17. Construction of Quadrilaterals

Exercise 17A

1. Question

Construct a quadrilateral $A B C D$ in which $A B=4.2 \mathrm{~cm}, B C=6 \mathrm{~cm}, C D=5.2 \mathrm{~cm}$, $D A=5 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$.

Answer

Given :
$\mathrm{AB}=4.2 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}, \mathrm{CD}=5.2 \mathrm{~cm}, \mathrm{DA}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}$, Construction :

Step 1 : Draw segment $A B$ of length 4.2 cm .

Step 2 : Taking A as centre draw an arc of radius 8 cm .

Step 3 : Taking B as centre draw an arc of radius 6 cm , which cuts the arc drawn in step 2. Point of intersection of two arcs is C .

Step 4 : Join AC and BC.

Step 5 : Taking A as centre draw an arc of radius 5 cm .

Step 6 : Taking C as centre draw an arc of radius 5.2 cm , which cuts the arc drawn in step 5. Point of intersection of two arcs is D.

Step 7 : Join AD and CD.

$A B C D$ is the required quadrilateral.

2. Question

Construct a quadrilateral PQRS in which $\mathrm{PQ}=5.4 \mathrm{~cm}, \mathrm{QR}=4.6 \mathrm{~cm}, \mathrm{RS}=4.3 \mathrm{~cm}, \mathrm{SP}=3.5 \mathrm{~cm}$ and diagonal $P R=4 \mathrm{~cm}$.

Answer

Given :
$\mathrm{PQ}=5.4 \mathrm{~cm}, \mathrm{QR}=4.6 \mathrm{~cm}, \mathrm{RS}=4.3 \mathrm{~cm}, \mathrm{SP}=3.5 \mathrm{~cm}, \mathrm{PR}=4 \mathrm{~cm}$.
Construction :
Step 1 : Draw segment PQ of length 5.4 cm .

Step 2 : Taking P as centre draw an arc of radius 4 cm .

Step 3 : Taking Q as centre draw an arc of radius 4.6 cm , which cuts the arc drawn in step 2. Point of intersection of two arcs is R.

Step 4 : Join PR and QR.

Step 5 : Taking P as centre draw an arc of radius 3.5 cm .

Step 6 : Taking R as centre draw an arc of radius 4.3 cm , which cuts the arc drawn in step 5. Point of intersection of two arcs is S .

Step 7 : Join PS and RS.

$P Q R S$ is the required quadrilateral.

3. Question

Construct a quadrilateral $A B C D$ in which $A B=3.5 \mathrm{~cm}, B C=3.58 \mathrm{~cm}, C D=D A=4.5 \mathrm{~cm}$ and diagonal $B D=5.6 \mathrm{~cm}$.

Answer

Given :
$A B=3.5 \mathrm{~cm}, B C=3.58 \mathrm{~cm}, C D=D A=4.5 \mathrm{~cm}, B D=5.6 \mathrm{~cm}$.
Construction :
Step 1 : Draw segment $A B$ of length 3.5 cm .

Step 2 : Taking A as centre draw an arc of radius 4.5 cm .

Step 3 : Taking B as centre draw an arc of radius 5.6 cm , which cuts the arc drawn in step 2. Point of intersection of two arcs is D.

Step 4 : Join AD and BD.

Step 5 : Taking B as centre draw an arc of radius 3.58 cm .

Step 6 : Taking D as centre draw arc of radius 4.5 cm , which cuts the arc drawn in step 5. Point of intersection of two arcs is C.

Step 7 : Join BC and CD.

$A B C D$ is the required quadrilateral.

4. Question

Construct a quadrilateral $A B C D$ in which $A B=3.6 \mathrm{~cm}, B C=3.3 \mathrm{~cm}, A D=2.7 \mathrm{~cm}$, diagonal $A C=4.6 \mathrm{~cm}$ and diagonal $B D=4 \mathrm{~cm}$.

Answer

Given :
$A B=3.6 \mathrm{~cm}, B C=3.3 \mathrm{~cm}, A D=2.7 \mathrm{~cm}, A C=4.6 \mathrm{~cm}, B D=4 \mathrm{~cm}$.
Construction :
Step 1 : Draw segment $A B$ of length 3.6 cm .

Step 2 : Taking A as centre draw an arc of radius 2.7 cm .

Step 3 : Taking B as centre draw an arc of radius 4 cm , which cuts the arc drawn in step 2. Point of intersection of two arcs is D.

Step 4 : Join AD and BD.

Step 5 : Taking A as centre draw an arc of radius 4.6 cm .

Step 6 : Taking B as centre draw an arc of radius 3.3 cm , which cuts the arc drawn in step 5. Point of intersection of two arcs is C.

Step 7 : Join BC , AC and CD.

$A B C D$ is the required quadrilateral.

