x$
Formula used: (i) (uv)' = u'v + uv' (Leibnitz or product rule)
(ii)

$$
\frac{d e^{x}}{d x}=e^{x}
$$

(iii)

$$
\frac{d \cot x}{d x}=-\operatorname{cosec}^{2} x
$$

Let us take $u=e^{x}$ and $v=\cot x$
$\mathrm{u}^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{de}^{\mathrm{x}}}{\mathrm{dx}}=\mathrm{e}^{\mathrm{x}}$
$v^{\prime}=\frac{d v}{d x}=\frac{d \cot x}{d x}=-\operatorname{cosec}^{2} x$

Putting the above obtained values in the formula:-

$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left(e^{x} \cot x\right)^{\prime}=e^{x} x \cot x+e^{x} x-\operatorname{cosec}^{2} x$
$=e^{x} \cot x-e^{x} \operatorname{cosec}^{2} x$
$=e^{x}\left(\cot x-\operatorname{cosec}^{2} x\right)$
Ans) $e^{x}\left(\cot x-\operatorname{cosec}^{2} x\right)$
Q. 4. Differentiate:
$x^{n} \cot x$
Answer : To find: Differentiation of $x^{n} \cot x$

Formula used: (i) (uv)' = u'v + uv' (Leibnitz or product rule)
(ii)
$\frac{d x^{n}}{d x}=n x^{n-1}$
(iii)
$\frac{d \cot x}{d x}=-\operatorname{cosec}^{2} x$
Let $u s$ take $u=x^{n}$ and $v=\cot x$
$\mathrm{u}^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{dx}}{\mathrm{dx}}=n \mathrm{n}^{\mathrm{n}-1}$
$v^{\prime}=\frac{d v}{d x}=\frac{d \cot x}{d x}=-\operatorname{cosec}^{2} x$
Putting the above obtained values in the formula :-
$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left(x^{n} \cot x\right)^{\prime}=n x^{n-1} x \cot x+x^{n} x-\operatorname{cosec}^{2} x$
$=n x^{n-1} \cot x-x^{n} \operatorname{cosec}^{2} x$
$=x^{n}\left(n x^{-1} \cot x-\operatorname{cosec}^{2} x\right)$
Ans) $x^{n}\left(n x^{-1} \cot x-\operatorname{cosec}^{2} x\right)$

Q. 5. Differentiate:

$x^{3} \sec x$
Answer: To find: Differentiation of $x^{3} \sec x$
Formula used: (i) (uv)' = u'v + uv' (Leibnitz or product rule)
(ii)

$$
\frac{d x^{n}}{d x}=n x^{n-1}
$$

(iii)

$$
\frac{d \sec x}{d x}=\sec x \tan x
$$

Let us take $u=x^{3}$ and $v=\sec x$
$u^{\prime}=\frac{d u}{d x}=\frac{d x^{3}}{d x}=3 x^{2}$
$v^{\prime}=\frac{d v}{d x}=\frac{d \sec x}{d x}=\sec x \tan x$
Putting the above obtained values in the formula :-
$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left(x^{3} \sec x\right)^{\prime}=3 x^{2} \times \sec x+x^{3} x \sec x \tan x$
$=3 x^{2} \sec x+x^{3} \sec x \tan x$
$=x^{2} \sec x(3+x \tan x)$
Ans) $x^{2} \sec x(3+x \tan x)$

Q. 6. Differentiate:

$\left(x^{2}+3 x+1\right) \sin x$

Answer : To find: Differentiation of $\left(x^{2}+3 x+1\right) \sin x$
Formula used: (i) (uv)' = u'v + uv' (Leibnitz or product rule)
(ii)

$$
\frac{d x^{n}}{d x}=n x^{n-1}
$$

(iii)

$$
\frac{d \sin x}{d x}=\cos x
$$

Let us take $u=x^{2}+3 x+1$ and $v=\sin x$
$u^{\prime}=\frac{d u}{d x}=\frac{d\left(x^{2}+3 x+1\right)}{d x}=2 x+3$
$v^{\prime}=\frac{d v}{d x}=\frac{d \sin x}{d x}=\cos x$
Putting the above obtained values in the formula :-
$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left[\left(x^{2}+3 x+1\right) \sin x\right]^{\prime}=(2 x+3) \times \sin x+\left(x^{2}+3 x+1\right) \times \cos x$
$=\sin x(2 x+3)+\cos x\left(x^{2}+3 x+1\right)$
Ans) $(2 x+3) \sin x+\left(x^{2}+3 x+1\right) \cos x$

Q. 7. Differentiate:

$x^{4} \tan x$
Answer : To find: Differentiation of $x^{4} \tan x$
Formula used: (i) (uv)' = u'v + uv' (Leibnitz or product rule)
(ii)

$$
\frac{d x^{n}}{d x}=n x^{n-1}
$$

(iii)

$$
\frac{d \tan x}{d x}=\sec ^{2} x
$$

Let us take $u=x^{4}$ and $v=\tan x$

$$
u^{\prime}=\frac{d u}{d x}=\frac{d x^{4}}{d x}=4 x^{3}
$$

$v^{\prime}=\frac{d v}{d x}=\frac{d \tan x}{d x}=\sec ^{2} x$
Putting the above obtained values in the formula:-

$$
\begin{aligned}
& \text { (uv)' }=u^{\prime} v+u v^{\prime} \\
& \left(x^{4} \tan x\right)^{\prime}=4 x^{3} \times \tan x+x^{4} \times \sec ^{2} x \\
& =4 x^{3} \tan x+x^{4} \sec ^{2} x \\
& =x^{3}\left(4 \tan x+x \sec ^{2} x\right)
\end{aligned}
$$

Ans) $x^{3}\left(4 \tan x+x \sec ^{2} x\right)$

Q. 8. Differentiate:

$$
(3 x-5)\left(4 x^{2}-3+e^{x}\right)
$$

Answer : To find: Differentiation of $(3 x-5)\left(4 x^{2}-3+e^{x}\right)$
Formula used: (i) (uv)' = u'v + uv' (Leibnitz or product rule)
(ii)

$$
\frac{d x^{n}}{d x}=n x^{n-1}
$$

(iii)
$\frac{d e^{x}}{d x}=e^{x}$
Let us take $u=(3 x-5)$ and $v=\left(4 x^{2}-3+e^{x}\right)$
$u^{\prime}=\frac{d u}{d x}=\frac{d(3 x-5)}{d x}=3$
$v^{\prime}=\frac{d v}{d x}=\frac{d\left(4 x^{2}-3+e^{x}\right)}{d x}=\left(8 x+e^{x}\right)$
Putting the above obtained values in the formula :-
$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left[(3 x-5)\left(4 x^{2}-3+e^{x}\right)\right]^{\prime}=3 \times\left(4 x^{2}-3+e^{x}\right)+(3 x-5) \times\left(8 x+e^{x}\right)$
$=12 x^{2}-9+3 e^{x}+24 x^{2}+3 x e^{x}-40 x-5 e^{x}$
$=36 \mathrm{x}^{2}+\mathrm{x}\left(3 \mathrm{e}^{\mathrm{x}}-40\right)-9-2 \mathrm{e}^{\mathrm{x}}$
Ans) $36 \mathrm{x}^{2}+\mathrm{x}\left(3 \mathrm{e}^{\mathrm{x}}-40\right)-9-2 \mathrm{e}^{\mathrm{x}}$
Q. 9. Differentiate:
$\left(x^{2}-4 x+5\right)\left(x^{3}-2\right)$
Answer : To find: Differentiation of $\left(x^{2}-4 x+5\right)\left(x^{3}-2\right)$
Formula used: (i) (uv)' = u'v + uv' (Leibnitz or product rule)
(ii)
$\frac{\mathrm{dx}}{\mathrm{dx}}=n x^{\mathrm{n}-1}$
Let us take $u=\left(x^{2}-4 x+5\right)$ and $v=\left(x^{3}-2\right)$
$u^{\prime}=\frac{d u}{d x}=\frac{d\left(x^{2}-4 x+5\right)}{d x}=2 x-4$
$v^{\prime}=\frac{d v}{d x}=\frac{d\left(x^{3}-2\right)}{d x}=3 x^{2}$
Putting the above obtained values in the formula:-
$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left.\left(x^{2}-4 x+5\right)\left(x^{3}-2\right)\right]^{\prime}=(2 x-4) \times\left(x^{3}-2\right)+\left(x^{2}-4 x+5\right) \times\left(3 x^{2}\right)$
$=2 x^{4}-4 x-4 x^{3}+8+3 x^{4}-12 x^{3}+15 x^{2}$
$=5 x^{4}-16 x^{3}+15 x^{2}-4 x+8$
Ans) $5 x^{4}-16 x^{3}+15 x^{2}-4 x+8$
Q. 10. Differentiate:
$\left(x^{2}+2 x-3\right)\left(x^{2}+7 x+5\right)$
Answer : To find: Differentiation of $\left(x^{2}+2 x-3\right)\left(x^{2}+7 x+5\right)$
Formula used: (i) (uv)' = u'v + uv' (Leibnitz or product rule)
(ii)
$\frac{d x^{n}}{d x}=n x^{n-1}$
Let us take $u=\left(x^{2}+2 x-3\right)$ and $v=\left(x^{2}+7 x+5\right)$
$u^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}\left(\mathrm{x}^{2}+2 \mathrm{x}-3\right)}{\mathrm{dx}}=2 \mathrm{x}+2$
$v^{\prime}=\frac{d v}{d x}=\frac{d\left(x^{2}+7 x+5\right)}{d x}=2 x+7$
Putting the above obtained values in the formula :-

$$
\begin{aligned}
& (u v)^{\prime}=u^{\prime} v+u v^{\prime} \\
& {\left[\left(x^{2}+2 x-3\right)\left(x^{2}+7 x+5\right)\right]^{\prime}} \\
& =(2 x+2) \times\left(x^{2}+7 x+5\right)+\left(x^{2}+2 x-3\right) \times(2 x+7) \\
& =2 x^{3}+14 x^{2}+10 x+2 x^{2}+14 x+10+2 x^{3}+7 x^{2}+4 x^{2}+14 x-6 x-21 \\
& =4 x^{3}+27 x^{2}+32 x-11
\end{aligned}
$$

Ans) $4 x^{3}+27 x^{2}+32 x-11$
Q. 11. Differentiate:
$(\tan x+\sec x)(\cot x+\operatorname{cosec} x)$

Answer : To find: Differentiation of $(\tan x+\sec x)(\cot x+\operatorname{cosec} x)$
Formula used: (i) (uv)' = u'v + uv' (Leibnitz or product rule)
(ii)
$\frac{d \tan x}{d x}=\sec ^{2} \mathrm{x}$
(iii)
$\frac{d \sec x}{d x}=\sec x \tan x$
(iv)

$$
\frac{d \cot x}{d x}=-\operatorname{cosec}^{2} x
$$

(v)

$$
\frac{d \operatorname{cosec} x}{d x}=-\operatorname{cosec} x \cot x
$$

Let us take $\mathrm{u}=(\tan \mathrm{x}+\sec \mathrm{x})$ and $\mathrm{v}=(\cot \mathrm{x}+\operatorname{cosec} \mathrm{x})$

$$
\begin{aligned}
& u^{\prime}=\frac{d u}{d x}=\frac{d(\tan x+\sec x)}{d x}=\sec ^{2} x+\sec x \tan x=\sec x(\sec x+\tan x) \\
& v^{\prime}=\frac{d v}{d x}=\frac{d(\cot x+\operatorname{cosec} x)}{d x} \\
& =-\operatorname{cosec}^{2} x+(-\operatorname{cosec} x \cot x)=-\operatorname{cosec} x(\operatorname{cosec} x+\cot x)
\end{aligned}
$$

Putting the above obtained values in the formula:-

$$
\begin{aligned}
& (u v)^{\prime}=u^{\prime} v+u v^{\prime} \\
& {[(\tan x+\sec x)(\cot x+\operatorname{cosec} x)]^{\prime}} \\
& =[\sec x(\sec x+\tan x)] \times[(\cot x+\operatorname{cosec} x)]+[(\tan x+\sec x)] \times[-\operatorname{cosec} x(\operatorname{cosec} x+\cot x)] \\
& =(\sec x+\tan x)[\sec x(\cot x+\operatorname{cosec} x)-\operatorname{cosec} x(\operatorname{cosec} x+\cot x)] \\
& =(\sec x+\tan x)(\sec x-\operatorname{cosec} x)(\cot x+\operatorname{cosec} x)
\end{aligned}
$$

Ans) ($\sec x+\tan x)(\sec x-\operatorname{cosec} x)(\cot x+\operatorname{cosec} x)$

Q. 12. Differentiate:

$\left(x^{3} \cos x-2^{x} \tan x\right)$
Answer : To find: Differentiation of $\left(x^{3} \cos x-2^{x} \tan x\right)$
Formula used: (i) (uv)' = u'v + uv' (Leibnitz or product rule)
(ii)

$$
\frac{\mathrm{dx}}{\mathrm{n}} \mathrm{dx}=\mathrm{n} x^{\mathrm{n}-1}
$$

(iii)

$$
\frac{d \cos x}{d x}=-\sin x
$$

(iv)

$$
\frac{d a^{x}}{d x}=a^{x} \log a
$$

(v)

$$
\frac{d \tan x}{d x}=\sec ^{2} x
$$

Here we have two function $\left(x^{3} \cos x\right)$ and $\left(2^{x} \tan x\right)$
We have two differentiate them separately
Let us assume $g(x)=\left(x^{3} \cos x\right)$
And $h(x)=\left(2^{x} \tan x\right)$
Therefore, $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})-\mathrm{h}(\mathrm{x})$
$\Rightarrow f^{\prime}(x)=g^{\prime}(x)-h^{\prime}(x) \ldots$ (i)
Applying product rule on $g(x)$
Let us take $u=x^{3}$ and $v=\cos x$
$u^{\prime}=\frac{d u}{d x}=\frac{d\left(x^{3}\right)}{d x}=3 x^{2}$
$v^{\prime}=\frac{d v}{d x}=\frac{d(\cos x)}{d x}=-\sin x$
Putting the above obtained values in the formula:-

$$
\begin{aligned}
& (u v)^{\prime}=u^{\prime} v+u v^{\prime} \\
& {\left[x^{3} \cos x\right]^{\prime}=3 x^{2} \times \cos x+x^{3} x-\sin x} \\
& =3 x^{2} \cos x-x^{3} \sin x \\
& =x^{2}(3 \cos x-x \sin x) \\
& g^{\prime}(x)=x^{2}(3 \cos x-x \sin x)
\end{aligned}
$$

