RD SHARMA
Solutions
Class 6 Maths
Chapter 4
Ex 4.5

Q1. Without drawing a diagram, find:

Solution: (i) 10th square number:

A square number can easily be remembered by the following rule

 N^{th} square number = n x n

10th square number = $10 \times 10 = 100$

(ii) 6th triangular number:

A triangular number can easily be remembered by the following rule

 N^{th} triangular number = n x (n + 1)2

Therefore, 6^{th} triangular number = $6 \times (6 + 1)2 = 21$

Q2. (i) Can a rectangle number also be a square number?

(ii) Can a triangular number also be a square number?

Solution:

(i) Yes, a rectangular number can also be a square number; for example, 16 is a square number also a rectangular number.

(ii) Yes, there exists only one triangular number that is both a triangular number and a square number, and that number is 1.

Q3. Write the first four products of two numbers with difference 4 starting from in the following order:

Identify the pattern in the products and write the next three products.

Solution: $1 \times 5 = 5 (5 - 1 = 4)$

$$2 \times 6 = 12 (6 - 2 = 4)$$

$$3 \times 7 = 21 (7 - 3 = 4)$$

$$4 \times 8 = 32 (8 - 4 = 4)$$

Q4. Observe the pattern in the following and fill in the blanks:

Solution: $9 \times 9 + 7 = 88$

$$98 \times 9 + 6 = 888$$

$$987 \times 9 + 5 = 8888$$

$$9876 \times 9 + 4 = 88888$$

$$98765 \times 9 + 3 = 888888$$

$$987654 \times 9 + 2 = 8888888$$

$$9876543 \times 9 + 1 = 888888888$$

Q5. Observe the following pattern and extend it to three more steps:

Solution: $6 \times 2 - 5 = 7$

$$7 \times 3 - 12 = 9$$

$$8 \times 4 - 21 = 11$$

$$9 \times 5 - 32 = 13$$

$$10 \times 6 - 45 = 15$$

$$11 \times 7 - 60 = 17$$

$$12 \times 8 - 77 = 19$$

Q6. Study the following pattern:

$$1 + 3 = 2 \times 2$$

$$1 + 3 + 5 = 3 \times 3$$

$$1 + 3 + 5 + 7 = 4 \times 4$$

$$1 + 3 + 5 + 7 + 9 = 5 \times 5$$

By observing the above pattern, find:

Solution: (i)
$$1 + 3 + 5 + 7 + 9 + 11$$

$$= 6 \times 6$$

$$= 36$$

(ii)
$$1 + 3 + 5 + 7 + 9 + 11 + 13 + 15$$

$$= 8 \times 8$$

(iii)
$$21 + 23 + 25 + \dots + 51$$

$$=(21+23+25+...+51)$$
 can also be written as

$$(1+3+5+7+...+49+51)=26 \times 26=676$$

and,
$$(1+3+5+...+17+19) = 10 \times 10 = 100$$

Now,

$$(21 + 23 + 25 + ... + 51) = 676 - 100 = 576$$

Q7. Study the following pattern:

$$1 \times 1 + 2 \times 2 = \frac{2 \times 3 \times 5}{6}$$

$$1 \times 1 + 2 \times 2 + 3 \times 3 = \frac{3 \times 4 \times 7}{6}$$

$$1 \times 1 + 2 \times 2 + 3 \times 3 + 4 \times 4 = \frac{4 \times 5 \times 9}{6}$$

By observing the above pattern, write next two steps.

Solution: The next two steps are as follows:

$$=5x6x116$$

$$=6x7x136$$

Q8. Study the following pattern:

$$I = \frac{1 \times 2}{2}$$

$$1+2=\frac{2\times 3}{2}$$

$$1 + 2 + 3 = \frac{3 \times 4}{2}$$

$$1 + 2 + 3 + 4 = \frac{4 \times 5}{2}$$

By observing the above pattern, find:

Solution: (i)
$$1+2+3+4+5+6+7+8+9+10$$

$$= 10 \times 112$$

This can also be written as

$$(1+2+3+...+99+100)-(1+2+3+4+...+47+49)$$

Now,

$$(1+2+3+...+99+100) = 100 \times 1012$$

and,
$$(1+2+3+4+...+47+49) = 49 \times 502$$

So,
$$(50 + 51 + 52 + ... + 100) = 100 \times 1012 - 49 \times 502$$

$$=5050-1225$$

= 3825

(iii)
$$2 + 4 + 6 + 8 + 10 + ... + 100$$

This can also be written as $2 \times (1 + 2 + 3 + 4 + ... + 49 + 50)$

Now,

$$(1+2+3+4+...+49+50) = 50 \times 512$$

= 1275

Therefore,
$$(2 + 4 + 6 + 8 + 10 + ... + 100) = 2 \times 1275 = 2550$$