QB365 QUESTION BANK SOFTWARE

Section A

1) $A B C$ construction company got the contract of making speed humps on roads. Speed humps are parabolic in shape and prevents overspeeding, mini mise accidents and gives a chance for pedestrians to cross the road. The mathematical representation of a speed hump is shown in the given graph.

Based on the above information, answer the following questions.
(i) The polynomial represented by the graph can be \qquad polynomial.
(a) Linear
(b) Quadratic
(c) Cubic
(d) Zero
(ii) The zeroes of the polynomial represented by the graph are
(a) 1,5
(b) $1,-5$
(c) $-1,5$
(d) $-1,-5$
(iii) The sum of zeroes of the polynomial represented by the graph are
$\begin{array}{llll}\text { (a) } 4 & \text { (b) } 5 & \text { (c) } 6 & \text { (d) } 7\end{array}$
(iv) If a and β are the zeroes of the polynomial represented by the graph such that
$\beta>\alpha$, then $|8 \alpha+\beta|=$

$\begin{array}{llll}\text { (a) } 1 & \text { (b) } 2 & \text { (c) } 3 & \text { (d) } 4\end{array}$

(v) The expression of the polynomial represented by the graph is
(a) $-x^{2}-4 x-5(b) x^{2}+4 x+5(c) x^{2}+4 x-5(d)-x^{2}+4 x+5$

Answer: (i) (b): Since, the given graph is parabolic is shape, therefore it will represent a quadratic polynomial.
[\therefore Graph of quadratic polynomial is parabolic in shape 1
(ii) (c): Since, the graph cuts the x -axis at $-1,5$. So the polynomial has 2 zeroes i.e., -1 and 5.
(iii) (a): Sum of zeroes $=-1+5=4$
(iv) (c): Since a and β are zeroes of the given polynomial and $\beta>a$
$\therefore \mathrm{a}=-1$ and $\beta=5$.
$\therefore|8 \alpha+\beta|=|8(-1)+5|=|-8+5|=|-3|=3$.
(v) (d): Since the zeroes of the given polynomial are - 1 and 5 .
\therefore Required polynomial $\mathrm{p}(\mathrm{x})$
$=\mathrm{k}\left\{\mathrm{x}^{2}-(-1+5) \mathrm{x}+(-1)(5)\right\}=\mathrm{k}\left(. \mathrm{x}^{2}-4 \mathrm{x}-5\right)$
For $\mathrm{k}=-1$, we get
$p(x)=-x^{2}+4 x+5$, which is the required polynomial.
2) The tutor in a coaching centre was explaining the concept of cubic polynomial as - A cubic polynomial is of the form $a x^{3}+b x^{2}+c x+d, a \neq 0$ and it has maximum three real zeroes. The zeroes of a cubic polynomial are namely the x-coordinates of the points where the graph of the polynomial intersects the x-axis. If α, β and γ are the zeroes of a cubic polynomial $a x^{3}+b x^{2}+c x+d$ then the relation between their zeroes and their coefficients are $\alpha+\beta+\gamma=-b / a$
$\alpha \beta+\beta \gamma+\alpha \gamma=c / a$
$\alpha \beta \gamma=-d / a$

Based on-the above information, answer the following questions.
(i) Which of the following are the zeroes of the polynomial $x^{3}-4 x^{2}-7 x+10$?
(a) -3,1 and 3
(b) -1,2 and-3
(c) 2,-1 and 5
(d) $-2,1$ and 5
(ii) If $-\frac{1}{2}-2$ and 5 are zeroes of a cubic polynomial, then the sum of product of zeroes taken two at a time is
(a) $\frac{23}{2}$
(b) $-\frac{1}{2}$
(c) -23
(d) $-\frac{23}{2}$
(iii) In which of the following polynomials the sum and product of zeroes are equal?
(a) $x^{3}-x^{2}+5 x-1$
(b) $x^{3}-4 x$
(c) $3 x^{3}-5 x^{2}-11 x-3$ and (b)
(iv) The polynomial whose all the zeroes are same is
$\begin{array}{ll}\text { (a) } x^{3}+x^{2}+x-1 & \text { (b) } x^{3}-3 x^{2}+3 x-1\end{array}$
(c) $x^{3}-5 x^{2}+6 x-1(d) 3 x^{3}+x^{2}+2 x-1$
(v) The cubic polynomial, whose graph is as shown below, is
(a) $x^{3}-5 x^{2}+8 x-4(b) x^{3}-7 x^{2}+11 x+9$
(c) $3 x^{3}-4 x^{2}+x-5(d) x^{3}-9$

Answer : (i) (d): For finding zeroes, check whether $x^{3}-4 x^{2}-7 x+10$ is 0 for given zeroes
Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}-7 \mathrm{x}+10$. Then, Clearly $\mathrm{p}(-2)=\mathrm{p}(1)=\mathrm{p}(5)=0$ So, the zeroes are -2 , 1 and 5.
(ii) (d): Here $\alpha=\frac{-1}{2}, \beta=-2$ and $\gamma=5$
\therefore Sum of product of zeroes taken two at a time
$=\alpha \beta+\beta \gamma+\gamma \alpha$
$=\left(\frac{-1}{2}\right)(-2)+(-2)(5)+(5)\left(\frac{-1}{2}\right)=1-10-\frac{5}{2}=\frac{-23}{2}$
(iii) (d): Consider $x^{3}-x^{2}+5 x-1$

Sum of zeroes = $1=$ Product of zeroes
Now, consider $x^{3}-4 x$
Sum of zeroes $=0=$ Product of zeroes.
(iv) (b): Let a, a, a, be the zeroes of the cubic polynomial. [\because All zeroes are same $]$ Then, $\mathrm{a} 3=1$ = $>\mathrm{a}=1$ [Using given options]
So, the required polynomial is $(x-1)^{3}=x^{3}-3 x^{2}+3 x-1$
(v) (a): Clearly $\mathrm{x}=1$ and $\mathrm{x}=2$ are the zeroes of given polynomial, both of which satisfies $x^{3}-5 x^{2}+8 x-4$