Applying product rule on $h(x)$
Let us take $u=2^{x}$ and $v=\tan x$
$\mathrm{u}^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}\left(2^{\mathrm{x}}\right)}{\mathrm{dx}}=2^{\mathrm{x}} \log 2$
$v^{\prime}=\frac{d v}{d x}=\frac{d(\tan x)}{d x}=\sec ^{2} x$
Putting the above obtained values in the formula:-
$(u v)^{\prime}=u^{\prime} v+u v^{\prime}$
$\left[2^{x} \tan x\right]^{\prime}=2^{x} \log 2 x \tan x+2^{x} \times \sec ^{2} x$
$=2^{x}\left(\log 2 \tan x+\sec ^{2} \mathrm{x}\right)$
$h^{\prime}(x)=2^{x}\left(\log 2 \tan x+\sec ^{2} x\right)$
Putting the above obtained values in eqn. (i)
$f^{\prime}(x)=x^{2}(3 \cos x-x \sin x)-2^{x}\left(\log 2 \tan x+\sec ^{2} x\right)$
Ans) $x^{2}(3 \cos x-x \sin x)-2^{x}\left(\log 2 \tan x+\sec ^{2} x\right)$

Exercise 28D

Q. 1. Differentiate

$$
\frac{2^{x}}{x}
$$

Answer :
To find: Differentiation of $\frac{2^{x}}{x}$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d a^{x}}{d x}=a^{x} \log a$

Let us take $u=2^{\mathrm{x}}$ and $\mathrm{v}=\mathrm{x}$
$\mathrm{u}^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}\left(2^{\mathrm{x}}\right)}{\mathrm{dx}}=2^{\mathrm{x}} \log 2$
$v^{\prime}=\frac{d v}{d x}=\frac{d(x)}{d x}=1$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left(\frac{2^{x}}{x}\right)^{\prime}=\frac{2^{x} \log 2 \times x-2^{x} \times 1}{(x)^{2}}$
$=\frac{2^{x}(x \log 2-1)}{x^{2}}$

Ans $)=\frac{2^{x}(x \log 2-1)}{x^{2}}$

Q. 2. Differentiate

$\frac{\log x}{x}$
Answer:
To find: Differentiation of $\frac{\log x}{x}$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime \prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \log x}{d x}=\frac{1}{x}$

Let $u s$ take $u=\log x$ and $v=x$
$u^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}(\log \mathrm{x})}{\mathrm{dx}}=\frac{1}{\mathrm{x}}$
$v^{\prime}=\frac{d v}{d x}=\frac{d(x)}{d x}=1$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left(\frac{\log x}{x}\right)^{\prime}=\frac{\frac{1}{x} \times x-\log x \times 1}{(x)^{2}}$
$=\frac{1-\log x}{x^{2}}$
Ans) $=\frac{1-\log x}{x^{2}}$

Q. 3. Differentiate

$\frac{e^{x}}{(1+x)}$

Answer :
To find: Differentiation of $\frac{e^{x}}{(1+x)}$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d e^{x}}{d x}=e^{x}$

Let us take $\mathrm{u}=\mathrm{e}^{\mathrm{x}}$ and $\mathrm{v}=(1+\mathrm{x})$
$u^{\prime}=\frac{d u}{d x}=\frac{d\left(e^{x}\right)}{d x}=e^{x}$
$v^{\prime}=\frac{d v}{d x}=\frac{d(1+x)}{d x}=1$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left(\frac{e^{x}}{(1+x)}\right)^{\prime}=\frac{e^{x} \times(1+x)-e^{x} \times 1}{(1+x)^{2}}$
$=\frac{\mathrm{xe}^{\mathrm{x}}}{(1+\mathrm{x})^{2}}$

Ans) $=\frac{x e^{x}}{(1+x)^{2}}$

Q. 4. Differentiate

$$
\frac{e^{x}}{\left(1+x^{2}\right)}
$$

Answer:
To find: Differentiation of $\frac{e^{x}}{\left(1+x^{2}\right)}$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d e^{x}}{d x}=e^{x}$
(iii) $\frac{d x^{n}}{d x}=n x^{n-1}$

Let us take $u=e^{x}$ and $v=\left(1+x^{2}\right)$
$\mathrm{u}^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}\left(\mathrm{e}^{\mathrm{x}}\right)}{\mathrm{dx}}=\mathrm{e}^{\mathrm{x}}$
$v^{\prime}=\frac{d v}{d x}=\frac{d\left(1+x^{2}\right)}{d x}=2 x$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left(\frac{e^{x}}{\left(1+x^{2}\right)}\right)^{\prime}=\frac{e^{x} \times\left(1+x^{2}\right)-e^{x} \times 2 x}{\left(1+x^{2}\right)^{2}}$
$=\frac{e^{x}\left(x^{2}-2 x+1\right)}{\left(1+x^{2}\right)^{2}}$
$=\frac{e^{x}(x-1)^{2}}{\left(1+x^{2}\right)^{2}}$

Ans) $=\frac{e^{x}(x-1)^{2}}{\left(1+x^{2}\right)^{2}}$
Q. 5. Differentiate

$$
\left(\frac{2 x^{2}-4}{3 x^{2}+7}\right)
$$

Answer :

To find: Differentiation of $\frac{\left(2 x^{2}-4\right)}{\left(3 x^{2}+7\right)}$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d x^{n}}{d x}=n x^{n-1}$

Let us take $u=\left(2 x^{2}-4\right)$ and $v=\left(3 x^{2}+7\right)$
$u^{\prime}=\frac{d u}{d x}=\frac{d\left(2 x^{2}-4\right)}{d x}=4 x$
$v^{\prime}=\frac{d v}{d x}=\frac{d\left(3 x^{2}+7\right)}{d x}=6 x$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{\left(2 x^{2}-4\right)}{\left(3 x^{2}+7\right)}\right]=\frac{4 x \times\left(3 x^{2}+7\right)-\left(2 x^{2}-4\right) \times 6 x}{\left(3 x^{2}+7\right)^{2}}$
$=\frac{12 x^{3}+28 x-12 x^{3}+24 x}{\left(3 x^{2}+7\right)^{2}}$

$$
=\frac{52 x}{\left(3 x^{2}+7\right)^{2}}
$$

$$
\text { Ans) }=\frac{52 x}{\left(3 x^{2}+7\right)^{2}}
$$

Q. 6. Differentiate

$$
\left(\frac{x^{2}+3 x-1}{x+2}\right)
$$

Answer :

To find: Differentiation of $\left(\frac{x^{2}+3 x-1}{x+2}\right)$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d x^{n}}{d x}=n x^{n-1}$

Let us take $u=\left(x^{2}+3 x-1\right)$ and $v=(x+2)$
$u^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}\left(\mathrm{x}^{2}+3 \mathrm{x}-1\right)}{\mathrm{dx}}=2 \mathrm{x}+3$
$v^{\prime}=\frac{d v}{d x}=\frac{d(x+2)}{d x}=1$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left(\frac{x^{2}+3 x-1}{x+2}\right)^{\prime}=\frac{(2 x+3) \times(x+2)-\left(x^{2}+3 x-1\right) \times 1}{(x+2)^{2}}$
$=\frac{2 x^{2}+7 x+6-x^{2}-3 x+1}{(x+2)^{2}}$
$=\frac{x^{2}+4 x+7}{(x+2)^{2}}$
Ans $)=\frac{x^{2}+4 x+7}{(x+2)^{2}}$
Q. 7. Differentiate
$\frac{\left(x^{2}-1\right)}{\left(x^{2}+7 x+1\right)}$
Answer :
To find: Differentiation of $\frac{\left(x^{2}-1\right)}{\left(x^{2}+7 x+1\right)}$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d x^{n}}{d x}=n x^{n-1}$

Let us take $u=\left(x^{2}-1\right)$ and $v=\left(x^{2}+7 x+1\right)$
$\mathrm{u}^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}\left(\mathrm{x}^{2}-1\right)}{\mathrm{dx}}=2 \mathrm{x}$
$v^{\prime}=\frac{d v}{d x}=\frac{d\left(x^{2}+7 x+1\right)}{d x}=2 x+7$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{\left(x^{2}-1\right)}{\left(x^{2}+7 x+1\right)}\right]=\frac{2 x \times\left(x^{2}+7 x+1\right)-\left(x^{2}-1\right) \times(2 x+7)}{\left(x^{2}+7 x+1\right)^{2}}$
$=\frac{2 x^{3}+14 x^{2}+2 x-2 x^{3}-7 x^{2}+2 x+7}{\left(x^{2}+7 x+1\right)^{2}}$
$=\frac{7 x^{2}+4 x+7}{\left(x^{2}+7 x+1\right)^{2}}$
Ans) $=\frac{7 x^{2}+4 x+7}{\left(x^{2}+7 x+1\right)^{2}}$
Q. 8. Differentiate

$$
\left(\frac{5 x^{2}+6 x+7}{2 x^{2}+3 x+4}\right)
$$

Answer:

To find: Differentiation of $\left(\frac{5 x^{2}+6 x+7}{2 x^{2}+3 x+4}\right)$
Formula used: (i) $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{u}^{\prime} \mathrm{v}-\mathrm{uv}}{\mathrm{v}^{2}}$ where $\mathrm{v} \neq 0$ (Quotient rule)
(ii) $\frac{d x^{n}}{d x}=n x^{n-1}$

Let us take $u=\left(5 x^{2}+6 x+7\right)$ and $v=\left(2 x^{2}+3 x+4\right)$
$u^{\prime}=\frac{d u}{d x}=\frac{d\left(5 x^{2}+6 x+7\right)}{d x}=10 x+6$
$v^{\prime}=\frac{d v}{d x}=\frac{d\left(2 x^{2}+3 x+4\right)}{d x}=4 x+3$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left(\frac{5 x^{2}+6 x+7}{2 x^{2}+3 x+4}\right)^{\prime}=\frac{(10 x+6) \times\left(2 x^{2}+3 x+4\right)-\left(5 x^{2}+6 x+7\right) \times(4 x+3)}{\left(2 x^{2}+3 x+4\right)^{2}}$
$=\frac{20 x^{3}+30 x^{2}+40 x+12 x^{2}+18 x+24-20 x^{3}-15 x^{2}-24 x^{2}-18 x-28 x-21}{\left(2 x^{2}+3 x+4\right)^{2}}$
$=\frac{3 x^{2}+12 x+3}{\left(2 x^{2}+3 x+4\right)^{2}}$
$=\frac{3\left(x^{2}+4 x+1\right)}{\left(2 x^{2}+3 x+4\right)^{2}}$
Ans) $=\frac{3\left(x^{2}+4 x+1\right)}{\left(2 x^{2}+3 x+4\right)^{2}}$
Q. 9. Differentiate
$\frac{x}{\left(a^{2}+x^{2}\right)}$
Answer :
To find: Differentiation of $\frac{x}{\left(a^{2}+x^{2}\right)}$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d x^{n}}{d x}=n x^{n-1}$

Let us take $u=(x)$ and $v=\left(a^{2}+x^{2}\right)$
$\mathrm{u}^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}(\mathrm{x})}{\mathrm{dx}}=1$

$$
v^{\prime}=\frac{d v}{d x}=\frac{d\left(a^{2}+x^{2}\right)}{d x}=2 x
$$

Putting the above obtained values in the formula:-

$$
\begin{aligned}
& \left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \text { where } v \neq 0 \text { (Quotient rule) } \\
& {\left[\frac{x}{\left(a^{2}+x^{2}\right)}\right]^{\prime}=\frac{1 \times\left(a^{2}+x^{2}\right)-(x) \times(2 x)}{\left(a^{2}+x^{2}\right)^{2}}} \\
& =\frac{a^{2}+x^{2}-2 x^{2}}{\left(a^{2}+x^{2}\right)^{2}} \\
& =\frac{a^{2}-x^{2}}{\left(a^{2}+x^{2}\right)^{2}} \\
& \text { Ans })=\frac{a^{2}-x^{2}}{\left(a^{2}+x^{2}\right)^{2}}
\end{aligned}
$$

Q. 10. Differentiate

$$
\frac{x^{4}}{\sin x}
$$

Answer :
To find: Differentiation of $\frac{x^{4}}{\sin x}$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d x^{n}}{d x}=n x^{n-1}$
(iii) $\frac{d \sin x}{d x}=\cos x$

Let us take $u=\left(x^{4}\right)$ and $v=(\sin x)$

$$
\begin{aligned}
& u^{\prime}=\frac{d u}{d x}=\frac{d\left(x^{4}\right)}{d x}=4 x^{3} \\
& v^{\prime}=\frac{d v}{d x}=\frac{d(\sin x)}{d x}=\cos x
\end{aligned}
$$

Putting the above obtained values in the formula:-

$$
\begin{aligned}
& \left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \text { where } v \neq 0 \text { (Quotient rule) } \\
& {\left[\frac{x^{4}}{\sin x}\right]^{\prime}=\frac{4 x^{3} \times(\sin x)-\left(x^{4}\right) \times(\cos x)}{(\sin x)^{2}}} \\
& =\frac{x^{3}[4(\sin x)-x(\cos x)]}{(\sin x)^{2}} \\
& \text { Ans })=\frac{x^{3}[4(\sin x)-x(\cos x)]}{(\sin x)^{2}}
\end{aligned}
$$

Q. 11. Differentiate
$\frac{\sqrt{a}+\sqrt{x}}{\sqrt{a}-\sqrt{x}}$
Answer:
To find: Differentiation of $\frac{\sqrt{a}+\sqrt{x}}{\sqrt{a}-\sqrt{x}}$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v \text { - } u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d x^{n}}{d x}=n x^{n-1}$

