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SECTION-A 2 x 4 = 8

Order: The order of a differential equation is the order of the highest order derivative appearing in the
differential equation.
Degree : The degree of differential equation is the power of the highest order derivative, when differential
coefficients are made free from radicals and fractions. Also, differential equation must be a polynomial
equation
in derivatives for the degree to be defined.
Based on the above information, answer the following questions.

(i) Find the degree of the differential equation  

(a) 3 (b) 4 (c) 2 (d) 1
(ii) Order and degree of the differential equation  are respectively

(a) 1,1 (b) 1,2 (c) 1,3 (d) 1,4
(iii) Find order and degree of the equation  
(a) order = 3,
degree = undefined

(b) order = 1,
degree = 3

(c) order = 2,
degree = undefined

(d) order = 1,
degree = 2

(iv) Determine degree of the differential equation  

(a) 3 (b) not defined (c) 1 (d) 2

(v) Order and degree of the differential equation  are respectively

(a) 2, 1 (b) 2,3 (c) 1,3 (d) 
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Answer : (i) (c) : We have,  

 

Squaring both sides, we get

 

Here, highest order derivative is  and its power is 2. So, its degree is 2.

(ii) (d) : We have,  

 

 Here, highest order derivative is  is So , its order is 1 and degree is 4.

(iii) (a) : We have,  

 

Highest order derivative is  .So, its order is 3.

Also, the given differential cannot be expressed as a polynomial. So, its degree is not defined.
(iv) (c) : The given differential equation is,

 

Clearly, degree = 1
(v) (b) : We have  

 

 Here, highest order derivative is  ,So , its order is 1 and degree is 4.
(iii) (a) : We have, y'" +y  + e  = 0

 

Highest order derivative is  So, its order is 3.

Also, the given differential cannot be expressed as a polynomial. So, its degree is not defined
(iv) (c) :The given differential equation is,

 

Clearly, degree = 1.

(v) (b) : We have  

 Order is 2 and degree is 3. 
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If the equation is of the form  ,wheref (x, y), g(x, y) are homogeneous

functions of the same degree in x and y, then put y = vx and , so that the dependent
variable y is changed to another variable v and then apply variable separable method. Based on the above
information, answer the following questions.
(i) The general solution of  is
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(a)  (b) (c) (d) 

(ii) Solution of the differential equation  is

(a) (b) (c) (d) 

(iii) Solution of the differential equation  is 
(a) (b) (c) (d) 

(iv) General solution ofthe differential equation   is

(a) (b) (c) (d) 

(v) Solution ofthe differential equation   is

(a) (b) (c) (d) 

 

Answer : (i) (b): We have, 

Put y = vx and 

(ii) (d): We have, 

Put y = vx and 

(iii) (d): We have, 

Put y = vx and 
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