5. Question

Construct a quadrilateral $P Q R S$ in which $Q R=7.5 \mathrm{~cm}, \mathrm{PR}=\mathrm{PS}=6 \mathrm{~cm}, \mathrm{RS}=5 \mathrm{~cm}, \mathrm{QS}=10 \mathrm{~cm}$. Measure the fourth side.

Answer

Given :
$\mathrm{QR}=7.5 \mathrm{~cm}, \mathrm{PR}=\mathrm{PS}=6 \mathrm{~cm}, \mathrm{RS}=5 \mathrm{~cm}, \mathrm{QS}=10 \mathrm{~cm}$.

Construction :

Step 1 : Draw segment QR of length 7.5 cm .

Step 2 : Taking Q as centre draw an arc of radius 10 cm .

Step 3 : Taking R as centre draw an arc of radius 5 cm , which cuts the arc drawn in step 2. Point of intersection of two arcs is S .

Step 4 : Join QS and SR.

Step 5 : Taking R as centre draw an arc of radius 6 cm .

Step 6 : Taking S as centre draw an arc of radius 6 cm , which cuts the arc drawn in step 5. Point of intersection of two arcs is P.

Step 7 : Join PQ, PR and PS.

PQRS is the required quadrilateral.
Step 8 : Measure length of PQ .

Length of fourth side $\mathrm{PQ}=4.7 \mathrm{~cm}$.

6. Question

Construct a quadrilateral $A B C D$ in which $A B=3.4 \mathrm{~cm}, C D=3 \mathrm{~cm}, D A=5.7 \mathrm{~cm}, A C=8 \mathrm{~cm}$ and $B D=4 \mathrm{~cm}$.

Answer

Given :
$\mathrm{AB}=3.4 \mathrm{~cm}, \mathrm{CD}=3 \mathrm{~cm}, \mathrm{DA}=5.7 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}, \mathrm{BD}=4 \mathrm{~cm}$.
Construction :
Step 1 : Draw segment $A B$ of length 3.4 cm .

Step 2 : Taking A as centre draw an arc of radius 5.7 cm .

Step 3 : Taking B as centre draw an arc of radius 4 cm , which cuts the arc drawn in step 2. Point of intersection of two arcs is D.

Step 4 : Join AD and BD.

Step 5 : Taking A as centre draw an arc of radius 8 cm .

Step 6 : Taking D as centre draw arc of radius 3 cm , which cuts the arc drawn in step 5 . Point of intersection of two arcs is C.

Step 7 : Join CD, AC and BC.

$A B C D$ is the required quadrilateral.

7. Question

Construct a quadrilateral $A B C D$ in which $A B=B D=3.5 \mathrm{~cm}, A D=C D=5.2$ and $\angle A B C=120^{\circ}$

Answer

Given :
$\mathrm{AB}=\mathrm{BD}=3.5 \mathrm{~cm}, \mathrm{AD}=\mathrm{CD}=5.2 \mathrm{~cm}, \angle A B C=120^{\circ}$
Construction :
Step 1 : Draw segment $A B$ of length 3.5 cm .

Step 2 : Taking A as centre draw an arc of radius 5.2 cm .

Step 3 : Taking B as centre draw an arc of radius 3.5 cm , which cuts the arc drawn in step 2. Point of intersection of two arcs is D.

Step 4 : Join AD and BD.

Step 5 : Draw angle ABC of 120 degrees.

Step 6 : Taking B as centre draw an arc of radius 5.2 cm , which cuts the segment BP. Point of intersection is C.

Step 7 : Join CD

$A B C D$ is the required quadrilateral.

8. Question

Construct a quadrilateral $A B C D$ in which $A B=2.9 \mathrm{~cm}, B D=3.2 \mathrm{~cm}, C D=2.7 \mathrm{~cm}, D A=3.4 \mathrm{~cm}$ and $\angle A=$ 70°.

Answer

Given :
$\mathrm{AB}=2.9 \mathrm{~cm}, \mathrm{AC}=3.2 \mathrm{~cm}, \mathrm{CD}=2.7 \mathrm{~cm}, \mathrm{DA}=3.4 \mathrm{~cm}, \angle A=70^{\circ}$
Construction :
Step 1 : Draw segment $A B$ of length 2.9 cm .

Step 2 : Draw angle A of 70 degrees.

Step 3 : Taking A as centre draw an arc of radius 3.4 cm , which cuts the segment BP. Point of intersection is D.

Step 4 : Taking A as centre draw an arc of radius 3.2 cm .

Step 5 : Taking D as centre draw arc of radius 2.7 cm , which cuts the arc drawn in step 4. Point of intersection is C.

Step 6 : Join $C D, A C$ and $B C$.

$A B C D$ is the required quadrilateral.

9. Question

Construct a quadrilateral $A B C D$ in which $A B=3.5 \mathrm{~cm}, B C=5 \mathrm{~cm}, C D=4.6 \mathrm{~cm}, \angle B=125^{\circ}$ and $\angle C=60^{\circ}$.