Let us take $u=(\sqrt{\mathbf{a}}+\sqrt{x})$ and $v=(\sqrt{\mathbf{a}}-\sqrt{\mathbf{x}})$
$u^{\prime}=\frac{d u}{d x}=\frac{d(\sqrt{a}+\sqrt{x})}{d x}=\frac{1}{2 \sqrt{x}}$
$v^{\prime}=\frac{d v}{d x}=\frac{d(\sqrt{a}-\sqrt{x})}{d x}=-\frac{1}{2 \sqrt{x}}$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{\sqrt{a}+\sqrt{x}}{\sqrt{a}-\sqrt{x}}\right]=\frac{\frac{1}{2 \sqrt{x}} \times(\sqrt{a}-\sqrt{x})-(\sqrt{a}+\sqrt{x}) \times-\frac{1}{2 \sqrt{x}}}{(\sqrt{a}-\sqrt{x})^{2}}$
$=\frac{\frac{\sqrt{a}}{2 \sqrt{x}}-\frac{1}{2}+\frac{\sqrt{a}}{2 \sqrt{x}}+\frac{1}{2}}{(\sqrt{a}-\sqrt{x})^{2}}$
$=\frac{\sqrt{a}}{\sqrt{x}(\sqrt{a}-\sqrt{x})^{2}}$
Ans) $=\frac{\sqrt{a}}{\sqrt{x}(\sqrt{a}-\sqrt{x})^{2}}$
Q. 12. Differentiate
$\cos x$
$\log x$
Answer :
To find: Differentiation of $\frac{\cos x}{\log x}$

Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \cos x}{d x}=-\sin x$
(iii) $\frac{d \log x}{d x}=\frac{1}{x}$

Let us take $u=(\cos x)$ and $v=(\log x)$
$u^{\prime}=\frac{d u}{d x}=\frac{d(\cos x)}{d x}=-\sin x$
$v^{\prime}=\frac{d v}{d x}=\frac{d(\log x)}{d x}=\frac{1}{x}$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{\cos x}{\log x}\right]^{\prime}=\frac{-\sin x \times(\log x)-(\cos x) \times\left(\frac{1}{x}\right)}{(\log x)^{2}}$
$=\frac{-x \sin x(\log x)-(\cos x)}{x(\log x)^{2}}$
Ans) $=\frac{-x \sin x(\log x)-(\cos x)}{x(\log x)^{2}}$
Q. 13. Differentiate
$\frac{2 \cot x}{\sqrt{x}}$
Answer :
To find: Differentiation of $\frac{2 \cot x}{\sqrt{x}}$

Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \cot x}{d x}=-\operatorname{cosec}^{2} x$
(iii) $\frac{d x^{n}}{d x}=n x^{n-1}$

Let us take $u=(2 \cot x)$ and $v=$ (\sqrt{x})
$u^{\prime}=\frac{d u}{d x}=\frac{d(2 \cot x)}{d x}=-2 \operatorname{cosec}^{2} x$
$v^{\prime}=\frac{d v}{d x}=\frac{d(\sqrt{x})}{d x}=\frac{1}{2 \sqrt{x}}$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{2 \cot x}{\sqrt{x}}\right]=\frac{-2 \operatorname{cosec}^{2} x \times(\sqrt{x})-(2 \cot x) \times\left(\frac{1}{2 \sqrt{x}}\right)}{(\sqrt{x})^{2}}$
$=\frac{-2 x \operatorname{cosec}^{2} x-(\cot x)}{\sqrt{x}(\sqrt{x})^{2}}$
Ans) $=\frac{-2 x \operatorname{cosec}^{2} x-\cot x}{x^{3 / 2}}$
Q. 14. Differentiate

$$
\frac{\sin x}{(1+\cos x)}
$$

Answer :

To find: Differentiation of $\frac{\sin x}{(1+\cos x)}$
Formula used: (i) $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{u}^{\prime} \mathrm{v} \text {-uv' }}{\mathrm{v}^{2}}$ where $\mathrm{v} \neq 0$ (Quotient rule)
(ii) $\frac{d \cos x}{d x}=-\sin x$
(iii) $\frac{d \sin x}{d x}=\cos x$

Let us take $u=(\sin x)$ and $v=(1+\cos x)$

$$
\begin{aligned}
& u^{\prime}=\frac{d u}{d x}=\frac{d(\sin x)}{d x}=\cos x \\
& v^{\prime}=\frac{d v}{d x}=\frac{d(1+\cos x)}{d x}=-\sin x
\end{aligned}
$$

Putting the above obtained values in the formula:-

$$
\begin{aligned}
& \left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \text { where } v \neq 0(\text { Quotient rule) } \\
& {\left[\frac{\sin x}{(1+\cos x)}\right]^{\prime}=\frac{\cos x \times(1+\cos x)-(\sin x) \times(-\sin x)}{(1+\cos x)^{2}}} \\
& =\frac{\cos x+\cos ^{2} x+\sin ^{2} x}{(1+\cos x)^{2}} \\
& =\frac{\cos x+1}{(1+\cos x)^{2}} \\
& =\frac{1}{(1+\cos x)} \\
& \text { Ans })=\frac{1}{1+\cos x}
\end{aligned}
$$

Q. 15. Differentiate
$\left(\frac{1+\sin x}{1-\sin x}\right)$
Answer:
To find: Differentiation of $\left(\frac{1+\sin x}{1-\sin x}\right)$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \sin x}{d x}=\cos x$

Let us take $u=(1+\sin x)$ and $v=(1-\sin x)$

$$
\begin{aligned}
& u^{\prime}=\frac{d u}{d x}=\frac{d(1+\sin x)}{d x}=\cos x \\
& v^{\prime}=\frac{d v}{d x}=\frac{d(1-\sin x)}{d x}=-\cos x
\end{aligned}
$$

Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{1+\sin x}{1-\sin x}\right]^{\prime}=\frac{\cos x \times(1-\sin x)-(1+\sin x) \times(-\cos x)}{(1-\sin x)^{2}}$
$=\frac{\cos x-\cos x \sin x+\cos x+\cos x \sin x}{(1-\sin x)^{2}}$
$=\frac{2 \cos x}{(1-\sin x)^{2}}$
Ans $)=\frac{2 \cos x}{(1-\sin x)^{2}}$
Q. 16. Differentiate
$\left(\frac{1-\cos x}{1+\cos x}\right)$
Answer :
To find: Differentiation of $\left(\frac{1-\cos x}{1+\cos x}\right)$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime \prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \cos x}{d x}=-\sin x$

Let us take $u=(1-\cos x)$ and $v=(1+\cos x)$

$$
u^{\prime}=\frac{d u}{d x}=\frac{d(1-\cos x)}{d x}=\sin x
$$

$v^{\prime}=\frac{d v}{d x}=\frac{d(1+\cos x)}{d x}=-\sin x$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{1-\cos x}{1+\cos x}\right]^{\prime}=\frac{\sin x \times(1+\cos x)-(1-\cos x) \times(-\sin x)}{(1+\cos x)^{2}}$
$=\frac{\sin x+\sin x \cos x+\sin x-\sin x \cos x}{(1+\cos x)^{2}}$
$=\frac{2 \sin x}{(1+\cos x)^{2}}$
Ans) $=\frac{2 \sin x}{(1+\cos x)^{2}}$

Q. 17. Differentiate

$\left(\frac{\sin x-\cos x}{\sin x+\cos x}\right)$
Answer :
To find: Differentiation of $\left(\frac{\sin x-\cos x}{\sin x+\cos x}\right)$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \sin x}{d x}=\cos x$
(iii) $\frac{d \cos x}{d x}=-\sin x$

Let us take $u=(\sin x-\cos x)$ and $v=(\sin x+\cos x)$

$$
\begin{aligned}
& u^{\prime}=\frac{d u}{d x}=\frac{d(\sin x-\cos x)}{d x}=(\cos x+\sin x) \\
& v^{\prime}=\frac{d v}{d x}=\frac{d(\sin x+\cos x)}{d x}=(\cos x-\sin x)
\end{aligned}
$$

Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{\sin x-\cos x}{\sin x+\cos x}\right]^{\prime}=\frac{(\cos x+\sin x) \times(\sin x+\cos x)-(\sin x-\cos x) \times(\cos x-\sin x)}{(\sin x+\cos x)^{2}}$
$=\frac{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x-(\sin x-\cos x) x-(\sin x-\cos x)}{(\sin x+\cos x)^{2}}$
$=\frac{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x+\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x}{(\sin x+\cos x)^{2}}$
$=\frac{2\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x}$
$=\frac{2}{1+\sin 2 x}$
Ans) $=\frac{2}{1+\sin 2 x}$
Q. 18. Differentiate
$\left(\frac{\sec x-\tan x}{\sec x+\tan x}\right)$
Answer :
To find: Differentiation of $\left(\frac{\sec x-\tan x}{\sec x+\tan x}\right)$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \sec x}{d x}=\sec x \tan x$
(iii) $\frac{d \tan x}{d x}=\sec ^{2} x$

Let us take $u=(\sec x-\tan x)$ and $v=(\sec x+\tan x)$
$u^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}(\sec \mathrm{x}-\tan \mathrm{x})}{\mathrm{dx}}=\left(\sec x \tan \mathrm{x}-\sec ^{2} \mathrm{x}\right)$
$v^{\prime}=\frac{d v}{d x}=\frac{d(\sec x+\tan x)}{d x}=\left(\sec x \tan x+\sec ^{2} x\right)$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)

$$
\begin{aligned}
& {\left[\frac{\sec x-\tan x}{\sec x+\tan x}\right]^{\prime}=\frac{\left(\sec x \tan x-\sec ^{2} x\right)(\sec x+\tan x)-(\sec x-\tan x)\left(\sec x \tan x+\sec ^{2} x\right)}{(\sec x+\tan x)^{2}}} \\
& =\frac{\left(\sec x \tan x-\sec ^{2} x\right)(\sec x+\tan x)-(\sec x-\tan x)(\sec x)(\tan x+\sec x)}{(\sec x+\tan x)^{2}} \\
& =\frac{(\sec x+\tan x)\left[\left(\sec x \tan x-\sec ^{2} x\right)-(\sec x-\tan x)(\sec x)\right]}{(\sec x+\tan x)^{2}} \\
& =\frac{(\sec x+\tan x)\left[\left(\sec x \tan x-\sec ^{2} x\right)-\left(\sec ^{2} x-\sec x \tan x\right)\right]}{\left(\sec x+\tan ^{2} x\right)^{2}} \\
& =\frac{(\sec x+\tan x)\left[2 \sec x \tan x-2 \sec ^{2} x\right]}{(\sec x+\tan x)^{2}} \\
& =\frac{2 \sec x[\tan x-\sec x]}{(\sec x+\tan x)} \\
& \text { Ans) }=\frac{2 \sec x[\tan x-\sec x]}{(\sec x+\tan x)}
\end{aligned}
$$

Q. 19. Differentiate

$$
\left(\frac{e^{x}+\sin x}{1+\log x}\right)
$$

Answer :

To find: Differentiation of $\left(\frac{e^{x}+\sin x}{1+\log x}\right)$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \sin x}{d x}=\cos x$
(iii) $\frac{d \log x}{d x}=\frac{1}{x}$
(iv) $\frac{d e^{x}}{d x}=e^{x}$

Let us take $u=\left(e^{x}+\sin x\right)$ and $v=(1+\log x)$
$u^{\prime}=\frac{d u}{d x}=\frac{d\left(e^{x}+\sin x\right)}{d x}=\left(e^{x}+\cos x\right)$
$v^{\prime}=\frac{d v}{d x}=\frac{d(1+\log x)}{d x}=\frac{1}{x}$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{e^{x}+\sin x}{1+\log x}\right]^{\prime}=\frac{\left(e^{x}+\cos x\right) \times(1+\log x)-\left(e^{x}+\sin x\right) \times\left(\frac{1}{x}\right)}{(1+\log x)^{2}}$
$=\frac{x\left(e^{x}+\cos x\right)(1+\log x)-\left(e^{x}+\sin x\right)}{x(1+\log x)^{2}}$
Ans $)=\frac{x\left(e^{x}+\cos x\right)(1+\log x)-\left(e^{x}+\sin x\right)}{x(1+\log x)^{2}}$
Q. 20. Differentiate
$\frac{e^{x} \sin x}{\sec x}$

Answer :

To find: Differentiation of $\left(\frac{e^{x} \sin x}{\sec x}\right)$

Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \sin x}{d x}=\cos x$
(iii) $\frac{d \sec x}{d x}=\sec x \tan x$
(iv) $\frac{d e^{x}}{d x}=e^{x}$
(v) (uv)' $=u^{\prime} v+u v^{\prime}($ Leibnitz or product rule)

Let us take $u=\left(e^{x} \boldsymbol{\operatorname { s i n }} x\right)$ and $v=(\boldsymbol{\operatorname { s e c }} x)$
$u^{\prime}=\frac{d u}{d x}=\frac{d\left(e^{x} \sin x\right)}{d x}$
Applying Product rule
$(\mathrm{gh})^{\prime}=\mathrm{g} \mathrm{g}^{\mathrm{h}}+\mathrm{gh} \mathrm{h}^{\prime}$
Taking $\mathrm{g}=\mathrm{e}^{\mathrm{x}}$ and $\mathrm{h}=\sin \mathrm{x}$
$=e^{x} \sin x+e^{x} \cos x$
$u^{\prime}=e^{x} \sin x+e^{x} \cos x$
$v^{\prime}=\frac{d v}{d x}=\frac{d(\sec x)}{d x}=\sec x \tan x$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{e^{x} \sin x}{\sec x}\right]^{\prime}=\frac{\left(e^{x} \sin x+e^{x} \cos x\right) \times(\sec x)-\left(e^{x} \sin x\right) \times(\sec x \tan x)}{(\sec x)^{2}}$
$=\frac{\left(e^{x} \sin x+e^{x} \cos x\right)-\left(e^{x} \sin x\right) x(\tan x)}{(\sec x)}$

$$
\begin{aligned}
& =\cos x\left[\left(e^{x} \sin x+e^{x} \cos x\right)-\left(e^{x} \sin x\right) x(\tan x)\right] \\
& =\left[\left(e^{x} \sin x \cos x+e^{x} \cos ^{2} x\right)-\left(e^{x} \sin x \cos x\right) x(\tan x)\right] \\
& =\left[\left(e^{x} \sin x \cos x+e^{x} \cos ^{2} x\right)-\left(e^{x} \sin ^{2} x\right)\right] \\
& =\left(e^{x} \sin x \cos x+e^{x} \cos ^{2} x-e^{x} \sin ^{2} x\right. \\
& =\left(e^{x} \sin x \cos x+e^{x} \cos ^{2} x-e^{x} \sin ^{2} x\right. \\
& =e^{x} \sin x \cos x+e^{x} \cos 2 x \\
& =e^{x}(\sin x \cos x+\cos 2 x) \\
& \text { Ans })=e^{x}(\sin x \cos x+\cos 2 x) \\
& Q .21 . \text { Differentiate }
\end{aligned}
$$

$$
\frac{2^{x} \cot x}{\sqrt{x}}
$$

Answer :

