QB365 Question Bank Software

12th Maths CBSE Case Study Three Dimensional Geometry Questions For - 2024
12th Standard

Maths

SECTION-A

1) A football match is organised between students of class XII of two schools, say school A and school B. For which a team from each school is chosen. Remaining students of class XII of school A and B are respectively sitting on the plane represented by the equation $\vec{r} \cdot(\hat{i}+\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=6$, to cheer up the team of their respective schools.

Based on the above information, answer the following questions.
(i) The cartesian equation of the plane on which students of school A are seated is
(a) $2 \mathrm{x}-\mathrm{y}$
(b) $2 x+y+(c) x+y+$
(d) $x+y+$
$+z=8$
$\mathrm{z}=8$
$2 \mathrm{z}=5$
$z=5$
(ii) The magnitude of the normal to the plane on which students of school B are seated, is
(a) $\sqrt{5}$
(b) $\sqrt{6}$
(c) $\sqrt{3}$
(d) $\sqrt{2}$
(iii) The intercept form of the equation of the plane on which students of school B are seated, is
(a)
(b)
(c)
(d)
$\frac{x}{6}+\frac{y}{6}+\frac{z}{6}=1 \frac{x}{3}+\frac{y}{(-6)}+\frac{z}{6}=1 \frac{x}{3}+\frac{y}{6}+\frac{z}{6}=1 \frac{x}{3}+\frac{y}{6}+\frac{z}{3}=1$
(iv) Which of the following is a student of school B?
(a) Mohit sitting at
(b) Ravi sitting at
(c) Khushi sitting at
(d) Shewta sitting at
$(1,2,1)$
$(0,1,2)$
$(3,1,1)$
(2, -1, 2)
(v) The distance of the plane, on which students of school B are seated, from the origin is
(a) 6
(b)
(c)
(d)
$\begin{array}{ll}\text { units } & \frac{1}{\sqrt{6}} \text { units } \frac{5}{\sqrt{6}} \text { units } \sqrt{6} \text { units }\end{array}$

Answer: (i) (c): Clearly, the plane for students of school A is $\vec{r} \cdot(\hat{i}+\hat{j}+2 \hat{k})=5$, which can be rewritten as
$(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(\hat{i}+\hat{j}+2 \hat{k})=5$
$\Rightarrow \quad x+y+2 z=5$, which is the required cartesian equation.
(ii) (b): Clearly, the equation of plane for students of school B is $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=6$, which is of the form $\vec{r} \cdot \vec{n}=d$
\therefore Normal vector to the plane is, $\vec{n}=2 \hat{i}-\hat{j}+\hat{k}$ and its magnitude is $|\vec{n}|=\sqrt{2^{2}+(-1)^{2}+1^{2}}=\sqrt{6}$
(iii) (b): The cartesian form is $2 \mathrm{x}-\mathrm{y}+\mathrm{z}=6$, which can be rewritten as
$\frac{2 x}{6}-\frac{y}{6}+\frac{z}{6}=1 \Rightarrow \frac{x}{3}+\frac{y}{(-6)}+\frac{z}{6}=1$
(iv) (c): Since, only the point $(3, I, 1)$ satisfy the equation of plane representing seating position of students of school B, therefore Khushi is the student of school B.
(v) (d): Equation of plane representing students of school B is $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=6$, which is not in normal form, as $|\vec{n}| \neq 1$
On dividing both sides by $\sqrt{2^{2}+(-1)^{2}+1^{2}}=\sqrt{6}$, we get $\vec{r} \cdot\left(\frac{2}{\sqrt{6}} \hat{i}-\frac{1}{\sqrt{6}} \hat{j}+\frac{1}{\sqrt{6}} \hat{k}\right)=\frac{6}{\sqrt{6}}$
which is of the form $\vec{r} \cdot \hat{n}=d$
Thus, the required distance is $\sqrt{6}$ units.
2) If a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are direction ratios of two lines say L_{1} and L_{2} respectively. Then L_{1} II L_{2} iff $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$ and $L_{1} \perp L_{2}$ iff $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$.

