QB365 Question Bank Software

12th Maths CBSE Case Study Application of Integrals Questions For - 2024
12th Standard

Maths

SECTION-A

1) Consider the curve $x^{2}+y^{2}=16$ and line $y=x$ in the first quadrant. Based on the above information, answer the following questions.
(i) Point of intersection of both the given curves is
(a) (b)
(c)
(d)
$(0,4)(0,2 \sqrt{2})$
$(2 \sqrt{2}, 2 \sqrt{2})$
$(2 \sqrt{2}, 4)$
(ii) Which of the following shaded portion represent the area bounded by given two curves?

(iii) The value of the integral $\int_{0}^{2 \sqrt{2}} x d x$ is
(a) 0
(b) 1
(c) 2
(d). 4
(iv) The value of the integral $\int_{2 \sqrt{2}}^{4} \sqrt{16-x^{2}} d x$ is
(a)
(b)
(c)
(d)
$2(\pi-2) 2(\pi-8) 4(\pi-2) 4(\pi+2)$
(v) Area bounded by the two given curves is
(a)
(b)
(c)
(d)
3π sq. units $\frac{\pi}{2}$ sq. units π sq. units 2π sq. units
Answer: (i) (c): We have, $\mathrm{x}^{2}+\mathrm{y}^{2}=16$..(i) and $\mathrm{y}=\mathrm{x}$...(ii)
From (i) and (ii), $2 x^{2}=16 \Rightarrow x^{2}=8 \Rightarrow x=2 \sqrt{2}(\therefore$ x lies in first quadrant)
\therefore Point of intersection of (i) and (ii) in first quadrant is $(2 \sqrt{2}, 2 \sqrt{2})$.
(ii) (b) : The shaded region which represent the areabounded by two given curves in first quadrant is shown below.
(iii)(d) : $\int_{0}^{2 \sqrt{2}} x d x=\left[\frac{x^{2}}{2}\right]_{0}^{2 \sqrt{2}}=\frac{(2 \sqrt{2})^{2}}{2}=\frac{8}{2}=4$
(iv) (a) : $\int_{2 \sqrt{2}}^{4} \sqrt{16-x^{2}} d x=\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \cdot \sin ^{-1}\left(\frac{x}{4}\right)\right]_{2 \sqrt{2}}^{4}$
$=8 \sin ^{-1}(1)-4-8 \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
$=8\left(\frac{\pi}{2}\right)-4-8\left(\frac{\pi}{4}\right)=4 \pi-4-2 \pi=2 \pi-4=2(\pi-2)$
(v) (d) : Required area $=$ Area (OLA) + Area (BAL)
$=\int_{0}^{2 \sqrt{2}} x d x+\int_{2 \sqrt{2}}^{4} \sqrt{16-x^{2}} d x$
$=4+2(\pi-2)=2 \pi$ sq. units.
2) Location of three houses of a society is represented by the points $\mathrm{A}(-1,0), \mathrm{B}(1,3)$ and $\mathrm{C}(3,2)$ as shown in figure. Based on the above information, answer the following questions
(i) Equation of line AB is
(a)
(b)
(c)
(d)
$y=\frac{3}{2}(x+1) y=\frac{3}{2}(x-1) y=\frac{1}{2}(x+1) y=\frac{1}{2}(x-1)$
(ii) Equation of line BC is
(a)
(b) (c)
(d)
$y=\frac{1}{2} x-\frac{7}{2} y=\frac{3}{2} x-\frac{7}{2} y=\frac{-1}{2} x+\frac{7}{2} y=\frac{3}{2} x+\frac{7}{2}$
(iii) Area of region ABCD is
(a) $\mathbf{2} \mathbf{~ s q}$.
(b) 4 sq.
(c) 6 sq.
(d) $\mathbf{8} \mathbf{~ s q}$.
units
units
units units
(iv) Area of $\triangle A D C$ is
(a) 4 sq .
(b) $\mathbf{8}$ sq.
(c) $\mathbf{1 6}$ sq.
(d) 32 sq.
units
units
units

units

(iv) Area of $\triangle A B C$ is
(a) $\mathbf{3} \mathbf{~ s q}$.
(b) $4 \mathbf{~ s q}$.
(c) 5 sq .
(d) 6 sq.

units

units

units

units

Answer: (i) (a): Equation of line AB is
$y-0=\frac{3-0}{1+1}(x+1) \Rightarrow y=\frac{3}{2}(x+1)$
(ii) (c) : Equation of line BC is $y-3=\frac{2-3}{3-1}(x-1)$
$\Rightarrow y=-\frac{1}{2} x+\frac{1}{2}+3 \Rightarrow y=\frac{-1}{2} x+\frac{7}{2}$
(iii) (d) : Area of region ABCD
$=$ Area of $\triangle A B E+$ Area of region BCDE
$=\int_{-1}^{1} \frac{3}{2}(x+1) d x+\int_{1}^{3}\left(\frac{-1}{2} x+\frac{7}{2}\right) d x$
$=\frac{3}{2}\left[\frac{x^{2}}{2}+x\right]_{-1}^{1}+\left[\frac{-x^{2}}{4}+\frac{7}{2} x\right]_{1}^{3}$
$=\frac{3}{2}\left[\frac{1}{2}+1-\frac{1}{2}+1\right]+\left[\frac{-9}{4}+\frac{21}{2}+\frac{1}{4}-\frac{7}{2}\right]$
$=3+5=8$ sq. units
(iv) (a) : Equation of line AC is $y-0=\frac{2-0}{3+1}(x+1)$
$\Rightarrow y=\frac{1}{2}(x+1)$
\therefore Area of $\triangle A D C=\int_{-1}^{3} \frac{1}{2}(x+1) d x=\left[\frac{x^{2}}{4}+\frac{1}{2} x\right]_{-1}^{3}$
$=\frac{9}{4}+\frac{3}{2}-\frac{1}{4}+\frac{1}{2}=4$ sq. units
(v) (b): Area of $\triangle A B C=$ Area of region ABCD - Area of $\triangle A C D=8-4=4$ sa. units