To find: Differentiation of $\left(\frac{2^{x} \cot x}{\sqrt{x}}\right)$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \cot x}{d x}=-\operatorname{cosec}^{2} x$
(iii) $\frac{d x^{n}}{d x}=n x^{n-1}$
(iv) $\frac{d a^{x}}{d x}=a^{x} \log a$
(v) (uv) $=u^{\prime} v+u v^{\prime}$ (Leibnitz or product rule)

Let us take $u=\left(2^{x} \cot x\right)$ and $v=(\sqrt{x})$
$u^{\prime}=\frac{d u}{d x}=\frac{d\left(2^{x} \cot x\right)}{d x}$
Applying Product rule
$(\mathrm{gh})^{\prime}=\mathrm{g} \mathrm{g}^{\mathrm{h}}+\mathrm{gh}{ }^{\prime}$
Taking $\mathrm{g}=\mathbf{2}^{\mathrm{x}}$ and $\mathrm{h}=\boldsymbol{\operatorname { c o t }} \mathrm{x}$
$=\left(2^{x} \log 2\right) \cot x+2^{x}\left(-\operatorname{cosec}^{2} x\right)$
$u^{\prime}=\left(2^{x} \log 2\right) \cot x-2^{x}\left(\operatorname{cosec}^{2} x\right)$
$u^{\prime}=2^{x}\left[\log 2 \cot x-\operatorname{cosec}^{2} x\right]$
$v^{\prime}=\frac{d v}{d x}=\frac{d(\sqrt{x})}{d x}=\frac{1}{2 \sqrt{x}}$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{2^{x} \cot x}{\sqrt{x}}\right]^{\prime}=\frac{\left\{2^{x}\left[\log 2 \cot x-\operatorname{cosec}^{2} x\right] \times \sqrt{x}\right\}-\left\{\left(2^{x} \cot x\right) \times\left(\frac{1}{2 \sqrt{x}}\right)\right\}}{(\sqrt{x})^{2}}$
$=\frac{\left\{2^{x}\left[\log 2 \cot x-\operatorname{cosec}^{2} x\right] \times \sqrt{x}\right\}-\left\{\left(2^{x} \cot x\right) \times\left(\frac{1}{2 \sqrt{x}}\right)\right\}}{x}$

$$
=\frac{\left\{2^{x}\left[\log 2 \cot x-\operatorname{cosec}^{2} x\right] \times \sqrt{x}\right\}-\left\{\left(2^{x-1} \cot x\right) \times\left(\frac{1}{\sqrt{x}}\right)\right\}}{x}
$$

$$
=\frac{\left\{x 2^{x}\left[\log 2 \cot x-\operatorname{cosec}^{2} x\right]\right\}-\left\{\left(2^{x-1} \cot x\right)\right\}}{x \sqrt{x}}
$$

$$
=\frac{\left\{2^{x}\left[x \log 2 \cot x-x \operatorname{cosec}{ }^{2} x\right]\right\}-\left\{\left(2^{x-1} \cot x\right)\right\}}{x^{\frac{3}{2}}}
$$

$$
\text { Ans })=\frac{\left\{2^{x}\left[x \log 2 \cot x-x \operatorname{cosec}^{2} x\right]\right\}-\left\{\left(2^{x-1} \cot x\right)\right\}}{x^{\frac{3}{2}}}
$$

Q. 22. Differentiate

$$
\frac{\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)}{(\mathrm{x}+1)}
$$

Answer:

To find: Differentiation of $\frac{e^{x}(x-1)}{(x+1)}$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime \prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d e^{x}}{d x}=e^{x}$
(iii) $\frac{d x^{n}}{d x}=n x^{n-1}$
(iv) (uv)' $=u^{\prime} v+u v^{\prime}$ (Leibnitz or product rule)

Let us take $u=e^{x}(x-1)$ and $v=(x+1)$
$\mathrm{u}^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}\left[\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)\right]}{\mathrm{dx}}$

Applying Product rule
$(\mathrm{gh})^{\prime}=\mathrm{g}^{\prime} \mathrm{h}+\mathrm{gh}{ }^{\prime}$
Taking $\mathrm{g}=\mathrm{e}^{\mathrm{x}}$ and $\mathrm{h}=\mathrm{x}-1$
$\left[e^{\mathrm{x}}(\mathrm{x}-1)\right]^{\prime}=\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)+\mathrm{e}^{\mathrm{x}}(1)$
$=e^{x}(x-1)+e^{x}$
$u^{\prime}=e^{x} x$
$v^{\prime}=\frac{d v}{d x}=\frac{d(x+1)}{d x}=1$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{e^{x}(x-1)}{(x+1)}\right]^{\prime}=\frac{\left(e^{x} x\right)(x+1)-\left[e^{x}(x-1)\right](1)}{(x+1)^{2}}$
$=\frac{e^{x} x^{2}+e^{x} x-e^{x} x+e^{x}}{(x+1)^{2}}$
$=\frac{e^{x} x^{2}+e^{x}}{(x+1)^{2}}$
$=\frac{e^{x}\left(x^{2}+1\right)}{(x+1)^{2}}$
$A n s)=\frac{e^{x}\left(x^{2}+1\right)}{(x+1)^{2}}$
Q. 23. Differentiate

$$
\frac{x \tan x}{(\sec x+\tan x)}
$$

Answer :

To find: Differentiation of $\frac{x \tan x}{(\sec x+\tan x)}$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \sec x}{d x}=\sec x \tan x$
(iii) $\frac{d \tan x}{d x}=\sec ^{2} x$
(iii) $\frac{d x^{n}}{d x}=n x^{n-1}$
(iv) (uv)' $=u^{\prime} v+u v^{\prime}$ (Leibnitz or product rule)

Let us take $u=(x \tan x)$ and $v=(\sec x+\tan x)$
$\mathrm{u}^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}[\mathrm{x} \tan \mathrm{x}]}{\mathrm{dx}}$
Applying Product rule for finding u'
$(g h)^{\prime}=g^{\prime} h+g h^{\prime}$
Taking $\mathrm{g}=\mathrm{xand} \mathrm{h}=\tan \mathrm{x}$
$[x \tan x]^{\prime}=(1)(\tan x)+x\left(\sec ^{2} x\right)$
$=\tan x+x \sec ^{2} x$
$u^{\prime}=\tan x+x \sec ^{2} x$
$v^{\prime}=\frac{d v}{d x}=\frac{d(\sec x+\tan x)}{d x}=\sec x \tan x+\sec ^{2} x$
$v^{\prime}=\sec x(\tan x+\sec x)$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{x \tan x}{(\sec x+\tan x)}\right]^{\prime}=\frac{\left(\tan x+x \sec ^{2} x\right)(\sec x+\tan x)-[x \tan x][\sec x(\tan x+\sec x)]}{(\sec x+\tan x)^{2}}$
$=\frac{(\sec x+\tan x)\left[\left(\tan x+x \sec ^{2} x\right)-(x \tan x)(\sec x)\right]}{(\sec x+\tan x)^{2}}$
$=\frac{\left[\tan x+x \sec ^{2} x-x \tan x \sec x\right]}{(\sec x+\tan x)}$
$=\frac{\tan x+x \sec x(\sec x-\tan x)}{(\sec x+\tan x)}$
Ans $)=\frac{\tan x+x \sec x(\sec x-\tan x)}{(\sec x+\tan x)}$
Q. 24. Differentiate
$\left(\frac{a x^{2}+b x+c}{p x^{2}+q x+r}\right)$

Answer :

To find: Differentiation of $\frac{a x^{2}+b x+c}{p x^{2}+q x+r}$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d x^{n}}{d x}=n x^{n-1}$

Let us take $u=\left(a x^{2}+b x+c\right)$ and $v=\left(p x^{2}+q x+r\right)$
$\mathrm{u}^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}\left[\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right]}{\mathrm{dx}}=2 \mathrm{ax}+\mathrm{b}$

$$
v^{\prime}=\frac{d v}{d x}=\frac{d\left(p x^{2}+q x+r\right)}{d x}=2 p x+q
$$

Putting the above obtained values in the formula:-

$$
\begin{aligned}
& \left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}} \text { where } v \neq 0 \text { (Quotient rule) } \\
& {\left[\frac{a x^{2}+b x+c}{p x^{2}+q x+r}\right]^{\prime}=\frac{(2 a x+b)\left(p x^{2}+q x+r\right)-\left[a x^{2}+b x+c\right][2 p x+q]}{\left(p x^{2}+q x+r\right)^{2}}} \\
& = \\
& \frac{2 a p x^{3}+2 a q x^{2}+2 a x r+b p x^{2}+b q x+b r-\left[2 a p x^{3}+q a x^{2}+2 b p x^{2}+b q x+2 p c x+c q\right]}{\left(p x^{2}+q x+r\right)^{2}}
\end{aligned}
$$

$$
=\frac{(\mathrm{aq}-\mathrm{bp}) \mathrm{x}^{2}+2(\mathrm{ra}-\mathrm{pc}) \mathrm{x}+\mathrm{br}-\mathrm{cp}}{(\mathrm{px}+\mathrm{q} x+r)^{2}}
$$

$$
\text { Ans) }=\frac{(a q-b p) x^{2}+2(r a-p c) x+b r-c p}{\left(p x^{2}+q x+r\right)^{2}}
$$

Q. 25. Differentiate

$$
\left(\frac{\sin x-x \cos x}{x \sin x+\cos x}\right)
$$

Answer :

To find: Differentiation of $\frac{(\sin x-x \cos x)}{(x \sin x+\cos x)}$
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \sin x}{d x}=\cos x$
(iii) $\frac{d \cos x}{d x}=-\sin x$
(iv) (uv)' $=u^{\prime} v+u v^{\prime}$ (Leibnitz or product rule)

Let us take $u=(\sin x-x \cos x)$ and $v=(x \sin x+\cos x)$
$\mathrm{u}^{\prime}=\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}[\sin \mathrm{x}-\mathrm{x} \cos \mathrm{x}]}{\mathrm{dx}}$
Applying Product rule for finding the term $x \cos x$ in u '
$(g h)^{\prime}=g^{\prime} h+g h^{\prime}$
Taking $\mathrm{g}=$ xand $\mathrm{h}=\cos \mathrm{x}$
$[x \cos x]^{\prime}=(1)(\cos x)+x(-\sin x)$
$[x \cos x]^{\prime}=\cos x-x \sin x$
Applying the above obtained value for finding u'
$u^{\prime}=\cos x-(\cos x-x \sin x)$
$u^{\prime}=x \sin x$
$v^{\prime}=\frac{d v}{d x}=\frac{d(x \sin x+\cos x)}{d x}$
Applying Product rule for finding the term $x \sin x$ in v '
$(g h)^{\prime}=g^{\prime} h+g h^{\prime}$
Taking $\mathrm{g}=$ xand $\mathrm{h}=\sin \mathrm{x}$
$[x \sin x]^{\prime}=(1)(\sin x)+x(\cos x)$
$[x \sin x]^{\prime}=\sin x+x \cos x$
Applying the above obtained value for finding v'
$v^{\prime}=\sin x+x \cos x-\sin x$
$v^{\prime}=x \cos x$

Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left[\frac{(\sin x-x \cos x)}{(x \sin x+\cos x)}\right]^{\prime}=\frac{(x \sin x)(x \sin x+\cos x)-(\sin x-x \cos x)(x \cos x)}{(x \sin x+\cos x)^{2}}$
$=\frac{\left(x^{2} \sin ^{2} x+x \sin x \cos x\right)-\left(x \sin x \cos x-x^{2} \cos ^{2} x\right)}{(x \sin x+\cos x)^{2}}$
$=\frac{\left.x^{2} \sin ^{2} x+x \sin x \cos x-x \sin x \cos x+x^{2} \cos ^{2} x\right)}{(x \sin x+\cos x)^{2}}$
$=\frac{x^{2}\left(\sin ^{2} x+\cos ^{2} x\right)}{(x \sin x+\cos x)^{2}}$
$=\frac{x^{2}}{(x \sin x+\cos x)^{2}}$
Ans $)=\frac{x^{2}}{(x \sin x+\cos x)^{2}}$
Q. 26
(i) $\cot x$
(ii) $\sec x$

Answer :

To find: Differentiation of cotx
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \sin x}{d x}=\cos x$
(iii) $\frac{d \cos x}{d x}=-\sin x$

We can write cotx as $\frac{\cos x}{\sin x}$
Let us take $u=\cos x$ and $v=\sin x$
$u^{\prime}=(\cos x)^{\prime}=-\sin x$
$v^{\prime}=(\sin x)^{\prime}=\cos x$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left(\frac{\cos x}{\sin x}\right)^{\prime}=\frac{(-\sin x)(\sin x)-(\cos x)(\cos x)}{(\sin x)^{2}}$
$=\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}$
$=\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x}$
$=\frac{-1}{\sin ^{2} x}$
$=-\operatorname{cosec}^{2} x$
Ans).
$-\operatorname{cosec}^{2} x$
(ii)

To find: Differentiation of secx
Formula used: (i) $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
(ii) $\frac{d \cos x}{d x}=-\sin x$

We can write $\sec x$ as $\frac{1}{\cos X}$
Let us take $u=1$ and $v=\cos x$
$u^{\prime}=(1)^{\prime}=0$
$\mathrm{v}^{\prime}=(\cos x)^{\prime}=-\sin x$
Putting the above obtained values in the formula:-
$\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$ where $v \neq 0$ (Quotient rule)
$\left(\frac{1}{\cos x}\right)^{\prime}=\frac{(0)(\cos x)-(1)(-\sin x)}{(\cos x)^{2}}$
$=\frac{\sin x}{\cos ^{2} x}$
$=\sec x \tan x$

Ans).
$-\operatorname{cosec}^{2} x$

Exercise 28E

Q. 1. Differentiate the following with respect to x :
$\boldsymbol{\operatorname { s i n }} 4 \mathrm{x}$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e $\frac{\mathrm{d}(\mathrm{u} . \mathrm{v})}{\mathrm{dx}}=\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}+\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}$

Formula used: $\frac{d}{d x}(\sin n u)=\cos (n u) \frac{d}{d x}(n u)$
Let us take $\mathrm{y}=\sin 4 \mathrm{x}$.
So, by using the above formula, we have
$\frac{d}{d x}(\sin 4 x)=\cos (4 x) \times \frac{d}{d x}(4 x)=4 \cos 4 x$.
Differentiation of $y=\sin 4 x$ is $4 \cos 4 x$
Q. 2. sDifferentiate the following with respect to x :
$\cos 5 \mathrm{x}$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u, v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$
Formula used: $\frac{d}{d x}(\cos n u)=-\sin (n u) \frac{d}{d x}(n u)$.

