QB365 Question Bank Software

12th Maths CBSE Case Study Differential Equations Questions For - 2024

12th Standard

Maths

SECTION-A

 $2 \ge 4 = 8$

1) Order: The order of a differential equation is the order of the highest order derivative appearing in the differential equation.

Degree : The degree of differential equation is the power of the highest order derivative, when differential coefficients are made free from radicals and fractions. Also, differential equation must be a polynomial equation

in derivatives for the degree to be defined.

Based on the above information, answer the following questions.

(i) Find the degree of the differential equation $2\frac{d^2y}{dx^2} + 3\sqrt{1 - \left(\frac{dy}{dx}\right)^2 - y} = 0$

(a) 3 (b) 4 (c) 2 (d) 1

(ii) Order and degree of the differential equation $y \frac{dy}{dx} = \frac{x}{\frac{dy}{dx} + \left(\frac{dy}{dx}\right)^3}$ are respectively

(a) 1,1 (b) 1,2 (c) 1,3 (d) 1,4 (iii) Find order and degree of the equation $y''' + y^2 + e^{y'} = 0$ (a) order = 3, (b) order = 1, (c) order = 2, (d) order = 1, degree = undefined degree = 3 degree = undefined degree = 2 (iv) Determine degree of the differential equation $(\sqrt{a+x}) \cdot (\frac{dy}{dx}) + x = 0$ (a) 3 (b) not defined (c) 1 (d) 2 (v) Order and degree of the differential equation $(1 + (\frac{dy}{dx})^3)^{\frac{7}{3}} = 7\frac{d^2y}{dx^2}$ are respectively

(a) 2, 1 (b) 2,3 (c) 1,3 (d) $1, \frac{7}{3}$

Answer: (i) (c) : We have,
$$2\frac{d^2y}{dx^2} + 3\sqrt{1 - \left(\frac{dy}{dx}\right)^2 - y} = 0$$

 $\therefore 2\frac{d^2y}{dx^2} = -3\sqrt{1 - \left(\frac{dy}{dx}\right)^2 - y}$
Squaring both sides, we get
 $4\left(\frac{d^2y}{dx^2}\right)^2 = 9\left[1 - \left(\frac{dy}{dx}\right)^2 - y\right]$
Here, highest order derivative is $\frac{d^2y}{dx^2}$ and its power is 2. So, its degree is 2.
(ii) (d) : We have, $y\frac{dy}{dx} = \frac{x}{\frac{dx}{dx^2} + \left(\frac{dy}{dx}\right)^3}$
 $\Rightarrow y\left(\frac{dy}{dx}\right)^2 + y\left(\frac{dy}{dx}\right)^4 = x$
 \Rightarrow Here, highest order derivative is $\frac{dy}{dx}$ is So, its order is 1 and degree is 4.
(iii) (a) : We have, $y''' + y^2 + e^{y'} = 0$
 $\frac{d^3y}{dx^3} + y^2 + e^{(dy/dx)} = 0$
Highest order derivative is $\frac{d^3y}{dx}$. So, its order is 3.
Also, the given differential cannot be expressed as a polynomial. So, its degree is not defined.
(iv) (b) : We have $y\frac{dy}{dx} = \frac{x}{\frac{dy}{dx} + \left(\frac{dy}{dx}\right)^3}$
 $\Rightarrow y\left(\frac{dy}{dx}\right)^2 + y\left(\frac{dy}{dx}\right)^4 = x$
 $\Rightarrow Here, highest order derivative is $\frac{dy}{dx} = \frac{-x}{\sqrt{a+x}}$
Clearly, degree = 1
(v) (b) : We have $y\frac{dy}{dx} = \frac{x}{\frac{dy}{dx} + \left(\frac{dy}{dx}\right)^3}$
 $\Rightarrow y\left(\frac{dy}{dx}\right)^2 + y\left(\frac{dy}{dx}\right)^4 = x$
 \Rightarrow Here, highest order derivative is $\frac{d^3y}{dx}$, So, its order is 1 and degree is 4.
(iii) (a) : We have, $y''' + y^2 + e^y = 0$
 $\frac{d^3y}{dx^3} + y^2 + e^{(dy/dx)} = 0$
Highest order derivative is $\frac{d^3y}{dx}$ So, its order is 1 and degree is 4.
(iii) (a) : We have, $y''' + y^2 + e^y = 0$
 $\frac{d^3y}{dx^3} + y^2 + e^{(dy/dx)} = 0$
Highest order derivative is $\frac{d^3y}{dx^3}$ So, its order is 3.
Also, the given differential cannot be expressed as a polynomial. So, its degree is not defined.$

4.

egree is not defined (iv) (c) : The given differential equation is,

$$\sqrt{a+x} \cdot \left(\frac{dy}{dx}\right) + x = 0 \Rightarrow \frac{dy}{dx} = \frac{-x}{\sqrt{a+x}}$$

Clearly, degree = 1.

