QB365 Question Bank Software

12th Maths CBSE Case Study Differential Equations Questions For - 2024
12th Standard
Maths

SECTION-A

1) Order: The order of a differential equation is the order of the highest order derivative appearing in the differential equation.
Degree : The degree of differential equation is the power of the highest order derivative, when differential coefficients are made free from radicals and fractions. Also, differential equation must be a polynomial equation
in derivatives for the degree to be defined.
Based on the above information, answer the following questions.
(i) Find the degree of the differential equation $2 \frac{d^{2} y}{d x^{2}}+3 \sqrt{1-\left(\frac{d y}{d x}\right)^{2}-y}=0$
(a) 3
(b) 4
(c) 2
(d) 1
(ii) Order and degree of the differential equation $y \frac{d y}{d x}=\frac{x}{\frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{3}}$ are respectively
(a) 1,1
(b) $\mathbf{1 , 2}$
(c) 1,3
(d) 1,4
(iii) Find order and degree of the equation $y^{\prime \prime \prime}+y^{2}+e^{y^{\prime}}=0$
(a) order $=3$,
(b) order $=1$, (c) order $=2$,
(d) order $=1$,
degree $=$ undefined degree $=3 \quad$ degree $=$ undefined degree $=2$
(iv) Determine degree of the differential equation $(\sqrt{a+x}) \cdot\left(\frac{d y}{d x}\right)+x=0$
(a) 3
(b) not defined
(c) 1
(d) 2
(v) Order and degree of the differential equation $\left(1+\left(\frac{d y}{d x}\right)^{3}\right)^{\frac{7}{3}}=7 \frac{d^{2} y}{d x^{2}}$ are respectively
(a) 2, 1
(b) 2,3
(c) 1,3
(d) $1, \frac{7}{3}$

Answer: (i) (c) : We have, $2 \frac{d^{2} y}{d x^{2}}+3 \sqrt{1-\left(\frac{d y}{d x}\right)^{2}-y}=0$
$\therefore \quad 2 \frac{d^{2} y}{d x^{2}}=-3 \sqrt{1-\left(\frac{d y}{d x}\right)^{2}-y}$
Squaring both sides, we get
$4\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=9\left[1-\left(\frac{d y}{d x}\right)^{2}-y\right]$
Here, highest order derivative is $\frac{d^{2} y}{d x^{2}}$ and its power is 2 . So, its degree is 2 .
(ii) (d): We have, $y \frac{d y}{d x}=\frac{x}{\frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{3}}$
$\Rightarrow y\left(\frac{d y}{d x}\right)^{2}+y\left(\frac{d y}{d x}\right)^{4}=x$
\Rightarrow Here, highest order derivative is $\frac{d y}{d x}$ is So, its order is 1 and degree is 4 .
(iii) (a) : We have, $y^{\prime \prime \prime}+y^{2}+e^{y^{\prime}}=0$
$\frac{d^{3} y}{d x^{3}}+y^{2}+e^{(d y / d x)}=0$
Highest order derivative is $\frac{d^{3} y}{d x^{3}}$.So, its order is 3 .
Also, the given differential cannot be expressed as a polynomial. So, its degree is not defined.
(iv) (c) : The given differential equation is,
$\sqrt{a+x} \cdot\left(\frac{d y}{d x}\right)+x=0 \Rightarrow \frac{d y}{d x}=\frac{-x}{\sqrt{a+x}}$
Clearly, degree $=1$
(v) (b) : We have $y \frac{d y}{d x}=\frac{x}{\frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{3}}$
$\Rightarrow y\left(\frac{d y}{d x}\right)^{2}+y\left(\frac{d y}{d x}\right)^{4}=x$
\Rightarrow Here, highest order derivative is $\frac{d y}{d x}$,So, its order is 1 and degree is 4 .
(iii) (a) : We have, $\mathrm{y}^{\prime \prime \prime}+\mathrm{y}^{2}+\mathrm{e}^{\mathrm{y}}=0$
$\frac{d^{3} y}{d x^{3}}+y^{2}+e^{(d y / d x)}=0$
Highest order derivative is $\frac{d^{3} y}{d x^{3}}$ So, its order is 3 .
Also, the given differential cannot be expressed as a polynomial. So, its degree is not defined
(iv) (c):The given differential equation is,
$\sqrt{a+x} \cdot\left(\frac{d y}{d x}\right)+x=0 \Rightarrow \frac{d y}{d x}=\frac{-x}{\sqrt{a+x}}$
Clearly, degree $=1$.
(v) (b) : We have $\left(1+\left(\left.\frac{d y}{d x} \right\rvert\,\right)^{3}\right)^{\frac{1}{3}}=7 \frac{d^{2} y}{d x^{2}}$
\therefore Order is 2 and degree is 3 .
${ }^{2)}$ If the equation is of the form $\frac{d y}{d x}=\frac{f(x, y)}{g(x, y)}$ or $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$,wheref $(\mathrm{x}, \mathrm{y}), \mathrm{g}(\mathrm{x}, \mathrm{y})$ are homogeneous functions of the same degree in x and y , then put $\mathrm{y}=\mathrm{vx}$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$, so that the dependent variable y is changed to another variable v and then apply variable separable method. Based on the above information, answer the following questions.
(i) The general solution of $x^{2} \frac{d y}{d x}=x^{2}+x y+y^{2}$ is
(a)
(b)
(c)
(d)
$\tan ^{-1} \frac{x}{y}=\log |x|+c \tan ^{-1} \frac{y}{x}=\log |x|+c y=x \log |x|+c x=y \log |y|+c$
(ii) Solution of the differential equation $2 x y \frac{d y}{d x}=x^{2}+3 y^{2}$ is
(a)
(b)
(c)
(d)
$x^{3}+y^{2}=c x^{2} \frac{x^{2}}{2}+\frac{y^{3}}{3}=y^{2}+c x^{2}+y^{3}=c x^{2} x^{2}+y^{2}=c x^{3}$
(iii) Solution of the differential equation $\left(x^{2}+3 x y+y^{2}\right) d x-x^{2} d y=0$ is
(a)
(b)
(c)
(d)
$\frac{x+y}{x}-\log x=c \frac{x+y}{x}+\log x=c \frac{x}{x+y}-\log x=c \frac{x}{x+y}+\log x=c$
(iv) General solution ofthe differential equation $\frac{d y}{d x}=\frac{y}{x}\left\{\log \left(\frac{y}{x}\right)+1\right\}$ is
(a)
(b)
(c)
(d)
$\log (x y)=c \log y=c x \log \left(\frac{y}{x}\right)=c x \log x=c y$
(v) Solution ofthe differential equation $\left(x \frac{d y}{d x}-y\right) e^{\frac{y}{x}}=x^{2} \cos x$ is
(a)
(b)
(c)
(d)
$e^{\frac{y}{x}}-\sin x=c e^{\frac{y}{x}}+\sin x=c e^{\frac{-y}{x}}-\sin x=c e^{\frac{-y}{x}}+\sin x=c$