Based on the above information, answer the following questions
(i) If $1_{1}, m_{1}, n_{1}$ and $1_{2}, m_{2}, n_{2}$ are the direction cosines of L, and $L 2$ respectively, then L_{1}, will be perpendicular to L_{2}, iff
(a)
(b)
(c)
(d) none
$\stackrel{1}{l}_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0 l_{1} m_{2}+m_{1} l_{2}+n_{1} n_{2}=0 \frac{l_{1}}{l_{2}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}}$ of these
(ii) If $1_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}$ and $\mathrm{l}_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ are direction cosines of L_{1}, and L_{2} respectively, then L_{1}, will be parallel to L_{2}, iff
$\stackrel{(\mathbf{a})}{l_{1} l_{2}}+m_{1} m_{2}+n_{1} n_{2}=0 \stackrel{(\mathbf{b})}{l_{1}} m_{2}+m_{1} l_{2}+n_{1} n_{2}=0 \stackrel{(\mathbf{(c)}}{0} \frac{l_{1}}{l_{2}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}} \stackrel{(\mathbf{d})}{m} n_{1} n_{2}+m_{2} n_{2}+l_{1} l_{2}=0$
$\stackrel{(\mathbf{a})}{l_{1} l_{2}}+m_{1} m_{2}+n_{1} n_{2}=0 \stackrel{(\mathbf{b})}{l_{1}} m_{2}+m_{1} l_{2}+n_{1} n_{2}=0 \stackrel{(\mathbf{(c)}}{l_{1}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}} \stackrel{(\mathbf{d})}{m_{1}} n_{2}+m_{2} n_{2}+l_{1} l_{2}=0$
$\stackrel{(\mathbf{a})}{l_{1} l_{2}}+m_{1} m_{2}+n_{1} n_{2}=0 \stackrel{(b)}{l_{1}} m_{2}+m_{1} l_{2}+n_{1} n_{2}=0 \stackrel{(\mathbf{c})}{l_{1}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}} \stackrel{(\mathbf{d})}{m}{ }_{1} n_{2}+m_{2} n_{2}+l_{1} l_{2}=0$
$\stackrel{(\mathbf{a})}{l_{1} l_{2}}+m_{1} m_{2}+n_{1} n_{2}=0 \stackrel{(\mathbf{b})}{l_{1}} m_{2}+m_{1} l_{2}+n_{1} n_{2}=0 \stackrel{(\mathbf{(c)}}{l_{1}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}} \stackrel{(\mathbf{d})}{m_{1}} n_{2}+m_{2} n_{2}+l_{1} l_{2}=0$
(iii) The coordinates of the foot of the perpendicular drawn from the point $A(1,2,1)$ to the line joining $B(1,4,6)$ and C $(5,4,4)$, are
(a) $(\mathbf{1 , 2 , 1})$
(b) $(2,4,5)$
(c) $(3,4,5)$
(d) $(4,3,5)$
(iv) The direction ratios of the line which is perpendicular to the lines with direction ratios proportional to $(1,-2,-2)$ and $(0,2,1)$ are
(a) $<1,2,1$
(b) $<2,-1,2$
(c) $<-1,2,2$
(d) none of
$>$
$>$
$>$ these
(v) The lines $\frac{x-2}{3}=\frac{y+1}{-2}=\frac{z-2}{0}$ and $\frac{x-1}{1}=\frac{y+3 / 2}{3 / 2}=\frac{z+5}{2}$ are
(a)
(b)
(c) skew
(d) non-
parallel perpendicular lines intersecting

Answer : (i) (a) : Since, D.R.'s are proportional to D.C.'s, therefore L; will be perpendicular to L_{2} iff
$l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$
(ii) (c) : Since, D.R.'s are proportional to D.C.'s, therefore L, will be parallel to L_{2}, iff
$\frac{l_{1}}{l_{2}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}}$
(iii) (c) : Equation of line joining Band C is $\frac{x-1}{4}=\frac{y-4}{0}=\frac{z-6}{-2}$

Let coordinates of foot of perpendicular be $\mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
\therefore D.R.'s of AD are $<x-1, y-2, z-1>$.
Now, $4(x-1)+0(y-2)-2(z-1)=0 \Rightarrow 4 x-2 z=2$
Also, (x, y, z) will satisfy equation of line BC.
Here, $(3,4,5)$ satisfy both the conditions.
\therefore Required coordinates are $(3,4,5)$.
(iv) (b) : Let a, b, c be the direction ratios of the required line. Since it is perpendicular to the lines whose direction ratios are $(1,-2,-2)$ and $(0,2,1)$ respectively.

$$
\begin{align*}
& \therefore a-2 b-2 c=0 \tag{i}\\
& 0 . a+2 b+c=0
\end{align*}
$$

On solving (i) and (ii) by cross-multiplication, we get
$\frac{a}{-2+4}=\frac{b}{0-1}=\frac{c}{2} \Rightarrow \frac{a}{2}=\frac{b}{-1}=\frac{c}{2}$
Thus, the direction ratios of the required line are $\langle 2,-1,2\rangle$.
(v) (b) : D.R 's of given lines are $<3,-2,0>$ and $<1,-\frac{3}{2}, 2>$

Now, as $3.1+(-2) \cdot\left(\frac{3}{2}\right)+0 \cdot 2=3-3+0=0$
\therefore Given lines are perpendicular to each other.