Answer

Given :
$\mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}, \mathrm{CD}=4.6 \mathrm{~cm}, \angle B=125^{\circ}, \angle C=60^{\circ}$
Construction :
Step 1 : Draw segment $A B$ of length 3.5 cm .

Step 2 : Draw angle B of 125 degrees.

Step 3 : Taking B as centre draw arc of radius 5 cm which cuts the segment BP. Point of intersection is C.

Step 4 : Draw angle C of 60 degrees.

Step 5 : Taking C as centre draw arc of radius 4.6 cm which cuts the segment CG. Point of intersection is D.

Step 6 : Join AD.

$A B C D$ is the required quadrilateral.

10. Question

Construct a quadrilateral PQRS in which $\mathrm{PQ}=6 \mathrm{~cm}, \mathrm{QR}=5.6 \mathrm{~cm}, \mathrm{RS}=2.7 \mathrm{~cm}, \angle \mathrm{Q}=45^{\circ}$ and $\angle \mathrm{R}=90^{\circ}$.

Answer

Given :
$\mathrm{PQ}=6 \mathrm{~cm}, \mathrm{QR}=5.6 \mathrm{~cm}, \mathrm{RS}=2.7 \mathrm{~cm}, \angle Q=45^{\circ}, \angle R=90^{\circ}$
Construction :
Step 1 : Draw segment $P Q$ of length 6 cm .

Step 2 : Draw angle Q of 45 degrees.

Step 3 : Taking Q as centre draw arc of radius 5.6 cm which cuts the segment BX. Point of intersection is R.

Step 4 : Draw angle R of 90 degrees.

Step 5 : Taking R as centre draw arc of radius 2.7 cm which cuts the segment RY. Point of intersection is S .

Step 6 : Join PS.

PQRS is the required quadrilateral.

11. Question

Construct a quadrilateral $A B C D$ in which $A B=5.6 \mathrm{~cm}, B C=4 \mathrm{~cm}, \angle A=50^{\circ}, \angle B=105^{\circ}$ and $\angle D=80^{\circ}$.

Answer

Sum of all the angles of a quadrilateral is 360°.
$\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$50^{\circ}+105^{\circ}+\angle C+80^{\circ}=360^{\circ}$
$235^{\circ}+\angle \mathrm{C}=360^{\circ} \angle \mathrm{C}=360^{\circ}-235^{\circ} \angle \mathrm{C}=125^{\circ}$
Construction:

1) Draw a line $A B=5.6 \mathrm{~cm}$

2) At point A, Draw an $\angle X A B=50^{\circ}$ with the help of a protector.

3) At point B, Draw an $\angle Y B A=105^{\circ}$ with the help of a protector.

4) With B as center, draw an arc of 4 cm which intersects the $B Y$ at C.

5) At point C, Draw $\angle B C D=125^{\circ}$ such that D is a point on line $A X$.

12. Question

Construct a quadrilateral PQRS in which $\mathrm{PQ}=5 \mathrm{~cm}, \mathrm{QR}=6.5 \mathrm{~cm}, \angle \mathrm{P}=\angle \mathrm{R}=100^{\circ}$ and $\angle \mathrm{S}=75^{\circ}$.

Answer

Given :
$\mathrm{PQ}=5 \mathrm{~cm}, \mathrm{QR}=6.5 \mathrm{~cm}, \angle P=100^{\circ}, \angle R=100^{\circ}, \angle S=75^{\circ}$
Answer :
Sum of all angles of a quadrilateral is 360
$\therefore \angle P+\angle Q+\angle R+\angle S=360^{\circ}$
$\therefore 100^{\circ}+\angle Q+100^{\circ}+75^{\circ}=360^{\circ}$
$\therefore \angle Q=85^{\circ}$
Construction :

Step 1 : Draw segment $P Q$ of length 5 cm .

Step 2 : Draw angle PQC of 85 degrees.

Step 3 : Taking Q as centre draw arc of radius 6.5 cm which cuts the segment QC. Point of intersection is R .

Step 4 : Draw angle QRF of 100 degrees.

Step 5 : Draw angle QPG of 100 degrees.

Step 6 : Point of intersection of segments PG and RF is S

$P Q R S$ is the required quadrilateral.

13. Question

Construct a quadrilateral $A B C D$ in which $A B=4 \mathrm{~cm}, A C=5 \mathrm{~cm}, A D=5.5 \mathrm{~cm}$ and $\angle A B C=\angle A C D=90^{\circ}$.

Answer

Given :
$\mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}, \mathrm{AC}=5.5 \mathrm{~cm} \angle A B C=\angle A C D=90^{\circ}$.
Construction :
Step 1 : Draw segment $A B$ of length 4 cm .

Step 2 : Draw angle ABP of 90 degrees.

Step 3 : Taking A as centre draw arc of radius 5 cm which cuts the segment BP. Point of intersection is C.