Let us take $\mathrm{y}=\cos 5 \mathrm{x}$.

So, by using the above formula, we have

$$
\frac{d}{d x}(\cos 5 x)=-\sin (5 x) \times \frac{d}{d x}(5 x)=-5 \sin 5 x .
$$

Differentiation of $y=\cos 5 x$ is $-5 \sin 5 x$
Q. 3. Differentiate the following with respect to x :
$\boldsymbol{t a n} 3 \mathrm{x}$
Answer : To Find: Differentiation

NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u . v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$
Formula used: $\frac{\mathrm{d}}{\mathrm{dx}}(\tan n u)=\sec ^{2}(n u) \cdot \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{nu})$.
Let us take $\mathrm{y}=\tan 3 \mathrm{x}$
So, by using the above formula, we have
$\frac{d}{d x} \tan 3 x=\sec ^{2}(3 x) \times \frac{d}{d x}(3 x)=3 \sec ^{2}(3 x)$

Differentiation of $y=\tan 3 x$ is $3 \sec ^{2}(3 x)$
Q. 4. Differentiate the following with respect to x :
$\cos x^{3}$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u . v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$

Formula used: $\frac{d}{d x}(\cos n u)=-\sin n u \frac{d}{d x}(n u)$ and $\frac{d x^{n}}{d x}=n x^{n-1}$

Let us take $y=\cos x^{3}$

So, by using the above formula, we have
$\frac{d}{d x} \cos x^{3}=-\sin \left(x^{3}\right) \times \frac{d}{d x}\left(x^{3}\right)=-3 x^{2} \sin \left(x^{3}\right)$

Differentiation of $y=\cos x^{3}$ is $-3 x^{2} \sin \left(x^{3}\right)$

Q. 5. Differentiate the following with respect to x :

$\cot ^{2} x$

Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u, v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$
Formula used: $\frac{d}{d x}\left(\cot ^{a} n u\right)=\operatorname{acot}^{a-1}(n u) \times \frac{d}{d x}(\cot n u) \times \frac{d}{d x}(n u)$ and $\frac{d x^{n}}{d x}=n x^{n-1}$
Let us take $y=\cot ^{2} x$
So, by using the above formula, we have
$\frac{d}{d x} \cot ^{2} x=2 \cot (x) \times \frac{d \cot x}{d x} \times \frac{d x}{d x}=-2 \cot x\left(\operatorname{cosec}^{2} x\right)$.

Differentiation of $y=\cot ^{2} x$ is $-2 \cot x\left(\operatorname{cosec}^{2} x\right)$

Q. 6. Differentiate the following with respect to x :

$\tan ^{3} \mathrm{x}$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u . v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$
Formula used:
$\frac{d}{d x}\left(\tan ^{a} n u\right)=\operatorname{atan}^{a-1} n u \times \frac{d(\tan n u)}{d x} \times \frac{d(n u)}{d x}$ and $\frac{d x^{n}}{d x}=n x^{n-1}$
Let us take $\mathrm{y}=\tan ^{3} \mathrm{x}$
So, by using the above formula, we have

$$
\frac{d}{d x} \tan ^{3} x=3 \tan ^{2}(x) \times \frac{d(\tan x)}{d x} \times \frac{d x}{d x}=3 \tan ^{2} x \times\left(\sec ^{2} x\right)
$$

Differentiation of $\mathrm{y}=\tan ^{3} \mathrm{x}$ is $3 \tan ^{2} \mathrm{x} \times\left(\sec ^{2} \mathrm{x}\right)$
Q. 8. Differentiate the following with respect to x :
$e^{x^{2}}$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u . v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$

Formula used: $\frac{d}{d x}\left(e^{a^{t}}\right)=e^{a^{t}} \times \frac{d}{d x}\left(a^{t}\right)$ and $\frac{d x^{n}}{d x}=n x^{n-1}$

Let us take $\mathrm{y}=\mathrm{e}^{\mathrm{x}^{2}}$

So, by using the above formula, we have
$\frac{d}{d x} e^{x^{2}}=e^{x^{2}} \times \frac{d}{d x}\left(x^{2}\right)=2 x^{x^{2}}$

Differentiation of $y=e^{x^{2}}$ is $2 x^{x^{2}}$
Q. 9. Differentiate the following with respect to x :
$e^{\cot x}$

Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e $\frac{\mathrm{d}(\mathrm{u} . \mathrm{v})}{\mathrm{dx}}=\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}+\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}$

Formula used: $\frac{d}{d x}\left(e^{a}\right)=e^{a} \times \frac{d a}{d x}$ and $\frac{d x^{n}}{d x}=n x^{n-1}$

Let us take $y=e^{\text {cot } x}$
So, by using the above formula, we have
$\frac{d}{d x} e^{\cot x}=e^{\cot x} \times \frac{d \cot x}{d x}=-e^{\cot x} \operatorname{cosec}^{2} x$.

Differentiation of $y=e^{\cot x}$ is $-e^{\cot x} \operatorname{cosec}^{2} x$
Q. 10. Differentiate the following with respect to x :
$\sqrt{\sin x}$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e

$$
\frac{\mathrm{d}(\mathrm{u} . \mathrm{v})}{\mathrm{dx}}=\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}+\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}
$$

Formula used: $\frac{d}{d x}(\sqrt{\sin n u})=\frac{1}{2 \sqrt{\sin n u}} \times \frac{d}{d x}(\sin n u) \times \frac{d}{d x}(n u)$ and $\frac{d x^{n}}{d x}=n x^{n-1}$

Let us take $y=\sqrt{\sin x}$

So, by using the above formula, we have
$\frac{d}{d x} \sqrt{\sin x}=\frac{1}{2 \sqrt{\sin x}} \times \frac{d}{d x}(\sin x) \frac{d}{d x}(x)=\frac{1}{2 \sqrt{\sin x}} \cos x$

Differentiation of $y=\sqrt{\sin x}$ is $\frac{1}{2 \sqrt{\sin x}} \cos x$

Q. 11. Differentiate the following with respect to x :

$(5+7 x)^{6}$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u . v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$

Formula used: $\frac{d}{d x}\left(y^{n}\right)=n y^{n-1} \times \frac{d y}{d x}$

$$
\text { Let us take } y=(5+7 x)^{6}
$$

So, by using the above formula, we have
$\frac{d}{d x}(5+7 x)^{6}=6(5+7 x)^{5} \times \frac{d}{d x}(5+7 x)=6(5+7 x)^{5} \times 7=42(5+7 x)^{5}$

Differentiation of $y=(5+7 x)^{6}$ is $42(5+7 x)^{5}$
Q. 12. Differentiate the following with respect to x :
$(3-4 x)^{5}$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e $\frac{d(u . v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$

Formula used: $\frac{d}{d x}\left(y^{n}\right)=n y^{n-1} \times \frac{d y}{d x}$

Let us take $y=(3-4 x)^{5}$

So, by using the above formula, we have

$$
\frac{d}{d x}(3-4 x)^{5}=4(3-4 x)^{5} \times \frac{d}{d x}(3-4 x)=4(3-4 x)^{5} \times(-4)=-16(3-4 x)^{5}
$$

Differentiation of $y=(3-4 x)^{5}$ is $-16(3-4 x)^{5}$
Q. 13. Differentiate the following with respect to x :
$\left(3 x^{2}-x+1\right)^{4}$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{\mathrm{d}(\mathrm{u} . \mathrm{v})}{\mathrm{dx}}=\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}+\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}$
Formula used: $\frac{d}{d x}\left(y^{n}\right)=n y^{n-1} \times \frac{d y}{d x}$

Let us take $\mathrm{y}=\left(3 \mathrm{x}^{2}-\mathrm{x}+1\right)^{4}$

So, by using the above formula, we have
$\frac{d}{d x}\left(3 x^{2}-x+1\right)^{4}=4\left(3 x^{2}-x+1\right)^{3} \times \frac{d}{d x}\left(3 x^{2}-x+1\right)=4\left(3 x^{2}-x+1\right)^{3} \times(3 \times 6 x-1)$
$=4\left(3 x^{2}-x+1\right)^{3}(6 x-1)$

Differentiation of $y=\left(3 x^{2}-x+1\right)^{4}$ is $4\left(3 x^{2}-x+1\right)^{3}(6 x-1)$
Q. 14. Differentiate the following with respect to x :
$\left(a x^{2}+b x+c\right)$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{\mathrm{d}(\mathrm{u} . \mathrm{v})}{\mathrm{dx}}=\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}+\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}$

Formula used: $\frac{d}{d x}\left(y^{n}\right)=n y^{n-1} \times \frac{d y}{d x}$

Let us take $y=\left(a x^{2}+b x+c\right)$
So, by using the above formula, we have
$\frac{d}{d x}\left(a x^{2}+b x+c\right)=2 a x+b$
Differentiation of $y=\left(a x^{2}+b x+c\right)$ is $2 a x+b$
Q. 15. Differentiate the following with respect to x :
$\frac{1}{\left(x^{2}-x+3\right)^{3}}$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u \cdot v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$
Formula used: $\frac{d}{d x}\left(y^{n}\right)=n y^{n-1} \times \frac{d y}{d x}$

Let us take $\mathrm{y}=\frac{1}{\left(\mathrm{x}^{2}-\mathrm{x}+3\right)^{2}}=\left(\mathrm{x}^{2}-\mathrm{x}+3\right)^{-3}$

So, by using the above formula, we have
$\frac{d}{d x}\left(x^{2}-x+3\right)^{-3}=-3\left(x^{2}-x+3\right)^{-4} \times(2 x-1)=-3 \frac{1}{\left(x^{2}-x+3\right)^{-4}}(2 x-1)$

Differentiation of $y=\left(x^{2}-x+3\right)^{-3}$ is $\frac{-3(2 x-1)}{\left(x^{2}-x+3\right)^{-4}}$

Q. 16. Differentiate the following with respect to x :

$\sin ^{2}(2 x+3)$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u . v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$
Formula used: $\frac{d}{d x} \sin ^{2}(a x+b)=2 \sin (a x+b) \frac{d}{d x} \sin (a x+b) \frac{d}{d x}(a x+b)$

Let us take $y=\sin ^{2}(2 x+3)$

So, by using above formula, we have
$\frac{d}{d x} \sin ^{2}(2 x+3)=2 \sin (2 x+3) \frac{d}{d x} \sin (2 x+3) \frac{d}{d x}(2 x+3)=4 \sin (2 x+3) \cos (2 x+3)$

Differentiation of $y=\sin ^{2}(2 x+3)$ is $4 \sin (2 x+3) \cos (2 x+3)$

Q. 17. Differentiate the following with respect to x :

 $\cos ^{2}\left(x^{3}\right)$Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e

$$
\frac{d(u . v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}
$$

Formula used: $\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{\mathrm{a}} \mathrm{nu}\right)=\operatorname{acos}^{\mathrm{a}-1} \mathrm{nu} \frac{\mathrm{d}}{\mathrm{dx}}(\cos \mathrm{nu}) \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{nu})$

Let us take $y=\cos ^{2}\left(x^{3}\right)$

So, by using the above formula, we have
$\frac{d}{d x} \cos ^{2}\left(x^{3}\right)=2 \cos x^{3}\left(-\sin \left(x^{3}\right)\right) 3 x^{2}=-6 x^{2} \cos \left(x^{3}\right) \sin x^{3}$
Differentiation of $y=\cos ^{2}\left(x^{3}\right)$ is $-6 x^{2} \cos \left(x^{3}\right) \sin x^{3}$
Q. 18. Differentiate the following with respect to x :
$\sqrt{\sin x^{3}}$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u, v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$

Formula used: $\frac{d}{d x}\left(\sqrt{\sin u^{a}}\right)=\frac{1}{2 \sqrt{\sin u^{a}}} \times \frac{d}{d x}\left(\sin u^{a}\right) \times \frac{d}{d x}\left(u^{a}\right)$

Let us take $y=\sqrt{\sin x^{3}}$

So, by using the above formula, we have
$\frac{d}{d x} \sqrt{\sin x^{3}}=\frac{1}{2 \sqrt{\sin x^{3}}} \times \frac{d}{d x}\left(\sin x^{3}\right) \times \frac{d}{d x}\left(x^{3}\right)=\frac{1}{2 \sqrt{\sin x^{3}}} \times\left(\cos x^{3}\right) \times 3 x^{2}=\frac{3 x^{2}\left(\cos x^{3}\right)}{2 \sqrt{\sin x^{3}}}$

Differentiation of $y=\sqrt{\sin x^{3}}$ is $\frac{3 x^{2}\left(\cos x^{3}\right)}{2 \sqrt{\sin x^{3}}}$

Q. 19. Differentiate the following with respect to x :

$\sqrt{x \sin x}$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u . v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$

Formula used: $\frac{d}{d x}(\sqrt{u \sin u})=\frac{1}{2 \sqrt{u \sin u}} \times \frac{d}{d x}(u \sin u)$

Let us take $\mathrm{y}=\sqrt{\mathrm{x} \sin \mathrm{x}}$

So, by using the above formula, we have
$\frac{d}{d x} \sqrt{x \sin x}=\frac{1}{2 \sqrt{x \sin x}} \times \frac{d}{d x}(x \sin x)=\frac{1}{2 \sqrt{x \sin x}} \times(\sin x+x \cos x)=\frac{(\sin x+x \cos x)}{2 \sqrt{x \sin x}}$

Differentiation of $y=\sqrt{x \sin x}$ is $\frac{(\sin x+x \cos x)}{2 \sqrt{x \sin x}}$

Q. 20. Differentiate the following with respect to x :

$\sqrt{\cot \sqrt{x}}$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u, v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$
Formula used: $\frac{d}{d x}(\sqrt{\cot \sqrt{x}})=\frac{1}{2 \sqrt{\cot \sqrt{x}}} \times \frac{d}{d x}(\cot \sqrt{x}) \cdot \frac{d}{d x}(\sqrt{x})$