(v) (b): We have
$$\left(1 + \left(\frac{dy}{dx}\right)^3\right)^{\frac{1}{3}} = 7\frac{d^2y}{dx^2}$$

. Order is 2 and degree is 3.

²⁾ If the equation is of the form $\frac{dy}{dx} = \frac{f(x,y)}{g(x,y)}$ or $\frac{dy}{dx} = F\left(\frac{y}{x}\right)$, where f(x, y), g(x, y) are homogeneous functions of the same degree in x and y, then put y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$, so that the dependent variable y is changed to another variable v and then apply variable separable method. Based on the above information, answer the following questions. (i) The general solution of $x^2 \frac{dy}{dx} = x^2 + xy + y^2$ is

(a) (b) (c) (d) (a) (b) (c) (d) (ii) Solution of the differential equation $2xy\frac{dy}{dx} = x^2 + 3y^2$ is (a) (b) (c) (d) $x^3 + y^2 = cx^2\frac{x^2}{2} + \frac{y^3}{3} = y^2 + cx^2 + y^3 = cx^2x^2 + y^2 = cx^3$ (iii) Solution of the differential equation $(x^2 + 3xy + y^2) dx - x^2 dy = 0$ is (a) (b) (c) (d) $\frac{x+y}{x} - \log x = c\frac{x+y}{x} + \log x = c\frac{(x)}{x+y} - \log x = c\frac{(d)}{x+y} + \log x = c$ (iv) General solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} \{ \log(\frac{y}{x}) + 1 \}$ is (a) (b) (c) (d) $\log(xy) = c\log y = cx\log(\frac{y}{x}) = cx\log x = cy$ (v) Solution of the differential equation $(x\frac{dy}{dx} - y)e^{\frac{y}{x}} = x^2\cos x$ is (a) (b) (c) (d) $e^{\frac{y}{x}} - \sin x = ce^{\frac{y}{x}} + \sin x = ce^{\frac{-y}{x}} - \sin x = ce^{\frac{-y}{x}} + \sin x = c$

Answer: (i) (b): We have,
$$\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}$$

Put y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$
 $\therefore v + x \frac{dv}{dx} = \frac{x^2 + x \cdot vx + v^2 x^2}{x^2} = 1 + v + v^2$
 $\Rightarrow x \frac{dv}{dx} = 1 + v^2 \Rightarrow \int \frac{dv}{1 + v^2} = \int \frac{dx}{x} + c$
 $\Rightarrow \tan^{-1} v = \log |x| + c \Rightarrow \tan^{-1} \frac{y}{x} = \log |x| + c$
(ii) (d): We have, $2xy \frac{dy}{dx} = x^2 + 3y^2 \Rightarrow \frac{dy}{dx} = \frac{x^2 + 3y^2}{2xy}$
Put y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$
 $\therefore v + x \frac{dv}{dx} = \frac{x^2 + 3v^2 x^2}{2vx^2} \Rightarrow x \frac{dv}{dx} = \frac{1 + 3v^2}{2v} - v$
 $\Rightarrow x \frac{dv}{dx} = \frac{1 + v^2}{2v_*} \Rightarrow \int \frac{2v}{1 + v^2} dv = \int \frac{dx}{x} + \log c$
 $\Rightarrow \log |1 + v^2| = \log |x| + \log |c| \Rightarrow \log |v^2 + 1| = \log |xc|$
 $\Rightarrow v^2 + 1 = xc \Rightarrow \frac{y^2}{2} + 1 = xc \Rightarrow x^2 + y^2 = x^3c$
(iii) (d): We have, $(x^2 + 3xy + y^2) dx - x^2 dy = 0$
 $\Rightarrow \frac{x^2 + 3x^2 + x^2 v^2}{x^2} = \frac{dy}{dx}$
Put y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$
 $\therefore \frac{x^2 + 3x^2 v + x^2 v^2}{x^2} = (v + x \frac{dv}{dx})$
 $\Rightarrow 1 + 3v + v^2 = v + x \frac{dv}{dx} \Rightarrow 1 + 2v + v^2 = x \frac{dv}{dx}$
 $\Rightarrow \int \frac{dx}{x} - \int (v + 1)^{-2} dv = c \Rightarrow \log x + \frac{1}{v+1} = c$