QB365 QUESTION BANK SOFTWARE

10th Maths Important Case Study Questions for Some Applications Of Trigonometry 2024

SECTION A

1) Rohit is standing at the top of the building observes a car at an angle of 30°, which is approaching the foot of the building with a uniform speed. 6 seconds later, angle of depression of car formed to be 60°, whose distance at that instant from the building is 25 m .

Based on the above information, answer the following questions.
(i) Height of the building is
(a) $25 \sqrt{2} \underset{\text { (b) }}{\mathbf{5 0}}(a) 25 \sqrt{3} \underset{\mathbf{m}}{\underset{2}{\text { (d) }}}$
m m
(ii) Distance between two positions of the car is
(a)
(b) (c)
(d)

40 m50 m60 m75 m
(iii) Total time taken by the car to reach the foot of the building from starting point is
(a) 4 (b) 3
(c) 6
(d) 9
sec. sec. sec. sec.
(iv) The distance of the observer from the car when it makes an angle of 60° is
$\begin{array}{lll}\text { (a) } & \text { (b) } & \text { (c) }\end{array}$
25 m45 m50 m75 m
(v) The angle of elevation increases
(a) when point of
observation moves towards
the object
(b) when point of observation moves away from the object
(c) when object moves
away from the observer
(d) None of these

Answer : (i) (c): In $\triangle A B C, \frac{A B}{B C}=\tan 60^{\circ}$
$\Rightarrow \quad A B=25 \times \sqrt{3}$
\therefore Height of building is $25 \sqrt{3} \mathrm{~m}$.
(ii) (b): In $\triangle A B D, \frac{A B}{B D}=\tan 30^{\circ}$
$\Rightarrow \frac{25 \sqrt{3}}{B D}=\frac{1}{\sqrt{3}} \Rightarrow B D=75 \mathrm{~m}$
\therefore Distance between two positions of car $=(75-25) \mathrm{m}=50 \mathrm{~m}$.
(iii) (d): Time taken to cover 50 m distance $=6 \mathrm{sec}$.
\therefore Time taken to cover 25 m distance $=3 \mathrm{sec}$.
\therefore Total time taken by car $=6 \mathrm{sec}+3 \mathrm{sec}=9 \mathrm{sec}$
(iv) (c): In $\triangle A B C, \frac{B C}{A C}=\cos 60^{\circ}$
$\Rightarrow \quad \frac{25}{A C}=\frac{1}{2}$
$\Rightarrow A C=50 \mathrm{~m}$
(v) (a)
2) Suppose a straight vertical tree is broken at some point due to storm and the broken part is inclined at a certain distant from the foot of the tree. Based on the above information, answer the following questions.
(i) If the top of upper part of broken tree touches ground at a distance 000 m (from the foot of the tree) and makes an angle of inclination 30°, then the height of remaining part of the tree is
$(a) \sqrt{3} \mathrm{~m}(b) 30 \sqrt{3} \mathrm{~m}(c) \frac{30}{\sqrt{3}} \mathbf{m} \mathbf{(\mathbf { d })} \mathbf{m} \mathbf{m}$
(ii) If the top of broken part of a tree touches the ground at a point whose distance from foot of the tree is equal to height of remaining part, then its angle of inclination is
(a) (b) (c)
$30^{\circ} \quad 60^{\circ} \quad 45^{\circ}$
(d) None of
these
(iii) The angle of elevation are always
(a)
(b)
(c)
(d)
obtuse acute right reflex
angle angle angle angle
(iv) If $A B=10 \sqrt{3} \mathrm{~m}, A D=2 \sqrt{3} \mathrm{~m}$, then $C D=$

(a) 9 (b) (c) (d)

m 11 m 14 m 16 m
(v) If the height of a tree is 6 m , which is broken by wind in such a way that its top touches the ground and makes an angles 30° with the ground. At what height from the bottom of the tree is broken by the wind?
(a)
(b) 4 (c) 8
(d) 10
$\mathbf{m} \quad \mathbf{m} \quad \mathbf{m} \quad \mathbf{m}$

Answer : (i) (c): Let AB be the tree of height h m and let it broken at height of xm , as shown in figure. Clearly $C D=A C=(h-x) m$
Now, in \triangle CBD, we have
$\tan 30^{\circ}=\frac{x}{30}$
$\Rightarrow \quad x=\frac{30}{\sqrt{3}} \mathrm{~m}$

Thus, the height of remaining part of the tree is $\frac{30}{\sqrt{3}} m$
(ii) (c): In this case, $\mathrm{BD}=\mathrm{BC}=\mathrm{xm}$
\therefore If θ be the angle of inclination, then
$\tan \theta=\frac{B C}{B D}=1$
$\Rightarrow \tan \theta=\tan 45^{\circ}$
$\Rightarrow \theta=45^{\circ}$
(iii) (b): The angle of elevation and depression are always acute angles.
(iv) (d): Clearly, $\mathrm{BD}=\mathrm{AB}-\mathrm{AD}$
$=(10 \sqrt{3}-2 \sqrt{3}) \mathrm{m}=8 \sqrt{3} \mathrm{~m}$