Step 4 : Join AC.

Step 5 : Draw angle ACD of 90 degrees.

Step 6 : Taking A as centre draw arc of radius 5.5 cm which cuts the segment CF. Point of intersection is D.

Step 4 : Join AD.

$A B C D$ is the required quadrilateral.

Exercise 17B

1. Question

Construct a parallelogram $A B C D$ in which $A B=5.2 \mathrm{~cm}, B C=4.7 \mathrm{~cm}$ and $A C=7.6 \mathrm{~cm}$.
Answer
STEP 1: At first draw a base line of 5.2 cm by scale.

STEP 2: Then from point A draw an arc of radius 7.6 cm and from point B draw an arc of radius 4.7 cm with the help of compass. The intersecting point of both the arcs is C . Join AC and BC .

STEP 3: Now from point A draw an arc of radius 4.7 cm and from point C draw an arc of radius 5.2 cm with the help of compass. The intersecting point of both the arcs is D. Join AD and CD.

2. Question

Construct a parallelogram $A B C D$ in which $A B=4.3 \mathrm{~cm}, A D=4 \mathrm{~cm}$ and $B D=6.8 \mathrm{~cm}$.

Answer

STEP 1: At first draw a base line of 4.3 cm by scale.

STEP 2: Then from point A draw an arc of radius 4 cm and from point B draw an arc of radius 6.8 cm with the help of compass. The intersecting point of both the arcs is D. Join AD and BD.

STEP 3: Now, from point D draw an arc of radius 4.3 cm and from point B draw an arc of radius 4 cm with the help of compass. The intersecting point of both the arcs is C. Join BC and DC.

3. Question

Construct a parallelogram PQRS in which $\mathrm{QR}=6 \mathrm{~cm}, \mathrm{PQ}=4 \mathrm{~cm}$ and $\angle \mathrm{PQR}=60^{\circ}$.

Answer

STEP 1: At first draw a base line of 4 cm by scale.

STEP 2: Then draw a 6 cm line from Q at an angle of 60° with the help of protractor. That point is R.

STEP 3: Now, from point P draw an arc of radius 6 cm and from point R draw an arc of radius 4 cm with the help of compass. The intersecting point of both the arcs is S. Join PS and RS.

4. Question

Construct a parallelogram $A B C D$ in which $B C=5 \mathrm{~cm}, \angle B C D=120^{\circ}$ and $C D=4.8 \mathrm{~cm}$.

Answer

STEP 1: At first draw a base line of 5 cm by scale.

STEP 2: Then draw a 4.8 cm line from C at an angle of 120° with the help of protractor. That point is D.

STEP 3: Now, from point B draw an arc of radius 4.8 cm and from point D draw an arc of radius 5 cm with the help of compass. The intersecting point of both the arcs is A. Join BA and DA.

5. Question

Construct a parallelogram, one of whose sides are 4.4 cm and whose diagonal are 5.6 cm and 7 cm . Measure the other side.

Answer

STEP 1: At first draw a base line of 4.4 cm by scale.

STEP 2: From any point of $A B$, let it be M, draw a perpendicular to $A B$ by protractor.

STEP 3: Then from any point of the perpendicular line, let N draw another perpendicular line to this line i.e., parallel to $A B$ by protractor.

STEP 4: Now, from A draw an arc of radius 5.6 cm on the $2^{\text {nd }}$ perpendicular at point C and from B draw an arc of radius 7 cm on the $2^{\text {nd }}$ perpendicular at point D with the help of compass. Join AD and BC.

$A B C D$ is the required parallelogram.

6. Question

Construct a parallelogram $A B C D$ in which $A B=6.5 \mathrm{~cm}, A C=3.4 \mathrm{~cm}$ and the altitude $A L$ from A is 2.5 cm . Draw the altitude from C and measure it.

Answer

STEP 1: At first draw a base line of 6.5 cm by scale.

STEP 2: Then draw a line perpendicular to $A B$ from A with the help of protractor.

STEP 3: Then from A draw an arc of radius 2.5 cm on the perpendicular line. That intersecting point is L.

STEP 4: Then from L draw a perpendicular line with respect to AL.

STEP 5: Now from A draw an arc of radius 3.4 cm on the new line perpendicular to AL. That point is C.

STEP 6: From C draw an arc of radius 6.5 cm on the perpendicular line CL. That intersecting point is D.

STEP 7: Join AD and BC.

According to the problem, $A L=2.5 \mathrm{~cm}$ which is the altitude from point A. Similarly from point C altitude is CM which is of same length of $A L=2.5 \mathrm{~cm}$.

7. Question

Construct a parallelogram $A B C D$, in which diagonal $A C=3.8 \mathrm{~cm}$, diagonal $B D=4.6 \mathrm{~cm}$ and the angle between $A C$ and $B C$ is 60°.

Answer

STEP 1: At first draw the diagonal AC of 3.8 cm .

