10th Standard English Medium Maths Subject Geometry Book Back 2 Mark Questions with Solution Part - II

10th Standard

    Reg.No. :
  •  
  •  
  •  
  •  
  •  
  •  

Maths

Time : 01:00:00 Hrs
Total Marks : 20

    2 Marks

    10 x 2 = 20
  1. In the adjacent figure, \(\triangle\) ACB~\(\triangle\) APQ. If BC = 8 cm, PQ = 4 cm, BA = 6.5 cm and AP = 2.8 cm, find CA and AQ.

  2. In \(\triangle\)ABC,D and E are points on the sides AB and AC respectively such that DE||BC \(\frac { AD }{ DB } =\frac { 3 }{ 4 } \) and AC = 15cm find AE.

  3. In the rectangle WXYZ, XY+YZ = 17 cm, and XZ + YW = 26 cm .Calculate the length and breadth of the rectangle

  4. D is the mid point of side BC and AE \(\bot \) BC. If BC = a, AC = b, AB = c, ED = x, AD = p and AE = h, prove that
    \({ b }^{ 2 }={ p }^{ 2 }+ax+\frac { { a }^{ 2 } }{ 4 } \)

  5. If figure OPRQ is a square and \(\angle\)MLN=90o. Prove that

    \(\triangle\)LOP~\(\triangle\)RPN

  6. If figure OPRQ is a square and \(\angle\)MLN=90o. Prove that

    \(\triangle\)QMO ~\(\triangle\)RPN

  7. If figure OPRQ is a square and \(\angle\)MLN = 90o. Prove that

    QR2 = MQ x RN

  8. In fig. if PQ || BC and PR || CD prove that

    \(\frac { QB }{ AQ } =\frac { DR }{ AR } \)

  9. D is the mid point of side BC and AE \(\bot \) BC. If BC = a, AC = b, AB = c, ED = x, AD = p and AE = h, prove that
    \({ c }^{ 2 }={ p }^{ 2 }-ax+\frac { { a }^{ 2 } }{ 4 } \)

  10. D is the mid point of side BC and AE \(\bot \) BC. If BC = a, AC = b, AB = c, ED = x, AD = p and AE = h, prove that
    \({ b }^{ 2 }+{ c }^{ 2 }={ 2p }^{ 2 }+\frac { { a }^{ 2 } }{ 2 } \)

*****************************************

Reviews & Comments about 10th Standard English Medium Maths Subject Geometry Book Back 2 Mark Questions with Solution Part - II

Write your Comment