Answer: (i) (b): We have, $\frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}}$
Put $\mathrm{y}=\mathrm{vx}$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore v+x \frac{d v}{d x}=\frac{x^{2}+x \cdot v x+v^{2} x^{2}}{x^{2}}=1+v+v^{2}$
$\Rightarrow x \frac{d v}{d x}=1+v^{2} \Rightarrow \int \frac{d v}{1+v^{2}}=\int \frac{d x}{x}+c$
$\Rightarrow \tan ^{-1} v=\log |x|+c \Rightarrow \tan ^{-1} \frac{y}{x}=\log |x|+c$
(ii) (d): We have, $2 x y \frac{d y}{d x}=x^{2}+3 y^{2} \Rightarrow \frac{d y}{d x}=\frac{x^{2}+3 y^{2}}{2 x y}$

Put $\mathrm{y}=\mathrm{vx}$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore v+x \frac{d v}{d x}=\frac{x^{2}+3 v^{2} x^{2}}{2 v x^{2}} \Rightarrow x \frac{d v}{d x}=\frac{1+3 v^{2}}{2 v}-v$
$\Rightarrow x \frac{d v}{d x}=\frac{1+v^{2}}{2 v_{*}} \Rightarrow \int \frac{2 v}{1+v^{2}} d v=\int \frac{d x}{x}+\log c$
$\Rightarrow \log \left|1+v^{2}\right|=\log |x|+\log |c| \Rightarrow \log \left|v^{2}+1\right|=\log |x c|$
$\Rightarrow \quad v^{2}+1=x c \Rightarrow \frac{y^{2}}{2}+1=x c \Rightarrow x^{2}+y^{2}=x^{3} c$
(iii) (d): We have, $\left(x^{2}+3 x y+y^{2}\right) d x-x^{2} d y=0$
$\Rightarrow \frac{x^{2}+3 x y+y^{2}}{x^{2}}=\frac{d y}{d x}$
Put $\mathrm{y}=\mathrm{vx}$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$
$\therefore \frac{x^{2}+3 x^{2} v+x^{2} v^{2}}{x^{2}}=\left(v+x \frac{d v}{d x}\right)$
$\Rightarrow 1+3 v+v^{2}=v+x \frac{d v}{d x} \Rightarrow 1+2 v+v^{2}=x \frac{d v}{d x}$
$\Rightarrow \int \frac{d x}{x}-\int(v+1)^{-2} d v=c \Rightarrow \log x+\frac{1}{v+1}=c$