STEP 2: Now from the centre of AC (let M), draw a perpendicular line.

STEP 3: From C draw a 60° angle downward with the help of protractor. The intersection point between the line and the perpendicular is B.

STEP 4: From B draw an arc of radius 4.6 cm on the perpendicular line. The intersecting point is D . Join $A D, C D$ and $A B$.

8. Question

Construct a rectangle ABCD whose adjacent sides are 11 cm and 8.5 cm .

Answer

STEP 1: At first draw a base line of 11 cm by scale.

STEP 2: Then draw a line perpendicular to $A B$ from point B. And cut an arc of radius 8 cm from B. The intersection point is C .

STEP 3: Now from A draw an arc of radius 8.5 cm and from C draw an arc of radius 11 cm intersecting at same point. That point is D. Join AD and CD.

9. Question

Construct a square, each of whose sides measures 6.4 cm .

Answer

STEP 1: At first draw a base line of 6.4 cm by scale.

STEP 2: Then draw a line perpendicular to $A B$ from point B. And cut an arc of radius 6.4 cm from B. The intersection point is C .

STEP 3: Now, from A draw an arc of radius 6.4 cm and from C draw an arc of radius 6.4 cm intersecting at same point. That point is D. Join AD and CD.

10. Question

Construct a square, each of whose diagonals measures 5.8 cm .

Answer

STEP 1: At first draw a diagonal of 5.8 cm by scale.

STEP 2: Then draw a perpendicular bisector of $A B$. Let, centre of $A B$ is M.

STEP 3: Then draw arcs of radius 2.9 cm from M on both the sides of the perpendicular line.

STEP 4: Join AD, DB, BC and CA.

Here $A D B C$ is the square.

11. Question

Construct a rectangle $P Q R S$ in which $Q R=3.6 \mathrm{~cm}$ and diagonal $P R=6 \mathrm{~cm}$. Measure the other side of the rectangle.

Answer

STEP 1: At first draw a base line of 3.6 cm .

STEP 2: Draw a perpendicular line to $Q R$ from Q.

STEP 3: Now from R draw an arc of radius 6 cm on the perpendicular line by compass. The intersecting point is P.

STEP 4: Join PQ. This is the other side of the rectangle. Measure its size with scale.

By measuring the length of $P Q$ by scale, we get, $P Q=4.8 \mathrm{~cm}$.
STEP 5: Draw an arc of radius 3.6 cm from P and draw an arc of radius 4.8 cm from R, intersecting at a same point. This point is S. Join PS and RS.

12. Question

Construct a rhombus the lengths of whose diagonals are 6 cm and 8 cm .

Answer

STEP 1: At first draw a base line of 8 cm .

STEP 2: Draw a perpendicular bisector of $A B$. Let, M be the centre of $A B$.

STEP 3: Then draw arcs of radius 3 cm from M on both the sides of the perpendicular line with the help of compass.

STEP 4: Join AD, DB, BC and CA.

$A D B C$ is the rhombus.

13. Question

Construct a rhombus $A B C D$ in which $A B=4 \mathrm{~cm}$ and diagonal $A C$ is 6.5 cm .

Answer

STEP 1: At first draw diagonal of 6.5 cm .

STEP 2: Then from both the points A and C draw arc of radius 4 cm intersecting at same points, both the sides. Join the two intersecting points from A and C.

$A B C D$ is the rhombus.

14. Question

Draw a rhombus whose side is 7.2 cm and one angle is 60°.

Answer

STEP 1: At first draw a base line of 7.2 cm .

STEP 2: Draw a 7.2 cm straight line from A at an angle of 60° with the help of protractor and scale.

STEP 3: Now from D and B both the points, draw arcs of radius of 7.2 cm , intersecting at a same point. That point is C. Join $B C$ and $D C$.

This is the rhombus ABCD.

15. Question

Construct a trapezium $A B C D$ in which $A B=6 \mathrm{~cm}, B C=4 \mathrm{~cm}, C D=3.2 \mathrm{~cm}, \angle B=75^{\circ}$ and $D C \| A B$.

Answer

STEP 1: At first draw a base line of 6 cm by scale.

STEP 2: Then draw a 4 cm straight line from B at an angle of 75° by protractor and scale. That point is C

STEP 3: Now draw a line parallel to $A B$ from C.
Draw an arc of radius of 3.2 cm from point C on the straight line.

STEP 4: Join AD.

This is the trapezium ABCD.

16. Question

Draw a trapezium $A B C D$ in which $A B \| D C, A B=7 \mathrm{~cm}, B C=5 \mathrm{~cm}, A D=6.5 \mathrm{~cm}$ and $\angle B=60^{\circ}$.

Answer

STEP 1: At first draw a base line of 7 cm .

STEP 2: Then from B draw a 5 cm straight line at an angle of 60° by protractor and scale. That point is C.

STEP 3: Now draw a line parallel to $A B$ from C.

