10th Standard English Medium Maths Subject Book Back 1 Mark Questions with Solution Part - II

10th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 25

    1 Marks

    25 x 1 = 25
  1. If n(A x B) = 6 and A = {1,3} then n(B) is

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    6

  2. If A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8} then state which of the following statement is true..

    (a)

    (A x C) ⊂ (B x D)

    (b)

    (B x D) ⊂ (A x C)

    (c)

    (A x B) ⊂ (A x D)

    (d)

    (D x A) ⊂ (B x A)

  3. The range of the relation R = {(x, x2) |x is a prime number less than 13} is

    (a)

    {2,3,5,7}

    (b)

    {2,3,5,7,11}

    (c)

    {4,9,25,49,121}

    (d)

    {1,4,9,25,49,121}

  4. Let f and g be two functions given by
    f = {(0,1), (2,0), (3,-4), (4,2), (5,7)}
    g = {(0,2), (1,0), (2,4), (-4,2), (7,0)} then the  range of f o g is

    (a)

    {0,2,3,4,5}

    (b)

    {–4,1,0,2,7}

    (c)

    {1,2,3,4,5}

    (d)

    {0,1,2}

  5. Let f(x) = \(\sqrt { 1+x^{ 2 } } \) then

    (a)

    f(xy) = f(x).f(y)

    (b)

    f(xy) ≥ f(x).f(y)

    (c)

    f(xy) ≤ f(x).f(y)

    (d)

    None of these

  6. f(x) = (x + 1)3 - (x - 1)3 represents a function which is

    (a)

    linear

    (b)

    cubic

    (c)

    reciprocal

    (d)

    quadratic

  7. Using Euclid’s division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are

    (a)

    0, 1, 8

    (b)

    1, 4, 8

    (c)

    0, 1, 3

    (d)

    0, 1, 3

  8. If the HCF of 65 and 117 is expressible in the form of 65m - 117 , then the value of m is

    (a)

    4

    (b)

    2

    (c)

    1

    (d)

    3

  9. The sum of the exponents of the prime factors in the prime factorization of 1729 is

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    4

  10. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is

    (a)

    2025

    (b)

    5220

    (c)

    5025

    (d)

    2520

  11. 74k \(\equiv \) ________ (mod 100)

    (a)

    1

    (b)

    2

    (c)

    3

    (d)

    4

  12. Given F1 = 1, F2 = 3 and Fn = Fn-1 + Fn-2 then F5 is

    (a)

    3

    (b)

    5

    (c)

    8

    (d)

    11

  13. If 6 times of 6th term of an A.P. is equal to 7 times the 7th term, then the 13th term of the A.P. is

    (a)

    0

    (b)

    6

    (c)

    7

    (d)

    13

  14. If (x - 6) is the HCF of x2 - 2x - 24 and x2 - kx - 6 then the value of k is

    (a)

    3

    (b)

    5

    (c)

    6

    (d)

    8

  15. \(\frac {3y - 3}{y} \div \frac {7y - 7}{3y^{2}}\) is

    (a)

    \(\frac {9y}{7}\)

    (b)

    \(\frac {9y^{2}}{(21y - 21)}\)

    (c)

    \(\frac {21y^2 - 42y + 21}{3y^{2}}\)

    (d)

    \(\frac {7(y^{2} - 2y + 1)}{y^{2}}\)

  16. y2 + \(\frac {1}{y^{2}}\) is not equal to

    (a)

    \(\frac {y^{2} + 1}{y^{2}}\)

    (b)

    \({ \left( y+\frac { 1 }{ y } \right) }^{ 2 }\)

    (c)

    \({ \left( y-\frac { 1 }{ y } \right) }^{ 2 }+2\)

    (d)

    \({ \left( y+\frac { 1 }{ y } \right) }^{ 2 }-2\)

  17. \(\frac { x }{ { x }^{ 2 }-25 } -\frac { 8 }{ { x }^{ 2 }+6x+5 } \) gives

    (a)

    \(\frac { { x }^{ 2 }-7x+40 }{ \left( x-5 \right) \left( x+5 \right) } \)

    (b)

    \(\frac { { x }^{ 2 }+7x+40 }{ \left( x-5 \right) \left( x+5 \right) \left( x+1 \right) } \)

    (c)

    \(\frac { { x }^{ 2 }-7x+40 }{ \left( { x }^{ 2 }-25 \right) \left( x+1 \right) } \)

    (d)

    \(\frac { { x }^{ 2 }+10 }{ \left( { x }^{ 2 }-25 \right) \left( x+1 \right) } \)

  18. If A is a 2 x 3 matrix and B is a 3 x 4 matrix, how many columns does AB have

    (a)

    3

    (b)

    4

    (c)

    2

    (d)

    5

  19. Which of the following can be calculated from the given matrices A  = \(\left( \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix} \right) \), B = \(\left( \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right) \),
    (i) A2
    (ii) B2
    (iii) AB
    (iv) BA

    (a)

    (i) and (ii) only

    (b)

    (ii) and (iii) only

    (c)

    (ii) and (iv) only

    (d)

    all of these

  20. In LMN, \(\angle\)L = 60o, \(\angle\)M = 50o. If LMN ~ PQR then the value of \(\angle\)R is

    (a)

    40o

    (b)

    70°

    (c)

    30°

    (d)

    110°

  21. In a \(\triangle\)ABC, AD is the bisector \(\angle\)BAC. If AB = 8 cm, BD = 6 cm and DC = 3 cm. The length of the side AC is

    (a)

    6 cm

    (b)

    4 cm

    (c)

    3 cm

    (d)

    8 cm

  22. The two tangents from an external points P to a circle with centre at O are PA and PB. If \(\angle APB\) = 70o then the value of \(\angle AOB\) is

    (a)

    100°

    (b)

    110°

    (c)

    120°

    (d)

    130°

  23. The slope of the line joining (12, 3), (4, a) is \(\frac 18\)The value of ‘a’ is

    (a)

    1

    (b)

    4

    (c)

    -5

    (d)

    2

  24. The slope of the line which is perpendicular to a line joining the points (0, 0) and (– 8, 8) is

    (a)

    –1

    (b)

    1

    (c)

    \(\frac13\)

    (d)

    -8

  25. When proving that a quadrilateral is a parallelogram by using slopes you must find

    (a)

    The slopes of two sides

    (b)

    The slopes of two pair of opposite sides

    (c)

    The lengths of all sides

    (d)

    Both the lengths and slopes of two sides

*****************************************

Reviews & Comments about 10th Standard English Medium Maths Subject Book Back 1 Mark Questions with Solution Part - II

Write your Comment