QB365 QUESTION BANK SOFTWARE

10th Maths CBSE Important Case Study Questions for Circles 2024

SECTION A

1) Smita always finds it confusing with the concepts of tangent and secant of a circle. But this time she has determined herself to get concepts easier. So, she started listing down the differences between tangent and secant of a circle along with their relation. Here, some points in question form are listed by Smita in her notes. Try answering them to clear your concepts also.

(i) A line that intersects a circle exactly at two points is called
(a)
(b)
(c)
(d) Both (a)

Secant Tangent Chord and (b)

(ii) Number of tangents that can be drawn on a circle is
(a) $\mathbf{1}$ (b) $\mathbf{0}$ (c) 2 (d) Infinite
(iii) Number of tangents that can be drawn to a circle from a point not on it, is
(a) 1 (b) 2 (c) 0 (d) Infinite
(iv) Number of secants that can be drawn to a circle from a point on it is
(a) Infinite
(b) $\mathbf{1}$ (c) $\mathbf{2}$ (d) $\mathbf{0}$
(v) A line that touches a circle at only one point is called
(a) Secant (b) Chord (c) Tangent (d) Diameter

Answer : (i) (a)
(ii) (d)
(iii) (b)
(iv) (a)
(v) (c)
2) In a maths class, the teacher draws two circles that touch each other externally at point K with centres A and B and radii 5 em and 4 em respectively as shown in the figure.

Based on the above information, answer the following questions.
(i) The value of $\mathrm{PA}=$
(a) 12 (b) 5
(c) 13 (d) Can't be
cm cm cm determined
(ii) The value of $\mathrm{BQ}=$
$\begin{array}{ll}\text { (a) } 4 & \text { (b) } 5\end{array}$
(c) 6
(d) None of
cm cm cm
these
(iii) The value of $\mathrm{PK}=$
(a) 13
(b) 15
(c) 16
(d) 18
cm
cm
cm
cm
(iv) The value of $\mathrm{QY}=$
(a) 2 cm (b) 5 cm (c) 1 cm (d) $\mathbf{3 \mathrm { cm }}$
(v) Which of the following is true?
(a)
(b)
$\mathbf{P S}^{2}=\mathbf{P A} . \mathrm{PK}^{\mathbf{T}} \mathbf{Q}^{\mathbf{2}}=\mathbf{Q B} . \mathbf{Q K}$
(c) $\mathbf{P S}^{2}=P X$. PK $^{(\mathrm{d}) ~} \mathrm{TQ}^{2}$
$=$ QA.QB

Answer: Here, $\mathrm{AS}=5 \mathrm{~cm}, \mathrm{BT}=4 \mathrm{~cm} \quad[\therefore$ Radii of circles]
(i) (c): Since, radius at point of contact is perpendicular to tangent.
\therefore By Pythagoras theorem, we have
$P A=\sqrt{P S^{2}+A S^{2}}=\sqrt{12^{2}+5^{2}}=\sqrt{169}=13 \mathrm{~cm}$
(ii) (b): Again by Pythagoras theorem, we have
$B Q=\sqrt{T Q^{2}+B T^{2}}=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5 \mathrm{~cm}$
(iii) (d): $\mathrm{PK}=\mathrm{PA}+\mathrm{AK}=13+5=18 \mathrm{~cm}$
(iv) (c): $\mathrm{QY}=\mathrm{BQ}-\mathrm{BY}=5-4=1 \mathrm{~cm}$
(v) (c): $\mathrm{PS}^{2}=\mathrm{PA}^{2}-\mathrm{AS}^{2}=\mathrm{PA}^{2}-\mathrm{AK}^{2}$
$=(P A+A K)(P A-A K)=P K . P X[\because A K=A X]$