Let us take $\mathrm{y}=\sqrt{\cot \sqrt{\mathrm{x}}}$
So, by using the above formula, we have
$\frac{\mathrm{d}}{\mathrm{dx}} \sqrt{\cot \sqrt{\mathrm{x}}}=\frac{1}{2 \sqrt{\cot \sqrt{x}}} \times \frac{\mathrm{d}}{\mathrm{dx} \cot }$
$\sqrt{\mathrm{x}} \times \frac{\mathrm{d}}{\mathrm{dx}} \sqrt{\mathrm{x}}=\frac{1}{2 \sqrt{\cot \sqrt{x}}} \times\left(-\sec ^{2} \sqrt{x}\right) \times \frac{1}{2 \sqrt{x}}=\frac{-\sec ^{2} \sqrt{x}}{4 \sqrt{x} \sqrt{\cot \sqrt{x}}}$

Differentiation of $y=\sqrt{\cot \sqrt{x}}$ is $\frac{-\sec ^{2} \sqrt{x}}{4 \sqrt{x} \sqrt{\cot \sqrt{x}}}$

Q. 21. Differentiate the following with respect to x :

$\cos 3 x \sin 5 x$
Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{\mathrm{d}(\mathrm{u} . \mathrm{v})}{\mathrm{dx}}=\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}+\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}$
Let us take $y=\cos 3 x \sin 5 x$
So, by using the above formula, we have
$\frac{d}{d x}(\cos 3 x \sin 5 x)=\sin 5 x \frac{d(\cos 3 x)}{d x}+\cos 3 x \frac{d(\sin 5 x)}{d x}=$
$\sin 5 x(-3 \sin 3 x)+\cos 3 x(5 \cos 5 x)=5 \cos (3 x) \cos (5 x)-3 \sin (5 x) 3 \sin (3 x)$
Differentiation of $y=\cos 3 x \sin 5 x$ is $5 \cos (3 x) \cos (5 x)-3 \sin (5 x) 3 \sin (3 x)$
Q. 22. Differentiate the following with respect to x :

$\sin x \sin 2 x$

Answer : To Find: Differentiation
NOTE : When 2 functions are in the product then we used product rule i.e
$\frac{d(u . v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$
Let us take $y=\sin x \sin 2 x$
So, by using the above formula, we have
$\frac{d}{d x}(\sin x \sin 2 x)=\sin x \frac{d(\sin 2 x)}{d x}+\sin 2 x \frac{d(\sin x)}{d x}=\sin x(2 \cos 2 x)+\sin 2 x(\sin x)=$
$2 \sin (x) \cos (2 x)+\sin 2 x(\sin x)$ $2 \sin (x) \cos (2 x)+\sin 2 x(\sin x)$

Differentiation of $y=\sin x \sin 2 x$ is $2 \sin (x) \cos (2 x)+\sin 2 x(\sin x)$

Q. 23. Differentiate w.r.t x :

$\cos (\sin \sqrt{a x+b})$

Answer :
Let $y=\cos (\sin \sqrt{a x+b}), z=\sin \sqrt{a x+b}$ and $w=\sqrt{a x+b}$
Formula :

$$
\begin{aligned}
& \frac{d(\cos x)}{d x}=-\sin x \text { and } \frac{d(\sin x)}{d x}=\cos x \\
& \frac{d(\sqrt{a x+b})}{d x}=\frac{1}{2} \times(a x+b)^{\frac{1}{2}-1} \times a
\end{aligned}
$$

According to the chain rule of differentiation
$\mathrm{dy} / \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dz}} \times \frac{\mathrm{dz}}{\mathrm{dw}} \times \frac{\mathrm{dw}}{\mathrm{dx}}$
$=-\sin (\sin \sqrt{a x+b}) \times \cos \sqrt{a x+b} \times \frac{1}{2} \times(a x+b)^{-\frac{1}{2}} \times a$
$=-\frac{a}{2} \sin (\sin \sqrt{a x+b}) \times \cos \sqrt{a x+b} \times(a x+b)^{-\frac{1}{2}}$
Q. 24. Differentiate w.r.t x : $e^{2 x} \sin 3 x$

Answer: Let $y=e^{2 x} \sin 3 x, z=e^{2 x}$ and $w=\sin 3 x$

Formula :

$\frac{d\left(e^{x}\right)}{d x}=e^{x}$ and $\frac{d(\sin x)}{d x}=\cos x$
According to product rule of differentiation

$$
\begin{aligned}
& d y / d x=w \times \frac{d z}{d x}+z \times \frac{d w}{d x} \\
& =\left[\sin 3 x \times\left(2 \times \mathrm{e}^{2 x}\right)\right]+\left[\mathrm{e}^{2 \mathrm{x}} \times 3 \cos 3 \mathrm{x}\right]
\end{aligned}
$$

$=\mathrm{e}^{2 \mathrm{x}} \times[2 \sin 3 \mathrm{x}+3 \cos 3 \mathrm{x}]$
Q. 25. Differentiate w.r.t $\mathrm{x}: \mathrm{e}^{3 \mathrm{x}} \boldsymbol{\operatorname { c o s }} 2 \mathrm{x}$

Answer : Let $y=e^{3 x} \cos 2 x, z=e^{3 x}$ and $w=\cos 2 x$

Formula :

$$
\frac{d\left(e^{x}\right)}{d x}=e^{x} \text { and } \frac{d(\cos x)}{d x}=-\sin x
$$

According to the product rule of differentiation

$$
\begin{aligned}
& d y / d x=w \times \frac{d z}{d x}+z \times \frac{d w}{d x} \\
& =\left[\cos 2 x \times\left(3 \times e^{3 x}\right)\right]+\left[e^{3 x} \times(-2 \sin 2 x)\right] \\
& =e^{3 x} \times[3 \cos 2 x-2 \sin 2 x]
\end{aligned}
$$

Q. 26. Differentiate w.r.t x : $\mathrm{e}^{-5 \mathrm{x}} \cot 4 \mathrm{x}$

Answer : Let $y=e^{-5 x} \cot 4 x, z=e^{-5 x}$ and $w=\cot 4 x$
Formula :

$$
\frac{\mathrm{d}\left(\mathrm{e}^{\mathrm{x}}\right)}{\mathrm{dx}}=\mathrm{e}^{\mathrm{x}} \text { and } \frac{\mathrm{d}(\cot \mathrm{x})}{\mathrm{dx}}=-\operatorname{cosec}^{2} \mathrm{x}
$$

According to the product rule of differentiation

$$
\begin{aligned}
& d y / d x=w \times \frac{d z}{d x}+z \times \frac{d w}{d x} \\
& =\left[\cot 4 x \times\left(-5 e^{-5 x}\right)\right]+\left[e^{-5 x} \times\left(-4 \operatorname{cosec}^{2} 4 x\right)\right] \\
& =-e^{-5 x} \times\left[5 \cot 4 x+4 \operatorname{cosec}^{2} 4 x\right] \\
& \text { Q. 27. Differentiate w.r.t } x: \cos \left(x^{3} \cdot e^{x}\right)
\end{aligned}
$$

Answer : Let $\mathrm{y}=\cos \left(\mathrm{x}^{3} \cdot \mathrm{e}^{\mathrm{x}}\right), \mathrm{z}=\mathrm{x}^{3} \cdot \mathrm{e}^{\mathrm{x}}, \mathrm{m}=\mathrm{e}^{\mathrm{x}}$ and $\mathrm{w}=\mathrm{x}^{3}$

Formula :

$\frac{d\left(e^{x}\right)}{d x}=e^{x}, \frac{d\left(x^{n}\right)}{d x}=n \times x^{n-1}$ and $\frac{d(\cos x)}{d x}=-\sin x$
According to the product rule of differentiation

$$
\begin{aligned}
& \mathrm{dz} / \mathrm{dx}=\mathrm{w} \times \frac{\mathrm{dm}}{\mathrm{dx}}+\mathrm{m} \times \frac{\mathrm{dw}}{\mathrm{dx}} \\
& =\left[\mathrm{x}^{3} \times\left(\mathrm{e}^{\mathrm{x}}\right)\right]+\left[\mathrm{e}^{\mathrm{x}} \times\left(3 \mathrm{x}^{2}\right)\right] \\
& =\mathrm{e}^{\mathrm{x}} \times\left[\mathrm{x}^{3}+3 \mathrm{x}^{2}\right]
\end{aligned}
$$

According to the chain rule of differentiation

$$
\begin{aligned}
& \mathrm{dy} / \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dz}} \times \frac{\mathrm{dz}}{\mathrm{dx}} \\
& =-\sin \left(\mathrm{x}^{3} \times \mathrm{e}^{\mathrm{x}}\right) \times\left\{\mathrm{e}^{\mathrm{x}} \times\left[\mathrm{x}^{3}+3 \mathrm{x}^{2}\right]\right\}
\end{aligned}
$$

Q. 28. Differentiate w.r.t x : $e^{(x \sin x+\cos x)}$

Answer: Let $y=e^{(x \sin x+\cos x)}, z=x \sin x+\cos x, m=x$ and $w=\sin x$

Formula :

$$
\frac{d\left(e^{x}\right)}{d x}=e^{x}, \frac{d(\sin x)}{d x}=\cos x \text { and } \frac{d(\cos x)}{d x}=-\sin x
$$

According to the product rule of differentiation

$$
\begin{aligned}
& \mathrm{dz} / \mathrm{dx}=\mathrm{w} \times \frac{\mathrm{dm}}{\mathrm{dx}}+\mathrm{m} \times \frac{\mathrm{dw}}{\mathrm{dx}}+\frac{\mathrm{d}(\cos \mathrm{x})}{\mathrm{dx}} \\
& =[\sin \mathrm{x} \times(1)]+[\mathrm{x} \times(\cos \mathrm{x})]-\sin x \\
& =x \cos x
\end{aligned}
$$

According to the chain rule of differentiation
$\mathrm{dy} / \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dz}} \times \frac{\mathrm{dz}}{\mathrm{dx}}$
$=\mathrm{e}^{(\mathrm{x} \sin \mathrm{x}+\cos \mathrm{x})} \times(\mathrm{x} \cos \mathrm{x})$

Q. 29. Differentiate w.r.t x:

$\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$

Answer :

Let $y=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}, u=e^{x}+e^{-x}, v=e^{x}-e^{-x}$

Formula :

$$
\frac{\mathrm{d}\left(\mathrm{e}^{\mathrm{x}}\right)}{\mathrm{dx}}=\mathrm{e}^{\mathrm{x}}
$$

According to the quotient rule of differentiation
If $y=\frac{u}{v}$

$$
\begin{aligned}
& d y / d x=\frac{v \times \frac{d u}{d x}-u \times \frac{d v}{d x}}{v^{2}} \\
& =\frac{\left(e^{x}-e^{-x}\right) \times\left(e^{x}-e^{-x}\right)-\left(e^{x}+e^{-x}\right) \times\left(e^{x}+e^{-x}\right)}{\left(e^{x}-e^{-x}\right)^{2}}
\end{aligned}
$$

$$
=\frac{\left(e^{x}-e^{-x}\right)^{2}-\left(e^{x}+e^{-x}\right)^{2}}{\left(e^{x}-e^{-x}\right)^{2}}
$$

$$
=\frac{\left(e^{x}-e^{-x}+e^{x}+e^{-x}\right)\left(e^{x}-e^{-x}-e^{x}-e^{-x}\right)}{\left(e^{x}-e^{-x}\right)^{2}}
$$

$$
\left(a^{2}-b^{2}=(a-b)(a+b)\right)
$$

$$
=\frac{\left(2 e^{x}\right)\left(-2 e^{-x}\right)}{\left(e^{x}-e^{-x}\right)^{2}}
$$

$=\frac{-4}{\left(e^{x}-e^{-x}\right)^{2}}$
Q. 30. Differentiate w.r.t x :
$\frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}$
Answer :

Let $y=\frac{e^{2 x}+e^{-2 x}}{e^{2 x}-e^{-2 x}}, u=e^{2 x}+e^{-2 x}, v=e^{2 x}-e^{-2 x}$

Formula :
$\frac{d\left(e^{x}\right)}{d x}=e^{x}$
According to the quotient rule of differentiation
If $y=\frac{u}{v}$
$d y / d x=\frac{v \times \frac{d u}{d x}-u \times \frac{d v}{d x}}{v^{2}}$
$=\frac{\left(e^{2 x}-e^{-2 x}\right) \times\left(2 e^{2 x}-2 e^{-2 x}\right)-\left(e^{2 x}+e^{-2 x}\right) \times\left(2 e^{2 x}+2 e^{-2 x}\right)}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$=\frac{2\left(e^{2 x}-e^{-2 x}\right)^{2}-2\left(e^{2 x}+e^{-2 x}\right)^{2}}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$=\frac{2\left(e^{2 x}-e^{-2 x}+e^{2 x}+e^{-2 x}\right)\left(e^{2 x}-e^{-2 x}-e^{2 x}-e^{-2 x}\right)}{\left(e^{2 x}-e^{-2 x}\right)^{2}}$
$\left(a^{2}-b^{2}=(a-b)(a+b)\right.$

$$
\begin{aligned}
& =\frac{2\left(2 \mathrm{e}^{2 \mathrm{x}}\right)\left(-2 \mathrm{e}^{-2 \mathrm{x}}\right)}{\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)^{2}} \\
& =\frac{-8}{\left(\mathrm{e}^{2 x}-e^{-2 x}\right)^{2}}
\end{aligned}
$$

Q. 31. Differentiate w.r.t x:
$\sqrt{\frac{1-x^{2}}{1+x^{2}}}$

Answer:

$$
\text { Let } y=\sqrt{\frac{1-x^{2}}{1+x^{2}}}, u=1-x^{2}, v=1+x^{2}, z=\frac{1-x^{2}}{1+x^{2}}
$$