STEP 4: Cut 6.5 cm from point A on the straight line parallel to $A B$. That point is D. Join $A D$.

This is the trapezium ABCD.

CCE Test Paper-17

1. Question

Define the terms:
i. Open curve
ii. Closed curve
iii. Simple closed curve

Answer

(i) Open Curve - Curves whose beginning and end points are different are called as Open Curve.

Begin Point

End Point
(ii) Closed Curve - Curves whose beginning and end points are same but crosses itself are called as Closed Curve.

(iii) Simple Closed Curve - Curves whose beginning and end points are same and does not cross itself are called as Simple Closed Curve.

2. Question

The angels of a quadrilateral are in the ration $1: 2: 3: 4$. Find the measure of each angle.

Answer

$36^{\circ}, 72^{\circ}, 108^{\circ}, 144^{\circ}$
Let x be the common multiple.
As per question,
$\angle \mathrm{A}=\mathrm{x}$
$\angle B=2 x$
$\angle \mathrm{C}=3 \mathrm{x}$
$\angle \mathrm{D}=4 \mathrm{x}$
As we know that, Sum of all four angles of quadrilateral is 360°.
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$
$x+2 x+3 x+4 x=360^{\circ}$
$10 x=360^{\circ}$
$X=360 / 10$
$=36^{\circ}$
$\angle \mathrm{A}=1 \times 36^{\circ}=36^{\circ}$
$\angle \mathrm{B}=2 \times 36^{\circ}=72^{\circ}$
$\angle \mathrm{C}=3 \times 36^{\circ}=108^{\circ}$
$\angle \mathrm{D}=4 \times 36^{\circ}=144^{\circ}$
So, Angles of quadrilateral are $36^{\circ}, 72^{\circ}, 108^{\circ}$ and 144°.

3. Question

Two adjacent angles of a parallelogram are the ration $2: 3$. Find the measure of each of its angles.

Answer

$\angle \mathrm{A}=72^{\circ}, \angle \mathrm{B}=108^{\circ}, \angle \mathrm{C}=72^{\circ}, \angle \mathrm{D}=108^{\circ}$
Let x be the common multiple.
As per question,
$\angle \mathrm{A}=2 \mathrm{x}$
$\angle B=3 x$
$\angle \mathrm{C}=2 \mathrm{x}$
$\angle \mathrm{D}=3 \mathrm{x}$
$\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$ (Adjacent angles of parallelogram is supplementary)
$2 x+3 x=180^{\circ}$
$5 x=180^{\circ}$
$X=180 / 5=36^{\circ}$
$\angle \mathrm{A}=2 \times 36^{\circ}=72^{\circ}$
$\angle B=3 \times 36^{\circ}=108^{\circ}$
$\angle \mathrm{C}=2 \times 36^{\circ}=72^{\circ}$
$\angle \mathrm{D}=3 \times 36^{\circ}=108^{\circ}$
So, Angles of quadrilateral are $72^{\circ}, 108^{\circ}, 72^{\circ}$ and 108°.

4. Question

The sides of rectangle are in the ration $4: 5$ and its perimeter is 180 cm . Find its sides.

Answer

$40 \mathrm{~cm}, 50 \mathrm{~cm}$
Let x be the common multiple.
As per question,
Length $=4 x$
Width $=5 x$
As per formula,
Perimeter $=2 \times(I+w)$
$180=2 x(4 x+5 x)$
$180=18 x$
$x=10$
So,
Length $=40 \mathrm{~cm}$
Width $=50 \mathrm{~cm}$

5. Question

Prove that the diagonals of a rhombus bisect each other at right angles.

Answer

Let $A B C D$ be a rhombus whose diagonal $A C$ and $B D$ intersect at the point O.
As we know that the diagonals of a parallelogram bisect each other and rhombus is a parallelogram.

So, $O A=O C$ and $O B=O D$.
From $\triangle C O B$ and $\triangle C O D$ we get,
$C B=C D$ (sides of rhombus) and
CO is common in both the triangles.
So, $O B=O D$
Therefore, by SSS theorem.
$\triangle \mathrm{COB} \cong \triangle \mathrm{COD}$
$\angle \mathrm{COB}=\angle \mathrm{COD}$
$\angle \mathrm{COB}+\angle \mathrm{COD}=180^{\circ}$ (Linear pair of angles)
Thus, $\angle \mathrm{COB}=\angle \mathrm{COD}=90^{\circ}$
Hence, the diagonals of a rhombus bisect each other at right angles.

6. Question

The diagonals of a rhombus are 16 cm and 12 cm . Find the length of each side of the rhombus.

