QB365 QUESTION BANK SOFTWARE

10th Maths CBSE Important Case Study Questions for Areas Related To Circles 2024

SECTION A

1) Mr Ramanand purchased a plot QRUT to build his house. He leave space of two congruent semicircles for gardening and a rectangular area of breadth 3 em for car parking.

Based on the above information, answer the following questions.
(i) Area of square PQRS is
(a) 700
(b) 729
(c) 732
(d) 735
cm 2
cm^{2}
cm^{2}
cm^{2}
(ii) Area of rectangle left for car parking is
(a) 64
(b) 76
(c) 81
(d) $\mathbf{1 0 0}$
cm ${ }^{2}$
cm^{2}
cm^{2}
cm^{2}
(iii) Radius of semi-circle is
(a) 6.75
(b) 7
(c) 7.75
(d) 8.75
cm
cm
cm
cm
(iv) Area of a semi-circle is
$\begin{array}{lll}\text { (a) } 61.59 & \text { (b) } 66.29 & \text { (c) } 70.36 \\ \mathrm{~cm}^{2} & \text { (d) } 71.59\end{array}$
$\mathbf{c m}^{2} \quad \mathbf{c m}^{2} \quad \mathbf{c m}^{2} \quad \mathbf{c m}^{2}$
(v) Find the area of the shaded region
(a)
(c)
(d)
660.82 (b) $666.82 \mathrm{~cm}^{2} 669.89700$
cm $^{2} \quad \mathrm{~cm}^{2} \quad \mathrm{~cm}^{2}$

Answer : (i) (b): Side of square $P Q R S=27 \mathrm{~cm}$
\therefore Area of square $\mathrm{PQRS}=27 \times 27=729 \mathrm{~cm}^{2}$
(ii) (c): Area of rectangle left for car parking is area of
region $\operatorname{PSUT}=27 \times 3=81 \mathrm{~cm}^{2}$
(iii) (a) : Diameter of semi circle $=P V=\frac{P S}{2}=\frac{27}{2}$
$=13.5 \mathrm{~cm}$
\therefore Radius of semi circle $=\frac{13.5}{2}=6.75 \mathrm{~cm}$
(iv) (d): Area of a semi -circle $=\frac{1}{2} \pi r^{2}$
$=\frac{1}{2} \times \frac{22}{7} \times 6.75 \times 6.75=71.59 \mathrm{~cm}^{2}$
(v) (b): Area of shaded region = area of rectangular plot QRUT - area of two semi-circles
$=30 \times 27-2 \times 71.59=666.82 \mathrm{~cm}^{2}$
2) The inauguration of 'Earth day' week in a school, badges were given to volunteers. Organisers purchased these badges from an NCO, who made these badges in the form of a circle inscribed in a square of side 8 cm .

O is the centre of the circle and $\angle \mathrm{AOB}=90^{\circ}$

Based on the above information, answer the following questions.
(i) What is the area of square $A B C D$?
(ii) What is the length of diagonal $A C$ of square $A B C D$?
(iii) Find the area of sector OPRQO.

Or
(iii) Find the area of remaining part of square $A B C D$ when area of circle is excluded.

Answer : (i) Area of square $\mathrm{ABCD}=(\text { side })^{2}=8^{2}=64 \mathrm{~cm}^{2}$
(ii) In $\triangle \mathrm{ABC}$,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}=8^{2}+8^{2}$

$\Rightarrow \mathrm{AC}^{2}=2 \times 8^{2}$
$\Rightarrow \mathrm{AC}=8 \sqrt{2} \mathrm{~cm}$
(iii) Area of sector OPRQO of angle 90°
$=\frac{90^{\circ}}{360^{\circ}} \times \pi \times(\text { radius })^{2}$
$=\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 4^{2}$
[when a circle is inscribed in a square the diameter of the circle is equal to the side length of the square]
$=\frac{22 \times 4}{7}=\frac{88}{7} \mathrm{~cm}^{2}$
\therefore Area of remaining part $=$ Area of square - Area of circle
$=64-\pi \times(4)^{2}$
$=64-\frac{22}{7} \times 16$
$=16\left(4-\frac{22}{7}\right)=\frac{96}{7} \mathrm{~cm}^{2}$

