QB365 QUESTION BANK SOFTWARE

SECTION A

$2 \times 4=8$

1) A quadratic equation can be defined as an equation of degree 2 . This means that the highest exponent of the polynomial in it is 2 . The standard form of a quadratic equation is $a x^{2}+b x+c=0$, where a, b, and c are real numbers and $a \neq 0$ Every quadratic equation has two roots depending on the nature of its discriminant, $\mathrm{D}=\mathrm{b} 2-4 \mathrm{ac}$. Based on the above information, answer the following questions.
(i) Which of the following quadratic equation have no real roots?
(a) $-4 x^{2}+7 x-4=0(b)-4 x^{2}+7 x-2=0$
(c) $-2 x^{2}+5 x-2=0(d) 3 x^{2}+6 x+2=0$
(ii) Which of the following quadratic equation have rational roots?
(a) $x^{2}+x-1=0$
(b) $x^{2}-5 x+6=0$
(c) $4 x^{2}-3 x-2=0$
$(d) 6 x^{2}-x+11=0$
(iii) Which of the following quadratic equation have irrational roots?
(a) $3 x^{2}+2 x+2=0$
(b) $4 x^{2}-7 x+3=0$
(c) $6 x^{2}-3 x-5=0$
$(d) 2 x^{2}+3 x-2=0$
(iv) Which of the following quadratic equations have equal roots?
(a) $x^{2}-3 x+4=0$
(b) $2 x^{2}-2 x+1=0$
(c) $5 x^{2}-10 x+1=0$
(d) $9 x^{2}+6 x+1=0$
(v) Which of the following quadratic equations has two distinct real roots?
(a) $x^{2}+3 x+1=0 \quad$ (b) $-x^{2}+3 x-3=0$
(c) $4 x^{2}+8 x+4=0(d) 3 x^{2}+6 x+4=0$

Answer: (i) (a): To have no real roots, discriminant $\left(D=b^{2}-4 a c\right)$ should be <0.
(a) $\mathrm{D}=7^{2}-4(-4)(-4)=49-64=-15<0$
(b) $\mathrm{D}=7^{2}-4(-4)(-2)=49-32=17>0$
(c) $\mathrm{D}=5^{2}-4(-2)(-2)=25-16=9>0$
(d) $D=6^{2}-4(3)(2)=36-24=12>0$
(ii) (b): To have rational roots, discriminant $\left(D=b^{2}-4 a c\right)$ should be >0 and also a perfect square
(a) $D=1^{2}-4(1)(-1)=1+4=5$, which is not a perfect square.
(b) $D=(-5)^{2}-4(1)(6)=25-24=I$, which is a perfect square.
(c) $D=(-3)^{2}-4(4)(-2)=9+32=41$, which is not a perfect square.
(d) $D=(-1)^{2}-4(6)(11)=1-264=-263$, which is not a perfect square.
(iii) (c) : To have irrational roots, discriminant ($D=b^{2}-4 a c$) should be >0 but not a perfect square.
(a) $D=2^{2}-4(3)(2)=4-24=-20<0$
(b) $D=(-7)^{2}-4(4)(3)=49-48=1>0$ and also a perfect square.
(c) $D=(-3)^{2}-4(6)(-5)=9+120=129>0$ and not a perfect square.
(d) $D=3^{2}-4(2)(-2)=9+16=25>0$ and also a perfect square.
(iv) (d): To have equal roots, discriminant $\left(D=b^{2}-4 a c\right)$ should be $=0$.
(a) $\mathrm{D}=(-3)^{2}-4(1)(4)=9-16=-7<0$
(b) $\mathrm{D}=(-2)^{2}-4(2)(1)=4-8=-4<0$
(c) $\mathrm{D}=(-10)^{2}-4(5)(1)=100-20=80>0$
(d) $D=6^{2}-4(9)(1)=36-36=0$
(v) (a): To have two distinct real roots, discriminant $\left(D=b^{2}-4 a c\right)$ should be >0.
(a) $\mathrm{D}=3^{2}-4(1)(1)=9-4=5>0$
(b) $\mathrm{D}=3^{2}-4(-1)(-3)=9-12=-3<0$
(c) $D=8^{2}-4(4)(4)=64-64=0$
(d) $D=6^{2}-4(3)(4)=36-48=-12<0$
2) Raj and Ajay are very close friends. Both the families decide to go to Ranikhet by their own cars. Raj's car travels at a speed of $x \mathrm{~km} / \mathrm{h}$ while Ajay's car travels $5 \mathrm{~km} / \mathrm{h}$ faster than Raj's car. Raj took 4 h more than Ajay to complete the journey of 400 km .

