QB365 QUESTION BANK SOFTWARE

10th Maths CBSE Important Case Study Questions for Quadratic Equations 2024

SECTION A

 $2 \ge 4 = 8$

1) A quadratic equation can be defined as an equation of degree 2. This means that the highest exponent of the polynomial in it is 2. The standard form of a quadratic equation is $ax^2 + bx + c = 0$, where a, b, and c are real numbers and $a \neq 0$ Every quadratic equation has two roots depending on the nature of its discriminant, D = b2 - 4ac.Based on the above information, answer the following questions. (i) Which of the following quadratic equation have no real roots? $(a) - 4x^2 + 7x - 4 = 0(b) - 4x^2 + 7x - 2 = 0$ $\dot{(c)}-2x^2+5x-2=0\,\dot{(d)}3x^2+6x+2=0$ (ii) Which of the following quadratic equation have rational roots? $(a)x^2+x-1=0$ $(b)x^2-5x+6=0$ $(c)4x^2-3x-2=0 \ \ \ (d)6x^2-x+11=0$ (iii) Which of the following quadratic equation have irrational roots? $(a)3x^2+2x+2=0$ $(b)4x^2-7x+3=0$ $(c)6x^2-3x-5=0$ $(d)2x^2+3x-2=0$ (iv) Which of the following quadratic equations have equal roots? $(a)x^2 - 3x + 4 = 0$ $(b)2x^2 - 2x + 1 = 0$ $(c)5x^2-10x+1=0 \ \ (d)9x^2+6x+1=0$ (v) Which of the following quadratic equations has two distinct real roots? $(a)x^2+3x+1=0 \quad (b)-x^2+3x-3=0$ $\dot{(c)}4x^2+8x+4=0~~\dot{(d)}3x^2+6x+4=0$ **Answer**: (i) (a): To have no real roots, discriminant (D = b^2 - 4ac) should be < 0. (a) $D = 7^2 - 4(-4)(-4) = 49 - 64 = -15 < 0$ (b) $D=7^2-4(-4)(-2)=49-32=17 > 0$ (c) $D = 5^2 - 4(-2)(-2) = 25 - 16 = 9 > 0$ (d) $D = 6^2 - 4(3)(2) = 36 - 24 = 12 > 0$ (ii) (b): To have rational roots, discriminant ($D = b^2 - 4ac$) should be > 0 and also a perfect square (a) $D = 1^2 - 4(1)(-1) = 1 + 4 = 5$, which is not a perfect square. (b) $D = (-5)^2 - 4(1)(6) = 25 - 24 = I$, which is a perfect square. (c) $D = (-3)^2 - 4(4)(-2) = 9 + 32 = 41$, which is not a perfect square. (d) $D = (-1)^2 - 4(6)(11) = 1 - 264 = -263$, which is not a perfect square. (iii) (c) : To have irrational roots, discriminant (D = b^2 - 4ac) should be > 0 but not a perfect square. (a) $D = 2^2 - 4(3)(2) = 4 - 24 = -20 < 0$ (b) $D = (-7)^2 - 4(4)(3) = 49 - 48 = 1 > 0$ and also a perfect square. (c) $D = (-3)^2 - 4(6)(-5) = 9 + 120 = 129 > 0$ and not a perfect square. (d) $D = 3^2 - 4(2)(-2) = 9 + 16 = 25 > 0$ and also a perfect square. (iv) (d): To have equal roots, discriminant (D = b^2 - 4ac) should be = 0. (a) $D=(-3)^2-4(1)(4)=9-16=-7<0$ (b) $D = (-2)^2 - 4(2)(1) = 4 - 8 = -4 < 0$ (c) $D = (-10)^2 - 4(5)(1) = 100 - 20 = 80 > 0$ (d) $D = 6^2 - 4(9)(1) = 36 - 36 = 0$ (v) (a): To have two distinct real roots, discriminant (D = b^2 - 4ac) should be > 0. (a) $D = 3^2 - 4(1)(1) = 9 - 4 = 5 > 0$ (b) $D = 3^2 - 4(-1)(-3) = 9 - 12 = -3 < 0$ (c) $D=8^2-4(4)(4)=64-64=0$ (d) $D = 6^2 - 4(3)(4) = 36 - 48 = -12 < 0$

2) Raj and Ajay are very close friends. Both the families decide to go to Ranikhet by their own cars. Raj's car travels at a speed of x km/h while Ajay's car travels 5 km/h faster than Raj's car. Raj took 4 h more than Ajay to complete the journey of 400 km.

(i) What will be the distance covered by Ajay's car in 2 h?

(a) 2(x + 5) km (b) (x - 5) km

(c) 2(x + 10)km (d) (2x + 5) km

(ii) Which of the following quadratic equation describe the speed of Raj's car?

(a) $x^2 - 5x - 500 = 0$ (b) $x^2 + 4x - 400 = 0$

(c) $x^2 + 5x - 500 = 0$ (d) $x^2 - 4x + 400 = 0$

- (iii) What is the speed of Raj's car?
- (a) 20 km/h (b) 15 km/h
- (c) 25 km/h (d) 10 km/h
- (iv) How much time took Ajay to travel 400 km?
- (a) 20 h (b) 40 h
- (c) 25 h (d) 16 h

Answer : (i) (a) Since, Ajay's car travels a distance in one hour is (x + 5) km. Therefore, Ajay's car travels a distance two hours is 2(x + 5) km.

(ii) (c) \therefore Time $= \frac{\text{Distance}}{\text{Speed}}$ Time taken by Ajay and Raj to complete the 400 km journey, $t_1 = \frac{400}{x+5}$ h and $t_2 = \frac{400}{x}$ h According to the question, $t_2 = t_1 + 4$ $\therefore \frac{400}{x} = \frac{400}{x+5} + 4$ $\Rightarrow \frac{100}{x} = \frac{100}{x+5} + 1$ [dividing by 4] $\Rightarrow 100(x + 5) = 100x + x(x + 5)$ $\Rightarrow 100x + 500 = 100x + x^2 + 5x$ $\Rightarrow x^2 + 5x - 500 = 0$ (iii) (a) Consider the quadratic equation $x^2 + 5x - 500 = 0$ On comparing with $ax^2 + bx + c = 0$, we get a = 1, b = 5 and c = -500 $\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-5 \pm \sqrt{(5)^2 - 4 \times (1)(-500)}}{2 \times 1}$ $= \frac{-5 \pm \sqrt{25 + 2000}}{2} = \frac{-5 \pm \sqrt{2025}}{2}$

$$=rac{-5\pm 45}{2}=rac{-50}{2},rac{40}{2}=-25,20$$

Since, speed cannot be negative, so we consider only x = 20.

Hence, the speed of Raj's car is 20 km/h.

(iv) (d) To travel 400 km, time taken by Ajay

$$t_1 = rac{400}{(x+5)} = rac{400}{20+5} = rac{400}{25} = 16 ext{ h}$$