Formula :

$$
\frac{d\left(x^{2}\right)}{d x}=2 x
$$

According to the quotient rule of differentiation

$$
\text { If } \mathrm{z}=\frac{\mathrm{u}}{\mathrm{v}}
$$

$$
\mathrm{dz} / \mathrm{dx}=\frac{\mathrm{v} \times \frac{\mathrm{du}}{\mathrm{dx}}-\mathrm{u} \times \frac{\mathrm{dv}}{\mathrm{dx}}}{\mathrm{v}^{2}}
$$

$$
=\frac{\left(1+x^{2}\right) \times(-2 x)-\left(1-x^{2}\right) \times(2 x)}{\left(1+x^{2}\right)^{2}}
$$

$$
=\frac{-2 x-2 x^{3}-2 x+2 x^{3}}{\left(1+x^{2}\right)^{2}}
$$

$$
=\frac{-4 x}{\left(1+x^{2}\right)^{2}}
$$

According to chain rule of differentiation

$$
\begin{aligned}
& \mathrm{dy} / \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dz}} \times \frac{\mathrm{dz}}{\mathrm{dx}} \\
& =\left[\frac{1}{2} \times\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right)^{\frac{1}{2}-1}\right] \times\left[\frac{-4 \mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{2}}\right] \\
& =\left[\frac{-2 \mathrm{x}}{1} \times\left(\frac{1-\mathrm{x}^{2}}{1}\right)^{-\frac{1}{2}}\right] \times\left[\frac{1}{\left(1+\mathrm{x}^{2}\right)^{2-\frac{1}{2}}}\right] \\
& =\left[-2 \mathrm{x} \times\left(1-x^{2}\right)^{-\frac{1}{2}}\right] \times\left(1+x^{2}\right)^{-\frac{3}{2}}
\end{aligned}
$$

Q. 32. Differentiate w.r.t x :
$\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}$
Answer:

Let $y=\sqrt{\frac{a^{2}-x^{2}}{a^{2}+x^{2}}}, u=a^{2}-x^{2}, v=a^{2}+x^{2}, z=\frac{a^{2}-x^{2}}{a^{2}+x^{2}}$
Formula :
$\frac{d\left(x^{2}\right)}{d x}=2 x$
According to the quotient rule of differentiation
If $\mathrm{z}=\frac{\mathrm{u}}{\mathrm{V}}$
$d z / d x=\frac{v \times \frac{d u}{d x}-u \times \frac{d v}{d x}}{v^{2}}$

$$
\begin{aligned}
& =\frac{\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right) \times(-2 \mathrm{x})-\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right) \times(2 \mathrm{x})}{\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)^{2}} \\
& =\frac{-2 \mathrm{xa}^{2}-2 \mathrm{x}^{3}-2 \mathrm{xa}^{2}+2 \mathrm{x}^{3}}{\left(1+\mathrm{x}^{2}\right)^{2}} \\
& =\frac{-4 x \mathrm{a}^{2}}{\left(1+\mathrm{x}^{2}\right)^{2}}
\end{aligned}
$$

According to the chain rule of differentiation

$$
\mathrm{dy} / \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dz}} \times \frac{\mathrm{dz}}{\mathrm{dx}}
$$

$$
=\left[\frac{1}{2} \times\left(\frac{a^{2}-\mathrm{x}^{2}}{\mathrm{a}^{2}+\mathrm{x}^{2}}\right)^{\frac{1}{2}-1}\right] \times\left[\frac{-4 \mathrm{x} \mathrm{a}}{\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)^{2}}\right]
$$

$$
=\left[\frac{-2 \mathrm{xa}^{2}}{1} \times\left(\frac{\mathrm{a}^{2}-\mathrm{x}^{2}}{1}\right)^{-\frac{1}{2}}\right] \times\left[\frac{1}{\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)^{2-\frac{1}{2}}}\right]
$$

$$
=\left[-2 x a^{2} \times\left(a^{2}-x^{2}\right)^{-\frac{1}{2}}\right] \times\left(a^{2}+x^{2}\right)^{-\frac{3}{2}}
$$

Q. 33. Differentiate w.r.t x :
$\sqrt{\frac{1+\sin x}{1-\sin x}}$

Answer:

$$
\text { Let } y=\sqrt{\frac{1+\sin x}{1-\sin x}}, u=1+\sin x, v=1-\sin x, z=\frac{1+\sin x}{1-\sin x}
$$

Formula :

$\frac{d(\sin x)}{d x}=\cos x$

According to the quotient rule of differentiation
If $z=\frac{u}{v}$
$d z / d x=\frac{v \times \frac{d u}{d x}-u \times \frac{d v}{d x}}{v^{2}}$
$=\frac{(1-\sin x) \times(\cos x)-(1+\sin x) \times(-\cos x)}{(1-\sin x)^{2}}$
$=\frac{\cos x-\sin x \cos x+\cos x+\sin x \cos x}{(1-\sin x)^{2}}$
$=\frac{2 \cos x}{(1-\sin x)^{2}}$
According to the chain rule of differentiation

$$
\mathrm{dy} / \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dz}} \times \frac{\mathrm{dz}}{\mathrm{dx}}
$$

$=\left[\frac{1}{2} \times\left(\frac{1+\sin x}{1-\sin x}\right)^{\frac{1}{2}-1}\right] \times\left[\frac{2 \cos x}{(1-\sin x)^{2}}\right]$
$=\left[\frac{\cos x}{1} \times\left(\frac{1+\sin x}{1}\right)^{-\frac{1}{2}}\right] \times\left[\frac{1}{(1-\sin x)^{2-\frac{1}{2}}}\right]$
$=\left[\cos x \times(1+\sin x)^{-\frac{1}{2}}\right] \times(1-\sin x)^{-\frac{3}{2}}$
Q. 34. Differentiate w.r.t x :
$\sqrt{\frac{1+\mathrm{e}^{\mathrm{x}}}{1-\mathrm{e}^{\mathrm{x}}}}$

Answer:

$$
\text { Let } y=\sqrt{\frac{1+e^{x}}{1-e^{x}}}, u=1+e^{x}, v=1-e^{x}, z=\frac{1+e^{x}}{1-e^{x}}
$$

Formula :

$$
\frac{d\left(e^{x}\right)}{d x}=e^{x}
$$

According to the quotient rule of differentiation

If $\mathrm{z}=\frac{\mathrm{u}}{\mathrm{v}}$
$d z / d x=\frac{v \times \frac{d u}{d x}-u \times \frac{d v}{d x}}{v^{2}}$
$=\frac{\left(1-e^{x}\right) \times\left(e^{x}\right)-\left(1+e^{x}\right) \times\left(-e^{x}\right)}{\left(1-e^{x}\right)^{2}}$
$=\frac{e^{x}-e^{2 x}+e^{x}+e^{2 x}}{\left(1-e^{x}\right)^{2}}$
$=\frac{2 e^{x}}{\left(1-e^{x}\right)^{2}}$

According to chain rule of differentiation
$\mathrm{dy} / \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dz}} \times \frac{\mathrm{dz}}{\mathrm{dx}}$
$=\left[\frac{1}{2} \times\left(\frac{1+\mathrm{e}^{\mathrm{x}}}{1-\mathrm{e}^{\mathrm{x}}}\right)^{\frac{1}{2}-1}\right] \times\left[\frac{2 \mathrm{e}^{\mathrm{x}}}{\left(1-\mathrm{e}^{\mathrm{x}}\right)^{2}}\right]$
$=\left[\frac{e^{x}}{1} \times\left(\frac{1+e^{x}}{1}\right)^{-\frac{1}{2}}\right] \times\left[\frac{1}{\left(1-e^{x}\right)^{2-\frac{1}{2}}}\right]$
$=\left[e^{x} \times\left(1+e^{x}\right)^{-\frac{1}{2}}\right] \times\left(1-e^{x}\right)^{-\frac{3}{2}}$

Q. 35. Differentiate w.r.t x:

$e^{2 x}+x^{3}$
$\operatorname{cosec} 2 x$
Answer:
Formula:
$\frac{d\left(e^{x}\right)}{d x}=e^{x}, \frac{d\left(x^{n}\right)}{d x}=n \times x^{n-1}$ and $\frac{d(\operatorname{cosec} x)}{d x}=-\operatorname{cosec} x \cot x$
According to the quotient rule of differentiation
if $y=\frac{u}{v}$
$d y / d x=\frac{v \times \frac{d u}{d x}-u \times \frac{d v}{d x}}{v^{2}}$
$=\frac{(\operatorname{cosec} 2 x) \times\left(2 e^{2 x}+3 x^{2}\right)-\left(e^{2 x}+x^{3}\right) \times(-2 \operatorname{cosec} 2 x \cot 2 x)}{(\operatorname{cosec} 2 x)^{2}}$
$=\frac{2 \mathrm{e}^{2 \mathrm{x}} \operatorname{cosec} 2 \mathrm{x}+3 \mathrm{x}^{2} \operatorname{cosec} 2 \mathrm{x}+2 \mathrm{e}^{2 \mathrm{x}} \operatorname{cosec} 2 \mathrm{x} \cot 2 \mathrm{x}+2 \mathrm{x}^{3} \operatorname{cosec} 2 \mathrm{x} \cot 2 \mathrm{x}}{(\operatorname{cosec} 2 \mathrm{x})^{2}}$
$=\frac{2 e^{2 x} \operatorname{cosec} 2 x(1+\cot 2 x)+3 x^{2} \operatorname{cosec} 2 x(1+\cot 2 x)}{(\operatorname{cosec} 2 x)^{2}}$
$=\frac{(1+\cot 2 x)\left(2 e^{x} \operatorname{cosec} 2 x+3 x^{2} \operatorname{cosec} 2 x\right)}{(\operatorname{cosec} 2 x)^{2}}$
$=\frac{(1+\cot 2 x)\left(2 e^{x}+3 x^{2}\right)(\operatorname{cosec} 2 x)}{(\operatorname{cosec} 2 x)^{2}}$
$=\frac{\frac{(1+\cot 2 x)\left(2 e^{x}+3 x^{2}\right)}{(\operatorname{cosec} 2 x)^{1}}}{=}$
$=(1+\cot 2 \mathrm{x})\left(2 \mathrm{e}^{\mathrm{x}}+3 \mathrm{x}^{2}\right)(\sin 2 \mathrm{x})$
Q. 36

Find $\frac{d y}{d x}$, When $_{y}=\sin \sqrt{\sin x+\cos x}$

Answer :

Let $y=\sin (\sqrt{\sin x+\cos x}), z=\sqrt{\sin x+\cos x}$

Formula : $\frac{d(\cos x)}{d x}=-\sin x$ and $\frac{d(\sin x)}{d x}=\cos x$
$\frac{d(\sqrt{\sin x+\cos x})}{d x}=\frac{1}{2} \times(\sin x+\cos x)^{\frac{1}{2}-1} \times(\cos x-\sin x)$
According to the chain rule of differentiation
$\mathrm{dy} / \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dz}} \times \frac{\mathrm{dz}}{\mathrm{dx}}$
$=\cos (\sin \sqrt{\sin x+\cos x}) \times \frac{1}{2} \times(\sin x+\cos x)^{\frac{1}{2}-1} \times(\cos x-\sin x)$
$=\cos (\sin \sqrt{\sin x+\cos x}) \times \frac{1}{2} \times(\sin x+\cos x)^{-\frac{1}{2}} \times(\cos x-\sin x)$
Q. 37.

Find $\frac{d y}{d x}$, When $=e^{x} \log (\sin 2 x)$

Answer :

Let $\mathrm{y}=\mathrm{e}^{\mathrm{x}} \log (\sin 2 \mathrm{x}), \mathrm{z}=\mathrm{e}^{\mathrm{x}}$ and $\mathrm{w}=\log (\sin 2 \mathrm{x})$
Formula :

$$
\frac{\mathrm{d}\left(\mathrm{e}^{\mathrm{x}}\right)}{\mathrm{dx}}=\mathrm{e}^{\mathrm{x}}, \frac{\mathrm{~d}(\log \mathrm{x})}{\mathrm{dx}}=\frac{1}{\mathrm{x}} \text { and } \frac{\mathrm{d}(\sin \mathrm{x})}{\mathrm{dx}}=\cos \mathrm{x}
$$

According to the product rule of differentiation

$$
\mathrm{dy} / \mathrm{dx}=\mathrm{w} \times \frac{\mathrm{dz}}{\mathrm{dx}}+\mathrm{z} \times \frac{\mathrm{dw}}{\mathrm{dx}}
$$

$$
=\left[\log (\sin 2 x) \times\left(e^{x}\right)\right]+\left[e^{x} \times \frac{1}{\sin 2 x} \times 2 \cos 2 x\right]
$$

$$
=e^{x} \times\left[\log (\sin 2 x)+\frac{2 \cos 2 x}{\sin 2 x}\right]
$$

$$
=\mathrm{e}^{\mathrm{x}} \times[\log (\sin 2 \mathrm{x})+2 \cot 2 \mathrm{x}]
$$

Q. 38.

Find $\frac{d y}{d x}$, When $y=\cos \left(\frac{1-x^{2}}{1+x^{2}}\right)$

Answer :

Let $\mathrm{y}=\cos \left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right), \mathrm{u}=1-\mathrm{x}^{2}, \mathrm{v}=1+\mathrm{x}^{2}, \mathrm{z}=\frac{\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}}{}$

Formula :

$$
\frac{\mathrm{d}\left(\mathrm{x}^{2}\right)}{\mathrm{dx}}=2 \mathrm{x} \text { and } \frac{\mathrm{d}(\cos \mathrm{x})}{\mathrm{dx}}=-\sin \mathrm{x}
$$

According to the quotient rule of differentiation
If $z=\frac{u}{v}$
$d z / d x=\frac{v \times \frac{d u}{d x}-u \times \frac{d v}{d x}}{v^{2}}$
$=\frac{\left(1+x^{2}\right) \times(-2 x)-\left(1-x^{2}\right) \times(2 x)}{\left(1+x^{2}\right)^{2}}$

$$
\begin{aligned}
& =\frac{-2 x-2 x^{3}-2 x+2 x^{3}}{\left(1+x^{2}\right)^{2}} \\
& =\frac{-4 x}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

According to the chain rule of differentiation
$\mathrm{dy} / \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dz}} \times \frac{\mathrm{dz}}{\mathrm{dx}}$
$=\left[-\sin \frac{1-x^{2}}{1+x^{2}}\right] \times\left[\frac{-4 \mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{2}}\right]$
$=\left[\sin \frac{1-x^{2}}{1+x^{2}}\right] \times\left[\frac{4 x}{\left(1+x^{2}\right)^{2}}\right]$
Q. 39. Find $\frac{d y}{d x}$, When $y=\sin \left(\frac{1+x^{2}}{1-x^{2}}\right)$