(i) What will be the distance covered by Ajay's car in 2 h ?
(a) $2(\mathrm{x}+5) \mathrm{km}$
(b) $(x-5) \mathrm{km}$
(c) $2(\mathrm{x}+10) \mathrm{km}$
(d) $(2 \mathrm{x}+5) \mathrm{km}$
(ii) Which of the following quadratic equation describe the speed of Raj's car?
(a) $x^{2}-5 x-500=0$
(b) $x^{2}+4 x-400=0$
(c) $x^{2}+5 x-500=0$
(d) $x^{2}-4 x+400=0$
(iii) What is the speed of Raj's car?
(a) $20 \mathrm{~km} / \mathrm{h}$
(b) $15 \mathrm{~km} / \mathrm{h}$
(c) $25 \mathrm{~km} / \mathrm{h}$
(d) $10 \mathrm{~km} / \mathrm{h}$
(iv) How much time took Ajay to travel 400 km ?
(a) 20 h
(b) 40 h
(c) 25 h
(d) 16 h

Answer : (i) (a) Since, Ajay's car travels a distance in one hour is $(x+5) \mathrm{km}$. Therefore, Ajay's car travels a distance two hours is $2(x+5) \mathrm{km}$.
(ii) (c) \because Time $=\frac{\text { Distance }}{\text { Speed }}$

Time taken by Ajay and Raj to complete the 400 km journey,
$t_{1}=\frac{400}{x+5} \mathrm{~h}$
and $t_{2}=\frac{400}{x} \mathrm{~h}$
According to the question,
$\mathrm{t}_{2}=\mathrm{t}_{1}+4$
$\therefore \frac{400}{x}=\frac{400}{x+5}+4$
$\Rightarrow \frac{100}{x}=\frac{100}{x+5}+1$ [dividing by 4]
$\Rightarrow 100(\mathrm{x}+5)=100 \mathrm{x}+\mathrm{x}(\mathrm{x}+5)$
$\Rightarrow 100 \mathrm{x}+500=100 \mathrm{x}+\mathrm{x}^{2}+5 \mathrm{x}$
$\Rightarrow x^{2}+5 \mathrm{x}-500=0$
(iii) (a) Consider the quadratic equation $x^{2}+5 x-500=0$

On comparing with $a x^{2}+b x+c=0$, we get
$\mathrm{a}=1, \mathrm{~b}=5$ and $\mathrm{c}=-500$

$$
\begin{aligned}
& \because \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-5 \pm \sqrt{(5)^{2}-4 \times(1)(-500)}}{2 \times 1} \\
& =\frac{-5 \pm \sqrt{25+2000}}{2}=\frac{-5 \pm \sqrt{2025}}{2} \\
& =\frac{-5 \pm 45}{2}=\frac{-50}{2}, \frac{40}{2}=-25,20
\end{aligned}
$$

Since, speed cannot be negative, so we consider only $\mathrm{x}=20$.
Hence, the speed of Raj's car is $20 \mathrm{~km} / \mathrm{h}$.
(iv) (d) To travel 400 km , time taken by Ajay
$t_{1}=\frac{400}{(x+5)}$
$=\frac{400}{20+5}=\frac{400}{25}=16 \mathrm{~h}$