Answer

10 cm
Rhombus forms four congruent right triangles.
Sides of each triangle will be half of rhombus diagonals. i.e. $16 / 2=8 \mathrm{~cm}$ and $12 / 2=6 \mathrm{~cm}$
According to Pythagoras theorem,
$a^{2}=b^{2}+c^{2}$
$a^{2}=8^{2}+6^{2}$
$a=\sqrt{ }\left(8^{2}+6^{2}\right)$
$a=\sqrt{ }(64+36)$
$a=\sqrt{ } 10$
$\mathrm{a}=10 \mathrm{~cm}$
So, Sides of rhombus is 10 cm .

7. Question

Two opposite angles of a parallelogram are $(3 x-2)^{0}$ and $(50-x)^{0}$. The measures of all its angles are
A. $97^{\circ}, 83^{\circ}, 97^{\circ}, 83^{\circ}$
B. $37^{\circ}, 143^{\circ}, 37^{\circ}, 143^{\circ}$
C. $76^{\circ}, 104^{\circ}, 76^{\circ}, 104^{\circ}$
D. none of these

Answer

To Find:

All angles of a parallelogram
Given: Opposite angles are $(3 x-2)$ and ($50-x$)

Diagram:

Let the parallelogram be $A B C D$, and opposite angles be $\angle B$ and $\angle D$, such that $\angle A=(3 x-2) \angle C=(50-$ x)
$\angle \mathrm{B}=\angle \mathrm{D}$ (Opposite angles of a parallelogram are equal)
$3 x-2=50-x$
$3 x+x=50+2$
$4 x=52^{\circ}$
$x=13^{\circ}$
Putting the value of x, we get,
$\angle B=3(13)-2=37^{\circ} \angle D=50-13=37^{\circ}$ Also. $\angle A=\angle C$
(Opposite angles of a parallelogram are equal)By angle sum property of quadrilateral,
$\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$37^{\circ}+\angle A+37^{\circ}+\angle C=360^{\circ}$
$2 \angle A+74=360^{\circ} 2 \angle A=286^{\circ} \angle$
$A=143^{\circ}$
Hence, $\angle A=\angle C=143^{\circ}$
So, Angles of parallelogram is $37^{\circ}, 143^{\circ}, 37^{\circ}$ and 143°.

8. Question

The angles of quadrilateral are in the ration 1:3:7:9. The measure of the largest angle is
A. 63°
B. 72°
C. 81°
D. none of these

Answer

Let x be the common multiple.
As per question,
$\angle \mathrm{A}=\mathrm{x}$
$\angle B=3 x$
$\angle \mathrm{C}=7 \mathrm{x}$
$\angle \mathrm{D}=9 \mathrm{x}$
As we know that, Sum of all four angles of quadrilateral is 360°.
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}=360^{\circ}$
$x+3 x+7 x+9 x=360^{\circ}$
$20 x=360^{\circ}$
$X=360 / 20$
$=18^{\circ}$
$\angle \mathrm{A}=1 \times 18^{\circ}=18^{\circ}$
$\angle \mathrm{B}=3 \times 18^{\circ}=54^{\circ}$
$\angle \mathrm{C}=7 \times 18^{\circ}=126^{\circ}$
$\angle \mathrm{D}=9 \times 18^{\circ}=162^{\circ}$
So, largest angle of quadrilateral is 162°.

9. Question

The length of a rectangle is 8 cm and each of its diagonals measures 10 cm . The breadth of the rectangle is
A. 5 cm
B. 6 cm
C. 7 cm
D. 9 cm

Answer

A rectangle can be divided into two triangles.
Sides of each triangle will be 8 cm and 10 cm .

According to Pythagoras theorem,
$a^{2}=b^{2}+c^{2}$
$10^{2}=8^{2}+c^{2}$
$c=\sqrt{ }\left(10^{2}-8^{2}\right)$
$c=\sqrt{36}$
$\mathrm{c}=6 \mathrm{~cm}$
So, breadth of rectangle is 6 cm .

10. Question

In a square $P Q R S$, if $P Q=(2 x+3)$ and $Q R=(3 x-5) c m$ then
A. $x=4$
B. $x=5$
C. $x=6$
D. $x=8$

Answer

As we know that, all sides of square are equal.
So, according to question,
$2 x+3=3 x-5$
$X=8$.
So, Sides of square is 8 cm .

11. Question

The bisectors of two adjacent angles of a parallelogram intersect at
A. 30°
B. 45°
C. 60°
D. 90°

Answer

Let $A B C D$ is a parallelogram.
The angle bisectors $A E$ and $B E$ of adjacent angles A and B meet at E.
AD || BC (Opposite sides of ||gm)
$\angle \mathrm{DAB}+\angle \mathrm{CBA}=180^{\circ}$
$2 \angle E A B+2 \angle E B A=180^{\circ}$ (sum of the interior angles, formed on the same side of the transversal, is 180°)
$A E$ and $B E$ are the bisectors of $\angle D A B$ and $\angle C B A$ respectively.
$\angle E A B+\angle E B A=90^{\circ} \ldots$ (1)
In $\triangle E A B$,
$\angle E A B+\angle E B A+\angle A E B=180^{\circ}$ (sum of the angles of a triangle is 180°)
$90^{\circ}+\angle A E B=180^{\circ}$
From (1)
$\angle A E B=90^{\circ}$