Answer:
Let $y=\sin \left(\frac{1+x^{2}}{1-x^{2}}\right), u=1+x^{2}, v=1-x^{2}, z=\frac{1+x^{2}}{1-x^{2}}$

Formula : $\frac{d\left(x^{2}\right)}{d x}=2 x$ and $\frac{d(\sin x)}{d x}=\cos x$

According to the quotient rule of differentiation

If $z=\frac{u}{v}$
$d z / d x=\frac{v \times \frac{d u}{d x}-u \times \frac{d v}{d x}}{v^{2}}$
$=\frac{\left(1-x^{2}\right) \times(2 x)-\left(1+x^{2}\right) \times(-2 x)}{\left(1-x^{2}\right)^{2}}$
$=\frac{2 \mathrm{x}-2 \mathrm{x}^{3}+2 \mathrm{x}+2 \mathrm{x}^{3}}{\left(1+\mathrm{x}^{2}\right)^{2}}$
$=\frac{4 \mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{2}}$
According to the chain rule of differentiation
$\mathrm{dy} / \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dz}} \times \frac{\mathrm{dz}}{\mathrm{dx}}$
$=\left[\cos \frac{1+\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right] \times\left[\frac{4 \mathrm{x}}{\left(1+\mathrm{x}^{2}\right)^{2}}\right]$
Q. 40. Find $\frac{d y}{d x}$,When $y=\frac{\sin x+x^{2}}{\cot 2 x}$

Answer :

$$
\text { Let } \mathrm{y}=\frac{\sin \mathrm{x}+\mathrm{x}^{2}}{\cot 2 \mathrm{x}}, \mathrm{u}=\sin \mathrm{x}+\mathrm{x}^{2}, \mathrm{v}=\cot 2 \mathrm{x}
$$

Formula:

$$
\frac{d(\sin x)}{d x}=\cos x, \frac{d\left(x^{n}\right)}{d x}=n \times x^{n-1} \text { and } \frac{d(\cot x)}{d x}=-\operatorname{cosec}^{2} x
$$

According to the quotient rule of differentiation
If $y=\frac{u}{v}$
$\mathrm{dy} / \mathrm{dx}=\frac{\mathrm{v} \times \frac{\mathrm{du}}{\mathrm{dx}}-\mathrm{u} \times \frac{\mathrm{dv}}{\mathrm{dx}}}{\mathrm{v}^{2}}$

$$
=\frac{(\cot 2 x) \times(\cos x+2 x)-\left(\sin x+x^{2}\right) \times\left(-2 \operatorname{cosec}^{2} 2 x\right)}{(\cot 2 x)^{2}}
$$

$=\frac{\cot 2 x \cos x+2 x \cot 2 x+2 \operatorname{cosec}^{2} 2 x \sin x+2 x^{2} \operatorname{cosec}^{2} 2 x}{(\operatorname{cosec} 2 x)^{2}}$
$=\frac{\cot 2 x(\cos x+2 x)+2 \operatorname{cosec}^{2} 2 x\left(\sin x+x^{2}\right)}{(\operatorname{cosec} 2 x)^{2}}$
$=\frac{2 \operatorname{cosec}^{2} 2 x\left(\sin x+x^{2}\right)}{(\operatorname{cosec} 2 x)^{2}}+\frac{\cot 2 x(\cos x+2 x)}{(\operatorname{cosec} 2 x)^{2}}$
$=\frac{2\left(\sin x+x^{2}\right)}{1}+\frac{\cos 2 x(\cos x+2 x)}{\sin 2 x \frac{1}{\sin ^{2} 2 x}}$
$=2\left(\sin x+x^{2}\right)+\cos 2 x \sin 2 x(\cos x+2 x)$
Q. 41.

If $y=\frac{\cos x-\sin x}{\cos x+\sin x}$, show that $\frac{d y}{d x}+y^{2}+1=0$
Answer :

$$
=-\frac{1}{1}-y^{2}\left(y=\frac{\cos x-\sin x}{\cos x+\sin x}\right)
$$

Formula:

$\frac{\mathrm{d}(\sin \mathrm{x})}{\mathrm{dx}}=\cos \mathrm{x}$ and $\frac{\mathrm{d}(\cos \mathrm{x})}{\mathrm{dx}}=-\sin \mathrm{x}$
According to the quotient rule of differentiation
If $y=u / v$

$$
\begin{aligned}
& d y / d x=\frac{v \times \frac{d u}{d x}-u \times \frac{d v}{d x}}{v^{2}} \\
& =\frac{(\cos x+\sin x) \times(-\sin x-\cos x)-(\cos x-\sin x) \times(-\sin x+\cos x)}{(\cos x+\sin x)^{2}} \\
& =\frac{-(\cos x+\sin x)^{2}-(\cos x-\sin x)^{2}}{(\cos x+\sin x)^{2}} \\
& =-\frac{(\cos x+\sin x)^{2}}{(\cos x+\sin x)^{2}}-\frac{(\cos x-\sin x)^{2}}{(\cos x+\sin x)^{2}} \\
& =-\frac{1}{1}-y^{2}\left(y=\frac{\cos x-\sin x}{\cos x+\sin x}\right) \\
& \frac{d y}{d x}+y^{2}+1=0
\end{aligned}
$$

HENCE PROVED.
Q. 42 .

$$
\text { If } y=\frac{\cos x+\sin x}{\cos x-\sin x} \text {, show that } \frac{d y}{d x}=\sec ^{2}\left(x+\frac{\pi}{4}\right)
$$

Answer :

$$
\text { Let } y=\frac{\cos x+\sin x}{\cos x-\sin x},, u=\cos x+\sin x, v=\cos x-\sin x
$$

Formula:

$$
\frac{d(\sin x)}{d x}=\cos x \text { and } \frac{d(\cos x)}{d x}=-\sin x
$$

According to the quotient rule of differentiation

$$
\text { If } \mathrm{y}=\frac{\mathrm{u}}{\mathrm{v}}
$$

$$
\begin{aligned}
& d y / d x=\frac{v \times \frac{d u}{d x}-u \times \frac{d v}{d x}}{v^{2}} \\
& =\frac{(\cos x-\sin x) \times(-\sin x+\cos x)-(\cos x+\sin x) \times(-\sin x-\cos x)}{(\cos x-\sin x)^{2}} \\
& =\frac{(\cos x-\sin x)^{2}+(\cos x+\sin x)^{2}}{(\cos x-\sin x)^{2}}
\end{aligned}
$$

$$
=\frac{\left(\cos ^{2} x+\sin ^{2} x-2 \cos x \sin x\right)+\left(\cos ^{2} x+\sin ^{2} x+2 \cos x \sin x\right)}{(\cos x-\sin x)^{2}}
$$

$$
=\frac{2\left(\cos ^{2} x+\sin ^{2} x\right)}{(\cos x-\sin x)^{2}}
$$

$$
=\frac{(1)}{(\cos x-\sin x)^{2} / 2}\left(\cos ^{2} x+\sin ^{2} x\right)=1
$$

$$
=\frac{1}{\left(\frac{\cos x}{\sqrt{2}}-\frac{\sin x}{\sqrt{2}}\right)^{2}}
$$

$$
=\frac{1}{\left(\frac{\cos x \cos 45^{\circ}}{1}-\frac{\sin x \sin 45^{\circ}}{1}\right)^{2}}
$$

$$
=\frac{1}{\cos ^{2}\left(x+\frac{\pi}{4}\right)}[\cos a \cos b-\sin a \sin b=\cos (a+b)]
$$

$$
=\sec ^{2}\left(x+\frac{\pi}{4}\right)
$$

HENCE PROVED.
Q. 43.

$$
y=\sqrt{\frac{1-x}{1+x}}, \text { prove that }\left(1-x^{2}\right) \frac{d y}{d x}+y=0
$$

Answer :

$$
\text { Let } \mathrm{y}=\sqrt{\frac{1-\mathrm{x}^{1}}{1+\mathrm{x}^{1}}}, \mathrm{u}=1-\mathrm{x}^{1}, \mathrm{v}=1+\mathrm{x}^{1}, \mathrm{z}=\frac{1-\mathrm{x}^{1}}{1+\mathrm{x}^{1}}
$$

Formula :
$\frac{\mathrm{d}\left(\mathrm{x}^{1}\right)}{\mathrm{dx}}=1$
According to quotient rule of differentiation
If $z=\frac{u}{v}$
$\mathrm{dz} / \mathrm{dx}=\frac{\mathrm{v} \times \frac{\mathrm{du}}{\mathrm{dx}}-\mathrm{u} \times \frac{\mathrm{dv}}{\mathrm{dx}}}{\mathrm{v}^{2}}$
$=\frac{\left(1+x^{1}\right) \times(-1)-\left(1-x^{1}\right) \times(1)}{\left(1+x^{1}\right)^{2}}$
$=\frac{-1-x^{1}-1+x}{\left(1+x^{1}\right)^{2}}$
$=\frac{-2}{(1+x)^{2}}$
According to the chain rule of differentiation
$\mathrm{dy} / \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dz}} \times \frac{\mathrm{dz}}{\mathrm{dx}}$

$$
\begin{aligned}
& =\left[\frac{1}{2} \times\left(\frac{1-\mathrm{x}^{1}}{1+\mathrm{x}^{1}}\right)^{\frac{1}{2}-1}\right] \times\left[\frac{-2}{\left(1+\mathrm{x}^{1}\right)^{2}}\right] \\
& =\left[\frac{-1}{1} \times\left(\frac{1-\mathrm{x}^{1}}{1+\mathrm{x}}\right)^{-\frac{1}{2}}\right] \times\left[\frac{1}{\left(1+\mathrm{x}^{1}\right)^{2}}\right] \\
& =\left[-1 \times \frac{\left(1-\mathrm{x}^{1}\right)^{-\frac{1}{2}}}{\left(1+\mathrm{x}^{1}\right)^{1-\frac{1}{2}}}\right] \times\left[\frac{1}{\left(1+\mathrm{x}^{1}\right)^{1}}\right] \times \frac{1-\mathrm{x}}{1-\mathrm{x}}
\end{aligned}
$$

(Muliplying and dividing by 1-x)

$$
\begin{aligned}
& =\left[-1 \times \frac{\left(1-x^{1}\right)^{1-\frac{1}{2}}}{\left(1+x^{1}\right)^{\frac{1}{2}}}\right] \times \frac{1}{(1-x)(1+x)} \\
& =\left[-1 \times \frac{\left(1-x^{1}\right)^{\frac{1}{2}}}{\left(1+x^{1}\right)^{\frac{1}{2}}}\right] \times \frac{1}{(1-x)(1+x)}=-\frac{y}{1-x^{2}}
\end{aligned}
$$

Therefore
$\left(1-x^{2}\right) \frac{d y}{d x}=-y$
$\left(1-x^{2}\right) \frac{d y}{d x}+y=0$
HENCE PROVED
Q. 44.
$y=\sqrt{\frac{\sec x-\tan x}{\sec x+\tan x}}$, show that $\frac{d y}{d x}=\sec x(\tan x+\sec x)$

Answer :

$y=\sqrt{\frac{\sec x-\tan x}{\sec x+\tan x}}$
$y=\sqrt{\frac{\frac{1}{\cos x}-\frac{\sin x}{\cos x}}{\cos x}+\frac{\sin x}{\cos x}}=\sqrt{\frac{1-\sin x}{1+\sin x}}$
$u=1-\sin x, v=1+\sin x, z=\frac{1-\sin x}{1+\sin x}$

Formula : $\frac{d(\sin x)}{d x}=\cos x$

According to quotient rule of differentiation

If $z=\frac{u}{v}$
$d z / d x=\frac{v \times \frac{d u}{d x}-u \times \frac{d v}{d x}}{v^{2}}$
$=\frac{(1+\sin x) \times(-\cos x)-(1-\sin x) \times(\cos x)}{(1+\sin x)^{2}}$
$=\frac{-\cos x-\sin x \cos x-\cos x+\sin x \cos x}{(1+\sin x)^{2}}$
$=\frac{-2 \cos x}{(1+\sin x)^{2}}$

According to the chain rule of differentiation

$$
\mathrm{dy} / \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dz}} \times \frac{\mathrm{dz}}{\mathrm{dx}}
$$

$$
\begin{aligned}
& =\left[\frac{1}{2} \times\left(\frac{1-\sin x}{1+\sin x}\right)^{\frac{1}{2}-1}\right] \times\left[\frac{-2 \cos x}{(1+\sin x)^{2}}\right] \\
& =\left[-\frac{\cos x}{1} \times\left(\frac{1-\sin x}{1}\right)^{-\frac{1}{2}}\right] \times\left[\frac{1}{(1+\sin x)^{2-\frac{1}{2}}}\right] \\
& =\left[\cos x \times(1+\sin x)^{-\frac{1}{2}}\right] \times(1-\sin x)^{-\frac{3}{2}} \times\left(\frac{1+\sin x}{1+\sin x}\right)^{\frac{3}{2}} \\
& \text { (Multiplying and dividing by }(1+\sin \mathrm{x})^{\frac{3}{2}} \text {) } \\
& =\left[\cos x \times(1+\sin x)^{\frac{3}{2}-\frac{1}{2}}\right] \times(1-\sin x)^{-\frac{3}{2}} \times\left(\frac{1}{1+\sin x}\right)^{\frac{3}{2}} \\
& =\left[\cos x \times(1+\sin x)^{\frac{3}{2}-\frac{1}{2}}\right] \times(1-\sin x)^{-\frac{3}{2}} \times(1+\sin x)^{-\frac{3}{2}} \\
& =\left[\cos x \times(1+\sin x)^{1}\right] \times\left(1-\sin ^{2} x\right)^{-\frac{3}{2}} \\
& =\left[\cos x \times(1+\sin x)^{1}\right] \times\left(\cos ^{2} x\right)^{-\frac{3}{2}} \\
& =\left[\cos x \times(1+\sin x)^{1}\right] \times(\cos x)^{-3} \\
& =\left[(1+\sin x)^{1}\right] \times(\cos x)^{-3+1} \\
& =\frac{1+\sin x}{\cos ^{2} x}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\cos ^{1} x} \times \frac{1+\sin x}{\cos ^{1} x} \\
& =\sec x\left(\frac{1}{\cos x}+\frac{\sin x}{\cos x}\right) \\
& =\sec x(\sec x+\tan x)
\end{aligned}
$$

HENCE PROVED

