QB365 QUESTION BANK SOFTWARE

10th Maths Important Case Question for Pair Of Linear Equation In Two Variables 2024

Section A

1) From Bengaluru bus stand, if Riddhima buys 2 tickets to Malleswaram and 3 tickets to Yeswanthpur, then total cost is Rs 46; but if she buys 3 tickets to Malleswaram and 5 tickets to Yeswanthpur, then total cost is Rs 74.

Consider the fares from Bengaluru to Malleswaram and that to Yeswanthpur as Rs x and Rs y respectively and answer the following questions.
(i) $1^{\text {st }}$ situation can be represented algebraically as
(a) 3 x -(b)
(c) $2 \mathrm{x}-(\mathrm{d})$
$5 y=742 x+5 y=743 y=462 x+3 y=46$
(ii) $2^{\text {nd }}$ situation can be represented algebraically as
(a) $5 \mathrm{x}+$
3y $=$
(b) 5 x -
(c) $3 x+$
$5 y=$
(d) $3 \mathrm{x}-$
74
$\mathbf{3 y}=74$
$5 y=$
74
$5 y=74$
(iii), Fare from Ben~aluru to Malleswaram is
(a) $\mathbf{R s}(\mathrm{b}) \mathbf{R s}(\mathrm{c}) \mathbf{R s}$ (d) Rs
$6 \quad 8 \quad 10 \quad 2$
(iv) Fare from Bengaluru to Yeswanthpur is
(a) Rs (b) Rs(c) Rs (d) Rs
$\begin{array}{llll}10 & 12 & 14 & 16\end{array}$
(v) The system oflinear equations represented by both situations has

Answer : (i) (d): $1^{\text {st }}$ situation can be represented algebraically as $2 \mathrm{x}+3 \mathrm{y}=46$
(ii) (c): $2^{\text {nd }}$ situation can be represented algebraically as $3 x+5 y=74$
(iii) (b): We have, $2 x+3 y=46$
$3 x+5 y=74$. (ii)

Multiplying (i) by 5 and (ii) by 3 and then subtracting,
we get $10 \mathrm{x}-9 \mathrm{x}=230-222 \Rightarrow \mathrm{x}=8$
\therefore Fare from Bengaluru to Malleswaram is Rs 8 .
(iv) (a): Putting the value of x in equation (i), we get
$3 y=46-2 \times 8=30 \Rightarrow Y=10$
\therefore Fare from Bengaluru to Yeswanthpur is Rs 10 .
(v) (c): We have, $\mathrm{a}_{1}=2, \mathrm{~b}_{1},=3, \mathrm{c}_{1}=-46$ and
$a_{2}=3, b_{2}=5, c_{2}=-74$
$\therefore \quad \frac{a_{1}}{a_{2}}=\frac{2}{3}, \frac{b_{1}}{b_{2}}=\frac{3}{5}, \frac{c_{1}}{c_{2}}=\frac{-46}{-74}=\frac{23}{37} \Rightarrow \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
Thus system oflinear equations has unique solution.
2) From a shop, Sudhir bought 2 books of Mathematics and 3 books of Physics of class X for Rs 850 and Suman bought 3 books of Mathematics and 2 books of Physics of class X for Rs 900 . Consider the price of one Mathematics book and that of one Physics book be Rs x and Rs y respectively.

Based on the above information, answer the following questions.
(i) Represent the situation faced by Sudhir, algebraically,
(a) $2 \mathrm{x}+$ (b)
(c) 2 x -
(d) $3 \mathrm{x}-$
$3 y=8503 x+2 y=850$
3y =
2y =
850850
(ii) Represent the situation faced by Suman, algebraically
(a) $2 \mathrm{x}+$
(b) $3 x+$
(c) 2 x -
(d) $3 \mathrm{x}-$
$3 y=902 y=9003 y=9002 y=900$
(iii) The price of one Physics book is
(a)
Rs (b) Rs (c) Rs (d) Rs
80
100150
200
(iv) The price of one Mathematics book is
$\begin{array}{ll}\text { (a) } & \text { (b) Rs (c) Rs (d) Rs }\end{array}$
$\begin{array}{llll}\text { Rs } & 100 & 150 & 200\end{array}$
80
(v) The system of linear equations represented by above situation, has
(a) unique
(b) no
solution solution
(c) infinitely many(d) none of solutions
these

Answer : (i) (a): Situation faced by Sudhir can be represented algebraically as $2 \mathrm{x}+$ $3 y=850$
(ii) (b): Situation faced by Suman can be represented algebraically as $3 x+2 y=900$
(iii) (c) : We have $2 \mathrm{x}+3 \mathrm{y}=850$
and $3 x+2 y=900$
Multiplying (i) by 3 and (ii) by 2 and subtracting, we get
$5 \mathrm{y}=750 \Rightarrow \mathrm{Y}=150$
Thus, price of one Physics book is Rs 150 .
(iv) (d): From equation (i) we have, $2 \mathrm{x}+3 \mathrm{x} 150=850$
$\Rightarrow 2 \mathrm{x}=850-450=400 \Rightarrow \mathrm{x}=200$
Hence, cost of one Mathematics book = Rs 200
(v) (a): From above, we have
$a_{1}=2, b_{1}=3, c_{1}=-850$
and $a_{2}=3, b_{2}=2, c_{2}=-900$
$\therefore \quad \frac{a_{1}}{a_{2}}=\frac{2}{3}, \frac{b_{1}}{b_{2}}=\frac{3}{2}, \frac{c_{1}}{c_{2}}=\frac{-850}{-900}=\frac{17}{18} \Rightarrow \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
Thus system of linear equations has unique solution.