12. Question

How many diagonals are there in a hexagon?
A. 6
B. 8
C. 9
D. 10

Answer
No. of diagonals $=\frac{n(n-3)}{2}$ [n is No. of Sides]
$=\frac{6 \times(6-3)}{2}$
$=9$

13. Question

Each interior angle of a polygon is 135 . How many sides does it have?
A. 10
B. 8
C. 6
D. 5

Interior Angle $=135$
So, Exterior Angle $=180-135$
$=45^{\circ}$
Sum of exterior angles of polygon is 360°
No. of Sides $=\frac{360}{45}$
$=8$

14. Question

Fill in the blanks.
For a convex polygon of n sides, we have:
i. Sum of all exterior angles $=$ \qquad
ii. Sum of all interior angles $=$ \qquad
iii. Number of diagonals $=$ \qquad

Answer

i. 4 right angles $=360^{\circ}$

Convex Polygon is also a polygon and sum of all exterior angles of any polygon is 360°
ii. ($2 n-4$) right angles

Convex Polygon is also a polygon and sum of all interior angles of any polygon is
$(\mathrm{n}-2) \times 180^{\circ}$
Here, n represents the no of sides of polygon.
iii. $\frac{1}{2} n(n-3)$

No. of diagonals $=\frac{n(n-3)}{2}$ [n is No. of Sides]

15. Question

Fill in the blanks.
For a regular polygon of n sides, we have:
i. Sum of all exterior angles $=$ \qquad
ii. Sum of all interior angles = \qquad

Answer

i. 360°

Sum of all exterior angles of any polygon is 360°
ii. $\left\{180^{\circ}-\left(\frac{360}{\mathrm{n}}\right)^{\circ}\right\}$

Exterior Angle $=\frac{360}{n}$ [n represents no of sides of polygon]
Interior Angle + Exterior Angle $=180^{\circ}$
So, Interior Angle $=\left(180-\frac{360}{n}\right)^{\circ}$

16. Question

Fill in the blanks.
i. Each interior angles of a regular octagon is (......) .
ii. The sum of all interior angle of a regular hexagon is (...... ${ }^{\circ}$.
iii. Each exterior angle of a regular polygon is 60°. This polygon is a
iv. Each interior angle of a regular polygon is 108°. This polygon is a $\ldots . .$. .
v. A pentagon has diagonals.

Answer

i. 135°

Exterior Angle $=\frac{360}{8}$ [n represents no of sides of polygon]
$=45^{\circ}$
Interior Angle + Exterior Angle $=180^{\circ}$
Interior Angle $=180-45=135^{\circ}$
ii. 720°

Sum of Interior Angle $=(n-2) \times 180^{\circ}$
$=(6-2) \times 180^{\circ}$
$=720^{\circ}$
iii. Hexagon

Exterior Angle $=\frac{360}{n}$
$60=\frac{360}{n}$
$N=\frac{360}{60}$
$=6$
No. of Sides is 6 .
So, it is a hexagon.
iv. Pentagon

Interior Angle $=108^{\circ}$
Exterior Angle $=180^{\circ}-108^{\circ}=72^{\circ}$
No. of Sides $=\frac{360}{72}$
$=5$
So, it is a pentagon.
v. 5

No. of diagonals $=\frac{n(n-3)}{2}$ [n is No. of Sides]
$=\frac{5 \times(5-3)}{2}$
$=5$

17. Question

Write ' T ' for true and ' F ' for false of each of the following:
i. The diagonals of a parallelogram are equal.
ii. The diagonals of a rectangle are perpendicular to each other.
iii. The diagonals of a rhombus bisect each other at right angles.
iv. Every rhombus is a kite.

Answer

i. F

The diagonals of square and rectangle only are equal. Rest all the parallelograms like Rhombus etc. do not have diagonals equal in size.
ii. F

Diagonals of Rectangle do not intersect in right angle hence it is not perpendicular to each other. Only in case of Square, diagonal intersects at right angle.
iii. T

In rhombus, diagonals bisect the angles and are the perpendicular bisector of each other.
iv. F

In rhombus, every side has equal length but it in kite only pair of adjacent sides are equal in length.

18. Question

Construct a quadrilateral $P Q R S$ in which $P Q=4.2 \mathrm{~cm}, \angle P Q R=60^{\circ}, \angle Q P S=120, Q R=5 \mathrm{~cm}$ and $P S=$ 6 cm

Answer

Step 1 - Draw $\mathrm{QR}=5 \mathrm{~cm}$

Step 2 - Draw angle $P Q R=60$ degree and $P Q=4.2 \mathrm{~cm}$

Step 3 - Draw angle QPS = 120 degree and PS $=6 \mathrm{~cm}$

